
Implementation : page 1.

DISC SYSTEMS : AN EXAMPLE

The major part of this chapter is taken from an account of a fairly simple and practical file
systemIMP25. It was originally intended as a server designed for use in a distributed
system, but that doesn't affect its design significantly. Its most significant unusual feature
is its avoidance of imposing any particular file structure on the material stored; that is
particularly appropriate for a server which might be required to provide resources to
different operating systems on different processors.

CFS is the Cambridge File Server, one of the very few successful network file
servers at the time.

4. THE ARCA FILE SERVER

The Arca file server is a stand alone
system which provides a file store to be
shared by other systems, henceforth
called clients, on the network. It allows
clients to create, destroy, read and write
files from a distance. It is important
when designing a file server to strike the
correct balance between what the file
server is expected to do for the clients
and what they must do themselves. In the
case of the Arca file server we had three
main aims:

(1) To do as much for the client as
possible without either imposing any
kind of restriction on its clients
regarding file structure or taking on
time consuming operations that will
hold up other clients.

(2) To allow each client to impose his
structure on files and to let several
different file structures co-exist on the
one filing system.

(3) The file server should not lose data
when a crash occurs and should be
able to recover automatically.

In order to satisfy the third requirement
the file server has to ensure that certain
types of file will be updated atomically,
that is, if either the hardware or software
fails during a transaction, the file server
will return the file to either its final or
original state depending on whether the
file was closed or not (see section 7).
Because of the overheads involved in the
atomic update sequence, it is adopted for
a file only if the client explicitly requests
it when the file is created. This type of
file is called 'special'. Although the client
could be allowed to change the 'special'
attribute of an object, we decided it was
not a useful thing to do because objects
which are easily re-creatable (ie compiler
listings) will always be re-creatable and
vice-versa for non re-creatable objects (ie
program sources). As indicated in section

3 we decided to base our file server on
CFS, which has the following desirable
properties:

- high speed transfers to random access
word-addressed files.

- the ability to perform atomic updates to
files.

- a capability-like access control
mechanism.

- automatic reclamation of unused
storage.

- attention to the integrity of stored data.

In the next section the underlying file
structure of our implementation, based
strongly on that of CFS, is explained in
detail.

5. FILE SYSTEM STRUCTURE

Each object is uniquely identified by a
PUID (Permanent Unique IDentifier)
which is created with the object and is
never re-used or destroyed. A UID has
the format shown in figure 2.

When an object is opened, (ie disk held
information about the file is entered into a
table), the file server returns a TUID
(Temporary Unique IDentifier)
synonymous with its PUID. This TUID
is valid only until the object is closed and
is never re-used. The random bit pattern
is the only kind of protection the file
server uses. It makes use of the fact that
32 random bits will be very difficult to
guess and will take too long to try out all
combinations. Two types of object exist
on the File Server: files and indices. A
file is an array of bytes, whereas an
index is an array of PUIDs, each
representing a file or index. Some (or all)
entries in an index may be the null PUID
(all zeroes). Note that the client is not
allowed to write explicitly to an index.
Any index may contain a PUID for any
object provided only that the object is in
existence. Thus, the structure is that of

an undirected graph (figure 3). One
index, however, is distinguished from
the rest – that of the root-index. This
index is important because any object not
reachable by any chain of indices starting
from the root is eligible for deletion. No
further structure is imposed on the file
store other than that mentioned above.
Thus, although creation of objects is
controlled by the clients, their deletion is
controlled by the file server.

1 1 1 1 12 16 32

Bits

logical
disk no.

absolute disk or
store address

random
bit-pattern

0

If TUID then 0 = read interlock
1 = read/write interlock

else 0

0 = PUID, 1 = TUID

0 = file, 1 = index

Fig 2. Format of a uid

Root index

Index

File

File

Fig 3. File store graph structure

So far we have described the client's
view of the filing system. Its internal
structure is now explained. Each object
(file or index) has certain attributes,
namely whether it is a file or index,
special or non-special (indices are always
special), its PUID, its 'uninitialised'
value and its logical size. The
'uninitialised' value is the value returned
for any byte which has never been
written, and is always zero for indices.
The logical size determines only the
highest word address which may be
written and has little bearing on the actual
physical size. Thus, increasing an

object's logical size will not change its
physical size (except if a change in the
object's 'depth' is caused – see later),
but a reduction of its logical size may
cause some physical blocks to be
removed from that object. Reduction of
the logical size of an index may also
cause references to PUIDs in that index
to be lost. Each object also has a 'high
water mark' indicating the highest
address ever written. The logical file size
and the high water mark are the only
dynamic attributes of an object.
Transparent to the client is the object's
'depth' which can be one, two or three
depending on its logical size. The
following gives the object's depth, D, in
terms of the logical file size (in bytes), L:

L ≤ 504 ⇒ D = I
504 < L ≤ 252*512 ⇒ D = 2

252*512 < L ≤ 252*256*512 ⇒ D = 3

Note that, for an index, L is always a
multiple of eight (because a PUID is
eight bytes), but the client sees its logical
size only in terms of the number of
entries it holds. There are 512 bytes in
each disk block. All objects consist of at
least one block, called the 'first block',
which contains some of the object's
attributes in the first eight bytes. The
meaning of the remaining 504 bytes
depends on the object's depth. For a
depth of one, these bytes contain the data
itself; for a depth of two they contain 252
block addresses, each of which contains
512 bytes of data; for a depth of three
they give the addresses of indirect
blocks, each of which contains 256 block
addresses, each of which in turn contains
512 data bytes. When an object is
created, it always occupies one physical
block regardless of its logical size; if its
depth is greater than one, the remaining
504 bytes of its first block are null
pointers. Further blocks become
allocated as necessary; until then, they
are read as the appropriate number of
'uninitialised' bytes. The last block of
each cylinder of the disk is used by the
file server as a 'cylinder map'. This map
contains four words of status for each
block on that cylinder. The information
contained in the cylinder maps and the
tree structure of each object are mutually
redundant: thus, each may be rebuilt
from the other. This is the basis of the
file server's ability to perform atomic
updates (see section 7). If the cylinder
map becomes bad, a new disk will need
to be obtained. The information held in

Implementation : page 3.

the cylinder map for each block is as
follows:

word 1:

1. allocation state (1 = allocated, 0 =
de-allocated) – 1 bit

2. intention state (1 ⇒ intending to
change allocation state) – 1 bit

3. first (1 ⇒ first block of an
object) – 1 bit

4. index (1 = index, 0 = file) – 1 bit
5. commit (1 = commit, 0 = don't

commit) – 1 bit
6. level1 (1 ⇒ this block contains

pointers to data blocks) – 1 bit
7. level2 (1 ⇒ this block contains

pointers to level1 blocks) – 1 bit
8. (9 bits unused)

word 2:

sequence number (0..255) of block
within its parent (the block that
contains its address) or zero if none

words 3 and 4:

if this is the first block of an object,
these words contain the random part
of its PUID, otherwise they contain
the address of its parent block and the
address of the object's first block.

Finding a free block to extend an existing
object is performed by looking first on
the cylinder containing its 'first block',
then examining cylinders in both
directions from this point. It is hoped that
this algorithm will minimise the head
movement when accessing an object.

7. ATOMIC UPDATES

The File Server has a mechanism by
which an object can be updated
atomically in that, if an update fails, the
object will be restored to either its
original or final state. A file may be given
the property 'special' at create time which
causes all updates to the file to be
performed atomically, otherwise this
mechanism will be by-passed. The latter
case is useful when a file can be easily
re-created and one wishes to avoid the
overheads of atomic updates. Note that
indices are always treated as 'special'.
As stated in the previous section, the
information pertaining to the consistency
of the file store (excluding the contents of
data blocks) is recorded twice: once in

the graph structure of the indices and the
tree structure of each object, and once in
the cylinder maps (so called because
there is one per cylinder). An atomic
update to a 'special' object of depth two
is as follows:

When an object is opened for writing, a
copy is made of its first block and the
new block is marked as a 'new first
block'. As the object is written, intending
to allocate/de-allocate block pairs are
generated. These intending to allocate/de-
allocate states are used by the automatic
crash recovery program to enable it to
ascertain which blocks should be freed
and which blocks should become part of
the object. When the object is closed, the
following steps occur:

1. Set the 'commit' bit associated with
the object.

2. Copy the 'new first block' into the
'old first block' and de-allocate the
'new first block'.

3. Change all 'intending to allocate'
blocks to 'allocated'. Change all
'intending to de-allocate' blocks to
'de-allocated'.

4. Reset the object's commit bit.

If the file server crashes and restarts, the
'restore' program will examine the disk
and will either undo or complete any
unfinished atomic transactions. If any
cylinder map is found to be unreadable,
all cylinder maps will be rebuilt by
traversing the undirected graph from the
root-index. Otherwise, the commit bit of
each object is examined and the allocation
state of each block involved is changed
as follows:

commit = 0:
intending to allocate → de-allocated
intending to de-allocate → allocated

commit = 1:
intending to allocate → allocated
intending to de-allocate → de-
allocated

Note that the 'restore' program
undoes/completes atomic transactions in
the same way as the file server so that a
crash in this program is also recoverable.
Note also that this method assumes that a
block which was half written will be left
detectably bad.

Having set the commit bit of the object,
no further cylinder maps are written until
the 'new first block' has been copied
onto the 'old first block'. Thus, if the
cylinder maps need to be rebuilt, the
view of the object from its first block will
be correct according to what the commit
bit would have been. Therefore, the only
ways the file store could be damaged are
due to software errors or physical
damage to the disk.

8. GARBAGE COLLECTION

Garbage collection is performed
asynchronously with the normal
operation of the File Server. The garbage
collection algorithm runs at priority zero
and is interrupted by the receipt of any
network request. This algorithm is as
follows:

1. Mark all objects as 'not found'.
2. Search graph marking objects seen as

'found'.
3 . For each object marked as 'not found'

do the following:
(a) mark its first block as 'intending to

delete'
(b) mark the rest of its blocks as

'intending to delete'
(c) mark its first block as 'deleting'
(d) free all its blocks in depth-wise

order.

4. Reset the 'intending to delete' bits of
every block.

First + allocated New first block

Allocated Allocated

Intending
to deallocate

Intending
to allocate

Fig 4. Atomic update

During step 2, a note is made of any first
block marked as 'deleting'; if so, the
process of deleting that object will be
continued immediately before step 3
begins. Thus, there will only be one
partially deleted object at any time. No
object will be 'retained' in an index if its
first block has the 'deleting' bit set.
Whenever any object is 'retained' in an
index, the 'found' bit is set for that
object. This is done to prevent the
garbage collector from deleting it. When
an index is retained, the garbage-collector
is restarted.

REFERENCE.

IMP25 : S. Muir, D. Hutchison, D. Shepherd : "Arca : a local network file server",
Computer Journal 2 8, 243 (1985)

–––___–––––––––––––––––––––––––––––––

