
Support for execution : page 1.

DISCS – THE HARDWARE VIEW

In the preceding chapter, we considered what sort of material we needed to keep on a
disc, and some aspects of its logical structure. Now we reconsider the same question, but
from the point of view of how to make it work on a real disc system. Once again, we
observe marked differences in practice between large and small systems. Much of this
chapter will be concerned with large systems, because there's more to say about them, but
the principles, where they apply at all, should be universal.

The operating system's responsibility in a large disc system includes not only the
administration of a single disc, but possible decisions as to how the material is to be
distributed over the whole disc system. It is therefore useful to begin with a brief
description of a possible disc system, to define terms and – we hope – to clarify the
material which follows. (There is a more detailed account of a real disc controller system
in a later chapter on DEVICE CONTROL HARDWARE.)

The disc devices are connected to the computer through one or more input-output
ports. In small systems, this connection might be direct, with the computer's processor
heavily involved with the details of administering the data transfer between disc and
memory, but in larger systems special processors might be provided to deal with the
trivia, leaving the main processor for more constructive work. These processors are called
controllers or channels : as usual, the terms are not precisely defined, but it is often
supposed that a channel is cleverer, and might be programmable from the main processor.
If such hardware is used, it is usual for the normal input-output ports to be used only for
control instructions, with the data transfer itself conducted by direct memory access, again
reducing the load on the main processor.

Controllers can be quite elaborate. Not only can they transfer information : they can
deal with several simultaneous requests for disc access, and optimise the order of
attention to the requests to maximise the performance of the system (disc scheduling) ;
and they can cope with several disc devices and several input-output ports, and perhaps
communicate with other controllers as well. The aim in this complexity is twofold : on
the one hand, the controller removes as much as possible of the hard work from the main
processor, and on the other it seeks to optimise the disc system's performance, both by
getting material to and from the discs as quickly as possible and by balancing the load on
the various communications paths available to it.

Here's a diagram of a reasonably elaborate disc controllerIMP24 from a few years
ago. Multiply the numbers by a small factor for modern practice; disc performance has not
increased nearly as quickly as processor performance over the past years. You will see
that it is a rather specialised, and quite capable, multiprocessor computer in its own right.
Such a controller can operate as a file server shared by several computers, and can control
up to 32 disc or tape drives, controlling transactions in real time for optimal performance.

CONTROL
MEMORY

DATA
MEMORY

HOST
INTERFACE
(K.CI)

I/O
CONTROL

PROCESSOR
(P.IO)

LOAD
DEVICE

TERMINAL

DISK
INTERFACE
(K.SDI) OR

TAPE
INTERFACE
(K.STI)
(UP TO 8
TOTAL)

SDI OR STI
(4 PER

INTERFACE)

CI BUS

CONTROL BUS (6.6 MB/SEC)

DATA BUS (13.3 MB/SEC)

ROM ROMRAM

The processors named K.* run at over six MIPS and handle the real-time processing
needed to deal with the input to and output from both discs and attached computers. The
CI bus on the left can be connected to up to sixteen processors. Data transfer rates of the
order of one megabyte per second are expected. The P.IO processor is less ambitions than
the K.* machines; it is used for the comparatively light load of planning the scheduling
for the discs, which is done continuously to balance the load on the disc channels and to
optimise the performance of the individual discs.

PREPARING FOR USE : LAYING OUT THE DISCS.

We saw in the previous chapter that the operating system made use of the disc system in
several different ways. A part of the task of system configuration is to define which parts
of which discs may be used for what purposes.

For each disc, one component – part of the system information – is not optional;
this is the volume identification, which is used by the system to distinguish between
different discs and to find its way about the discs. It includes such material as the disc
name, its owner, dates and times, directory of contents, and so on. Notice that, following
from the discussion of the previous chapter, this directory must record what parts of the
disc are used for what purposes and a map of vacant space as well as the ordinary file
directory.

The layout of other components must be defined. There are certain constraints on
the definition : how many discs of what sizes and speeds are available, how these are
allocated to disc controllers, and so on. The aim is to find a layout which maximises
speed of response, or minimises the number of disc drives required, or satisfies whatever
other goals are deemed to be important.

THINGS TO CONSIDER :

• The sizes of the various areas : plausibly system < swapping < spooling <
store.

• The demand for the areas : plausibly swapping > system > spooling > store.
• Balancing the traffic through various disc channels.
• Special requirements : keep the system code on one disc drive, keep a spare

drive for use in emergency, etc.

(The relative sizes and demands are honest guesses. In making them, we have assumed
a fairly old-fashioned system, so "system" includes all the system software, not just the
kernel; and under spooling we have included other appropriate communications, such as
electronic mail.)

All these decisions are hard to make in a vacuum; you need to know a lot about the
sort of work your system will be doing, the demand for file space, spooling, etc. You
also need to know about patterns of work; if a lot of work goes on at weekends when

Support for execution : page 3.

operators aren't available, that can make a big difference to the need for areas which
depend on operator actions, such as archive buffer areas. It's very valuable to have good
statistics, which system managers can use to improve estimates of future requirements,
and software for collecting useful statistical information about performance is included in
many operating systems. We mentioned this as a requirement of the system in
MANAGERS ARE PEOPLE, TOO; here we discuss, rather briefly, how the principle
applies to a disc system, but this should be seen in the context of planning the whole
computer system. We describe this further in the next section, on MANAGEMENT.

In making the allocations, some things are best spread over several discs, while
others are best concentrated on one disc.

Things that spread : swapping space, spooling space.

These are usually better distributed over several discs so that a single disc fault only
hurts a few people, and doesn't stop the system. The common feature of these
requirements is that the disc space is used as a resource; disc space anywhere will
do.

Things that don't : one process's swapping space, system files.

These are best kept on a single disc. In these cases, we don't just want the disc
space – the data stored on the disc are significant, and different parts of the data are
interdependent. Therefore, if one part goes, the rest isn't much use, and spreading
the data over several discs only increases the chance that they'll be affected by a
breakdown. If we really want to use many discs, as with a RAID installation, then it
is sensible to take special precautions against disc failure. (We shall discuss RAID
methods in more detail shortly : see the chapter REAL-TIME DISC SYSTEMS.)

READING AND WRITING.

The details of reading from and writing to a disc are determined by the disc hardware.
Logically, this looks like a structure of the form array [cylinders, surfaces, N]
of sector, where a sector is the unit of data transferred by one read or write and N is
the number of sectors in one track. It is on this base that the software must implement the
various sorts of structure we listed earlier.

Physically, a cylinder is all the disc area accessible without moving the disc access
arm, so anything within a cylinder is accessible within one rotation period of the disc.
Material in other cylinders cannot be reached without a movement of the access arm, and
therefore typically takes longer to reach. A surface is, almost, what it says – one surface
of one physical disc. A slightly better definition for our purposes is the part of the disc
accessible to one of the disc's reading or writing heads; the two definitions are the
same except with hardware which provides more than one head for a physical surface. In
that case, the definition based on heads better describes the logical structure, though the
distinction is only important to the disc controller.

A sector is part of a track, which is the intersection of a surface and a cylinder –
physically, the area on one surface accessible without moving the heads. For good
reasons not connected with operating systems, it is customary to record material in several
bursts spread round the track and separated by unused gaps; these bursts are the sectors,
and they are significant as the disc's unit of reading and writing. You have to start reading
at the beginning of a sector; and you must write a whole sector at once. Any reading or
writing operation always begins at the beginning of a sector, but successive sectors on a
track in a cylinder can often be read sequentially in a single operation. It is therefore
common to allocate sectors or clusters for a serial file in sequential groups so that this
highly efficient reading and writing can be exploited. Each sector has a disc address by
which it is identified; the address must be specified for each read or write operation.

Cylinder

}

Sector

8 surfaces

A disc pack. The extreme outside surfaces are commonly not used.

Track

DISC SCHEDULING.

The time taken to complete a request to read from or write to the disc depends on the
relative positions of the heads and the disc address required when the request is made.
There are two main contributions to the time. The first, and usually the greater unless it's
zero, is the seek latency, which is the time taken for the heads to move to the right
cylinder; the second, the rotational latency, is the time taken for the sector required to
come round to the heads. Once the sector is found, the data transfer is typically very fast.

Given a single request for service, the disc system can do nothing clever, and just
has to go through the obvious routine and put up with the delay. In a multiprogrammed
system, though, there might be several requests for disc operations, each requiring
service by the same physical disc, and then there is scope for optimisation. This operation
is called disc scheduling, and the principle is easy to understand from an example.

Suppose the heads are on cylinder number 5, and a request for an operation on
cylinder 90 is received. The seek begins, but while it is in progress another request, this
time for an operation on cylinder 60, arrives. If the heads have not yet reached cylinder
60, it might well be quicker overall to deal with the second request first than to go all the
way to cylinder 90 and then return to cylinder 60.

In practice, a disc system might receive a continuous stream of requests, and disc
scheduling can be a full-time job; it is therefore commonly carried out by a disc controller
rather than by the system processors. It is complicated by different discs having different
characteristics, and discs with fast seek modes for long range movements.

COMPARE :

Lane and MooneyINT3 : Chapter 12 (and see Appendix B for details of the disc drive
machinery); Silberschatz and GalvinINT4 : Chapter 12.

REFERENCE.

IMP24 : R.F. Lary, R.G. Bean : "The hierarchical storage controller; a tightly coupled
multiprocessor as storage server", Digital Technical Journal # 8, 8
(February, 1989).

–––

