
Support for execution : page 1.

A "LOG-STRUCTURED" FILE SYSTEM

Who needs a disc ? As memory gets cheaper, and processors get faster, and the hardware
gets more and more reliable, why don't we just keep all the file material we need
permanently in memory ? It's really a matter of insurance : if the system should break
down, data stored on the disc will be preserved. Even this reason may well become
unconvincing if software reliability also continues to increase, and the sole use of the disc
will then be as an archive for comparatively infrequently used information.

In that case, it would be sensible to reassess the way in which we store information
on the disc. Here's an interesting argument which follows this line through and has
achieved respectability over the last few years. Read the original publicationIMP26 if you
want more detail – it's admirably comprehensible. Just to show that it isn't a joke, further
publicationsSUP6, IMP27 record later developments; the system has actually been
implemented, and works.

THE PROBLEM.

As the disparity in speed between processors and discs increases, the first difficulty is in
the bandwidth of the disc path. One way round this for some purposes is simply to use a
disc array – in effect, to use a lot of disc drives in parallel. Each file can be distributed
between the drives in some efficient way (called striping) so that the total bandwidth of
the combined channels is sufficient. (We describe disc arrays in more detail in the next
chapter.)

But that simply moves the problem one step along : now we want to know how
most effectively to use such techniques to provide the disc service we want. To answer
the question, we have to know something about the patterns of use of disc files. The
authors distinguish three patterns of use, which they call scientific computing, transaction
processing, and engineering/office applications. The method described is appropriate to
the last of these, which is characterised by the need for large numbers of quite small
files – and which therefore don't directly gain very much from disc arrays, as there is
little requirement for long sequential read or write operations which must be completed
quickly and can usefully be run in parallel over several disc drives.

DISC CACHES.

As a first step, we can try to keep all the wanted files in memory using a standard caching
technique : an area of memory is reserved to hold copies of the disc sectors used, and
managed so that the most recently used sectors are immediately available from the cache.
(A disc cache is quite similar in principle to the more familiar memory cache, but stores
disc sectors rather than memory words.) Small files can live completely within the cache;
given total reliability, they need only be written to the disc when they are closed, and only
then if the space they occupy is required for some more current file. For security in the
real world, it is desirable to make sure that the disc copy of the file is identical with the
cached version, so new information should be written to the disc as soon as possible, but
as the size of the cache increases it will become less and less common to need to read
information from the disc (after the first time, if the file exists before the programme
starts). The disc cache can therefore be written to the disc as time becomes available,
imposing very little load on the system.

What happens if the power fails ? Provided we have battery backup, nothing very
dreadful. Generally, we might need to protect the cache from a variety of sorts of
unfortunate accident, but we can do that fairly well even now. With improvements in
reliability, there might be very little need to worry about such failures in future.

In that case, the disc really does become little more than an archive for important
data which must be saved over a long period of time. We will hardly ever want to read
material back from the disc; so we can concentrate on writing to the disc, and we can
devise our system to write to the disc as efficiently as possible.

THE LOG-STRUCTURED FILE SYSTEM.

The most efficient way to write to a disc is sequentially – so why not simply write all
filed material to the disc as it is sent ? We can worry about getting it back when it's
necessary, and it doesn't matter much if that is rather inefficient. Obviously there's a need
for a certain amount of housekeeping information about which file is which and how the
bits are connected, but that can just be written sequentially too.

The authors of the paper analyse this proposal in some detail – and they find that
they can design a method which is both maximally efficient for writing to the disc, and
also efficient for reading back. They make a very plausible case. Is this the shape of
things to come ?

Support for execution : page 3.

COMPARING METHODS.

The graph below gives as very schematic picture of the relative performances of some of
the methods we've discussed.

Memory

SPEED High Low

Disc

Disc cache

Ram disc

Log-structured
file system

SAFETY

Low

High

WHO NEEDS A FILE SYSTEM ?

Perhaps the log-structured system isn't the last word. Consider what it does. There are
two components : it moves the "real" file system into memory, and it provides an
ingenious and efficient way to back up the system to disc to guard against catastrophe. In
other words, it provides a secure RAM disc; but it accepts without question that we want
a file system. Do we ?

We suggest that we don't. If we're going to keep all the information in memory,
why don't we organise it in terms of more useful data structures ? For years we've had to
go to all sorts of lengths to take complicated data structures to pieces and then to write the
pieces, and all manner of structural information, onto files in such a way that we could get
the original data structures back again. If we believe that memory is really so reliable, then
why not just keep the data structures ? Provided that someone will build us software
resembling the log-structured file system software to keep a permanent record of the way
the structure changes, then we'll be better off.

This proposal is an extension of the suggestion put forward in the chapter FILES –
FROM THE BEGINNING that random access files should behave like arrays rather than
like traditional files, the only difference being in the attribute of persistence. Some ideas
of this sort are under discussion, particularly as increasing processor address spaces make
the idea of persistent arrays "in memory" a possibility.

In practice, we are likely to want to retain at least one vestige of the file system –
the directory, though perhaps in an advanced form. It's all very well saying that we can
keep records of everything we've ever done in our 264 bit address space, but how do we
find it again ten years later ? No one is going to remember the literal binary addresses
(we'd hope that no one will ever need to see one); we'll forget names, and tend to use
them again quite by accident (which the system must certainly allow without necessarily
deleting the earlier instance, or the names we use will have to become more and more
unnatural as the years pass). We will therefore need a way of retrieving the items which
will cope with names if we remember them, but also let us use specifications which
describe the content of the objects.

REFERENCES.

SUP6 : A. Bartioli, S.J. Mullender, M. van der Valk : "Wide address spaces –
exploring the design space", Operating Systems Review 27#1, 11
(January 1993)

IMP26 : J. Ousterhout, F. Douglis : "Beating the I/O bottleneck : a case for log-
structured file systems", Operating Systems Review 23#1, 11
(January 1989)

IMP27 : M. Rosenblum, J.K. Ousterhout : "The design and implementation of a log-
structured file system", Operating Systems Review 25#5, 1 (Special
issue, 1991).

–––

QUESTIONS.

Is it sensible to think of the disc as an archive cache ?

Consider the hierarchy of caches, from registers to archive. Is it a sound
general principle that it's a good idea to use faster memory to save some
recent data from the next slower memory type ?

–––

