
Support for execution : page 1.

SESSION LOGS AND COMMAND FILES

The consequences of the choice of terminal management technique extend beyond those
for the terminal itself. Session logs and command files, both originating in the days of
traditional character-based operation but with continuing application in GUI systems, are
particularly dependent on the terminal management method chosen. Each of them is
closely concerned with one of the streams of information associated with the terminal :
the session log is a copy of the stream which flows to the screen from the software which
controls it, while a command file in some sense replaces the terminal input stream.

We have composed that last sentence with some care, as what we want is not
always the same as what we get. All too often, what we get is something which bears a
superficial resemblance to what we want, but is much easier to supply.

The main function of the session log was originally to provide a record of whatever
happened on the screen, for use as documentation, to convert into a command file, or as
an aid in finding errors. The aim was therefore to produce a file which is as close as
practicable to the material which appeared on the screen during the logged period. There is
only one point in the system where the required information is readily available : between
the terminal itself and the software that drives it. As the diagram shows, at any point more
remote from the terminal there are two streams of information which must be correctly
coordinated, and attempts to merge the two streams from the keyboard and system output
can give bizarre results if type-ahead is used or the system is for some reason running
slowly.

Keyboard Programme Driver
Screen

(The diagram above is not to be taken too seriously; it is simplified to make the point. In
practice, if there is to be any chance of coping with type-ahead and getting a
comprehensible screen layout, leaving aside the more difficult question of the log file,
then transmission of characters to the driver must not be directly from the keyboard input
stream. Instead, the driver must receive input characters as the programme consumes
them, not as the keyboard produces them. In some early systems the diagram was a good
description of the implementation, and with type-ahead permitted and a slow system it
was quite possible for instructions to appear on the screen several lines before their
responses.)

What can we say about session logs for GUI systems ? First, that it is not usually
very useful to see a blow-by-blow replay of what went on during a session; what we
want to know is usually not what happened but what it meant.

Similar problems were experienced even before
graphical user interfaces became common. When full
screen control became possible, overenthusiastic log
software carefully recorded each operation (which
could very well be a sequence of control characters

meaning "show the character positions from (10, 15)
to (10, 24) in reverse video"), so that the log was
almost impossible to understand when inspected

with an editor. Indeed, even an editor wasn't
reliable; unless the editor was clever enough to

intercept the control characters, it would faithfully
reproduce everything that happened on the screen,
usually clearing the screen just after the interesting

bit. The only recourse was to replace all the control
characters with some harmless strings as markers,
but that was hard enough to be a severe deterrent.

This is a matter of coordination, for we wish to record what the system understood by the
sequence of input actions in the context of the original screen pattern – in fact, we usually
want to record a sort of reverse-engineered command file which contains the essence of
the instructions which were in fact probably given for the most part by mouse movements
and clicks.

The session log collects what comes out of a terminal session; the command file
controls what goes in. With a textual interface, it is at least fairly easy to decide what we
want from the session log, but not even the decision is easy for command files. (With a
GUI, it isn't even obvious that there can be such a thing as a command file.) The main
point to be determined is just what we want the command files to command. Particularly,
do we want to include programme input in the command files, or restrict them to system
input, leaving all programme input to the terminal ? Both patterns have their advantages :
it is convenient to be able to write a command file to control a complete job, which might
well include instructions to the programmes which run in the job, but it is also convenient
to be able to test a programme by writing a command file which repeatedly allows us to
edit a file used by the programme then to run the programme on the new version of the
file. One could also argue that a simple mental model is encouraged if you can think of the
command file as an exact substitute for the keyboard. Perhaps the ideal is to be able to do
either, so it might seem rather odd that this is only rarely possible. We discuss the reasons
below, distinguishing between text and GUI for convenience.

TEXTUAL INTERFACES.

Assuming that the logs and command files are administered by the system, the differences
in behaviour are consequences of the changes in accessibility to the system of different
parts of these streams with the different schemes for terminal management which we
discussed in TERMINALS AS DEVICES.

• The monitor model : With this type of terminal management, both the terminal
and the software are owned by the process. It is difficult or impossible for the
system to reach the terminal streams while the process is in control, so both logs
and command files are limited. Typically, the logs record only the transactions
performed by the system, and not input and output concerned with programmes
which take over, and command files can contain only system instructions. This is a
particularly clear illustration of the distinction between the two functions of a
terminal.

"Exec" files in CMS were of this sort, though the picture was
complicated by the curious architecture of IBM's virtual machine
systems. CMS does not in fact run in a real IBM hardware
machine; it runs in a virtual machineIMP21, which is emulated by CP
("Control Program"), the real operating system which drives the
real hardware. It was therefore really CP which controlled the real
terminals, so there was another potential level of intervention
which everyone pretended wasn't there except when it became
handy to use it – as, for example, with Exec files. By courtesy of
CP there was a rather complicated way of storing terminal
information to be presented to programmes in a "console stack",
which functioned roughly as CP's terminal buffer, and was better
described as a deque. To get lines into a programme from an Exec
file, therefore, you had to store them all in the console stack before
starting the programme, which was a rather odd way to do it, and
did not improve the comprehensibility of your Exec files. If you
wanted to be really confusing, you loaded the console stack in the
simplest way provided – when it really did act as a stack, so you

Support for execution : page 3.

had to present the instructions destined for the programme in
reverse order. And, yes, this was the early 1980s.

But at least you could do it. MS-DOS batch files are even more
primitive; there is no way to get lines from a command file into a
programme. The manual saysIMP22 : "MS-DOS performs these
'batches' of your commands just as if you had typed them from the
keyboard"; and, "The result is the same as if the lines in the .bat
file were entered from the keyboard as individual commands".
Well, maybe it depends on how you define "commands".

But at least you could use batch files. On a Macintosh Well,
they're here. At last. See below.

• The supervisor model : In this case, the terminal is owned by process, while
the low-level terminal-driving software is owned by the system. We have a better
chance of replacing the terminal uniformly for all processes, though without a
UIMS to coordinate things it's difficult to develop a really flexible system without
considerable extensions to the interface software, and we don't think many system
designers have taken the trouble. The easy way is to provide for the system to
replace all terminal input with file input until the end of the file is reached – in
effect, simply to unplug the keyboard stream and insert a stream from a disc file in
its place. The trouble with the easy way is that it goes to the other extreme; now all
the input must come from the command file, and there's no way to break out of that
if we want to. Of course, provided that we can define what we want to do, we can
usually manage it somehow, but every extra feature requires more code in the
software. For example, if we want to provide some control sequence which will
switch the input from file to file, or file to keyboard, we can do it, but now the
software has to inspect the characters as they pass through, not just twiddle the file
information blocks.

In some cases, we can get useful behaviour by trickery. Suppose we want
conditional instructions in the command files. (That's just an example – the same
method works with other control structures too.) We can do this fairly easily
without complicating the software by making i f, then, and else (or whatever
syntactic form takes your fancy) into ordinary operating system instructions, with
the same status as copy or listdirectory. Then they will be executed when they
appear in the file in just the same way as any other ordinary operating instruction.

Unless, of course, you expect them to work with input to a programme,
which will execute them when they appear in the file just as if they were the
programme's own instructions, which they are probably not. Now we have
conditional instructions which sometimes work. (Perhaps you could say that they
work conditionally ?) Welcome back, modes !

Clearly, if we want to use control structures in our command files in a
homogeneous way we must use some software which implements the control
features on the input stream from the command file before the stream reaches its
destination.

• The system service model : The terminal is owned by the system. This is the
most flexible organisation. There is a UIMS, already heavily involved in the
interface, and it's comparatively easy to build into the software sophisticated control
operations which ensure that the command file instructions behave uniformly in all
circumstances (so, for example, conditional instructions work both for system and
programme input), and control can be exchanged between command file and
terminal at will. A command file system (MIC – Macro Interpreted Commands)
was available for the Tops-10 system, and was indeed very flexible.

GUIS.

We have remarked that both session logs and command files, traditionally very definitely
textual objects, change in nature when we move to a graphical interface, and we have also
hinted that they might still be useful. We shall now try to justify this position.

We think that command files would be useful just as they are useful in traditional
systems; with a system which can interpret command files, we can encode a sequence of
operations once and for all, then execute the whole lot, as often as we want, with a single
instruction. Why should computers spend significant chunks of time drawing beautiful
(maybe) interfaces, but still force us to plod repetitively though instruction sequences
we use every day ?

Except for one purpose, which we shall describe shortly, the logs are perhaps a
little less useful. While there have been several occasions when we would have liked to be
able to find out what we just did, our own impression is that, perhaps because of changed
patterns of work, the sort of detailed record of terminal transactions which was once
useful is no longer needed. The exception we mentioned more than makes up for this
change in view, though; it is (as with text interfaces) that a log of what you did is a
very good starting point for constructing a command file to do it again. It is particularly
valuable for a GUI system, because – whatever the language of the command file – it
will not be familiar to someone who normally uses a mouse and keyboard.

The difficulty for both log and command file is that, without a language, it is hard to
write down what you want, or what you got. The direct parallel to the text command file,
which has been implemented in some systems, is a record of sequences of keyboard and
mouse actions, so you can show the terminal what to do. The defect is obvious : there is
no guarantee of success unless you begin with a screen exactly like that on which the
original demonstration was conducted.

An example is the "Recorder" provided with Microsoft Windows
3.1. In some experiments - admittedly, not very extensive - w e
never managed to record a sequence involving movements of the
pointer which did not fail with a "pointer outside window area"
error. We did achieve success in recording a sequence of
keystrokes, and were able to duplicate a specimen file very
efficiently - but only if the sequence started with the window set
up exactly as it had been originally. Any change resulted in the
duplication of some other file. It is perhaps fortunate that we'd
foreseen the possibility and written our sequence to duplicate
rather than delete a file.

Incidentally, the Recorder is also a bad example of another sort; its
icon is a picture of a videorecorder, so we had always assumed that
it was something to do with video management, and therefore
ignored it.

Clearly, that's less than satisfactory; you should be able to move an icon without having
the whole sequence tumble round your ears. More advanced systems retain the teaching-
by-showing idea, but attempt to work out what the actions mean, in effect constructing a
command file by recording the operations after they have been interpreted by the screen
management software. This should be much more satisfactory, as actions can now be
associated with specific items of software, not positions on the screen. It is not clear how
either of these approaches can provide for variables.

That gives us a hint on how we should redefine the session log. It is
straightforward enough to make a video recording of what happens on the screen and
replay it as desired, but in practice that isn't really what you want. It seems likely that
what one really needs from a session log is a description, rather than a replay, of what
was supposed to happen – or more precisely, what the system understood was supposed
to happen, because a significant proportion of errors are caused by people giving what
they mistakenly believe to be correct instructions to perform some task. It is, after all, not

Support for execution : page 5.

entirely satisfactory to have to repeat a catastrophe in attempting to find out why it
occurred.

A system of this sort (called Applescript) is available for Macintosh
systemsIMP23. It works some of the time. That isn't Apple's fault – it's a reflection of the
greater complexity of a "command language" for a GUI. We saw that it isn't enough just
to encode a sequence of screen coordinates of mouse clicks, so the instructions must be
presented in some other way. So far, no one has come up with anything to beat text. You
might expect that this would make the GUI command file similar to a command file for a
textual system, but in fact it emphasises the difference in a very significant way : instead
of producing the ordinary input to the programmes from a different source, it produces an
equivalent but quite different input, and that is why it only works sometimes. Because the
input is different, the programme receiving the input must be equipped with extensions
which will understand the script language, and – for obvious reasons – most existing
programmes are unable to do so. A programme which can understand the script language
is called scriptable. (The file produced by the Windows Recorder isn't ordinary text, so
you can't inspect it to see what's wrong with it.)

The Applescript system also includes facilities for a session log, intended as a
means for recording command files. Again, there are complications; as the meaning of an
action in a GUI system can only be determined in the context of the current screen
display, and the correct interpretation is only known to the programme managing the part
of the screen where the action occurs, the log can only be made with the cooperation of
the programmes which will be used when the command file is executed. To give a useful
log, then, a programme must be able to produce a textual instruction equivalent to any
action performed when it is used. A programme which can do that is called recordable.
This is quite a bit harder than responding to textual input, so there will doubtless be
programmes which are scriptable but not recordable.

Here's an example of an Applescript programme, recorded from the finder. This
version was recorded in 1998; the previous version was from 1995, and in 1997 we
expressed the optimistic opinion that "it has probably improved now". In fact, the error is
still there, but in the intervening years Word has become scriptable and recordable, so
now there's a sequence describing the Word operations. The task recorded is that of
duplicating a file, dragging the copy to a different folder, changing its name back to that
of the original, editing it with Word, then deleting it.

The actions listed describe the events which caused the different parts to be
produced. The time sequence is correct; the code listed in a row of the Programme
column is not generated until after the actions in the Action column have been performed.
(The intention is to avoid generating lots of code for meaningless operations – so merely
selecting a file produces nothing, as you might next select something else without
operating on the file first selected.)

Step Action Programme Comment

1 Open the recording
session on the Script

Editor window.

Starts the recording.

2 Click on the
"Discs 1" icon.

Press <_-D>.

tell application "Finder"

activate
select file "Discs 1" of

folder "Implementation
(bu)" of folder "340
Overhead (bu)" of
folder "340 Archive
(bu)" of folder
"Everything (bu)" of
disk "Data"

duplicate selection

Where to send the
instructions.

The full pathname.
(The "(bu)" bits

are part of the
name.)

< -D>. The new file
is called "Discs 1

copy".

3 Drag the copied file to
the "Overhead"

folder.

move file "Discs 1 copy" of
folder "Implementation
(bu)" of folder "340
Overhead (bu)" of
folder "340 Archive
(bu)" of folder
"Everything (bu)" of
disk "Data" to folder
"Overhead" of folder
"340 papers" of folder
"Current documents" of
folder "Everything" of
disk "Data"

4 Select the file name.

Delete the last five
characters of the

name. (By clicking
at the end, followed
by five deletes.)

Double-click on the
file icon to open it.
(It's a Word file.)

select file "Discs 1" of
folder "Overhead" of
folder "340 papers" of
folder "Current
documents" of folder
"Everything" of disk
"Data"

open selection
select item "Discs 1 copy"

of folder "Overhead" of
folder "340 papers" of
folder "Current
documents" of folder
"Everything" of disk
"Data"

set name of selection to
"Discs 1"

end tell

Some confusion. The
name change cannot
be assumed complete
until the double-click,
but then there are two
things to do, and they
appear in the wrong

order in the
programme.

Stop sending to
finder.

5 Do some editing.
Close the file.

tell application "Microsoft
Word"

activate
do script "LineDown 18"
do script "EditClear -14"
close window 1

end tell

Send to Word.

Nothing specially
significant.

Stop sending to
Word.

Support for execution : page 7.

6 Drag the icon to the
desktop.

tell application "Finder"

activate
move file "Discs 1" of

folder "Overhead" of
folder "340 papers" of
folder "Current
documents" of folder
"Everything" of disk
"Data" to desktop

Send to finder again.

7 Drag the icon to
"Trash".

select file "Discs 1"
delete selection

Though implemented
as a drag, the
operation is

recognised as a
delete.

8 Close the recording
session on the Script

Editor window.

end tell

All the events have been converted into pure descriptions, independent of the
geography of the interface. It's wordy, but it's hard to think of another way to do it.
There seems to be no provision for parameters at present, so only absolute sequences can
be encoded, which makes it not very useful; perhaps this defect will be remedied soon.

The system is not perfect yet. Notice that the first name in step 4 is "Discs 1", but
the file selected was in fact "Discs 1 copy". (Proof : you get an error when you run the
code; the error disappears when you patch in " copy" in the obvious place.) In fact, the
"select file ..." and "open ..." items of step 4 should follow the "select item ..." and "set
name ...", but both pairs of operations were confirmed at the same time, and the
Applescript system chose the wrong order. Don't blame Apple too much; it really is a
hard problem.

REFERENCES.

IMP21 : Lane and MooneyINT3, Section 21.2.

IMP22 : Microsoft MS-DOS version 3.2 User's reference, Zenith Data Systems
Corporation, 1986.

IMP23 : Using Applescript (Apple Computer, 1994 : Documentation with the
Applescript package.)

–––

QUESTIONS.

The behaviour of CMS is complicated by its connection with CP, the system
which implements virtual machines; but it is much easier for a terminal to
communicate with CP than with its "real" operating system, CMS. Why ?

Experiment with Unix. What happens if you run a programme from a shell
script. Can you get lines from a shell script into the programme ? Why
(not) ? The closest thing to a terminal log is provided by the programme
script. Try it. How does it work ?

A requirement for nestable command file execution is rather similar to that
for conditional instructions. If command file A executes command file B,

what should happen at the end of B ? In a nested system, A will take up
again from where it left off. How would you implement this in the various
sorts of system ? How does it work in Unix ?

Think about any programme you have written which uses the GUI
functions of the Macintosh system. What would it need to make it
scriptable ? What would it need to make it recordable ?

–––

