
IMPLEMENTING A GUI

To give you some idea of what's involved in making an interface work, here is part of a
description of the development of the software to support an X Windows graphical
interface. Notice the insistence on standards and design, and the final remarks on the
efficiency. The original paperIMP20 continues with descriptions of measures taken to speed
up the interface to practical levels.

The DECwindows user interface
language (UIL) and resource manager
(DRM) are the tools which allow form
and function to be separated. UIL is a
specification language that describes the
initial state of a user interface, i.e., it
describes the objects used in the interface
and the application callbacks to be
invoked when the interface changes state.
DRM provides the application with a run-
time library for accessing the compiled
UIL descriptions. DRM, therefore,
builds the run-time structures necessary
to actually create the user interface during
execution of the application.

Conformance to the XUI Style. The
toolkit had to support XUI style at a
detail level in both look and feel.
Supporting the look primarily meant
setting default values for the many
graphic aspects of a widget, such as the
border width of a push-button.
Supporting the feel meant establishing
tables that translate user events, such as
button press, into widget action, such as
highlight. Defining the widgets that
compose the toolkit was based on
partitioning the XUI style look and feel
demands into logical pieces and on
predicting application needs.

Although a widget could have
many customizable attributes, all of
which could be controlled by the
application, we wanted to make it easy
for an application developer to design
and implement a windows application
that conformed to the XUI style. A
widget should, by default, select
conforming values for any attribute the
application could have but did not set.
Therefore, we implemented a default
look and feel that matched the precise
user interactions defined in the style
guide and the precise graphic design that
was defined for XUI by our graphic
artists. However, we also made the
widgets as flexible as possible. Although
widgets defaulted to the XUI style, the
customization methods inherent in the
intrinsics, e.g., resource and translation
management, could be used to customize
a widget to another style. This design
philosophy helped give applications a

consistent look and feel but did not
constrain user interface innovation.

Further, we decided to structure the
set of widgets based upon the object's
function as seen by the application's
developer rather than as seen by the
application's user. An example is the use
of buttons in menus and dialog boxes.
Both menus and dialog boxes contain
buttons that directly invoke application
actions (i.e., pushbuttons). However,
the graphical appearance and user
invocation syntax of the buttons is
different depending upon whether the
button is placed within a menu or a
dialog box. The toolkit, however,
presents only one push-button class to
the application programmer. The buttons
are dynamically configured based upon
the environment in which they are
placed. Thus, an application developer
can change the environment of a widget
without changing any other code.

Conformance to Standards The
DECwindows program was intended to
be based on MIT's X Window System
standard. Therefore, the toolkit had to be
based upon the standard X toolkit
intrinsics. It was a challenge to do so
because the toolkit and the intrinsics were
designed, implemented, and standardized
in parallel.

The standard language bindings for
the intrinsics were designed for the C
language. However, we were mindful of
the requirements of other languages and
attempted not to prohibit other language
bindings from being possible. It is a well
known technology to provide multiple
language bindings, in the form of header
file definitions and entry point names, for
a single set of run-time routines. Digital
used this approach in providing VAX
procedure calling standard bindings for
Xlib, the intrinsics, and the toolkit.

A special problem arose in defining
the bindings for the intrinsics because the
intrinsics would call back into the
application code to provide notification of
a user action such as a button press. The
intrinsics, however, has no knowledge

of the language used in the called
procedure. Therefore, we had to restrict
the parameter passing mechanism in
callbacks to the set that could be
understood by most languages.
Parameters to callbacks are passed by a
reference mechanism as opposed to a
value mechanism that is commonly used
when calling C procedures.

Initial Implementation

The initial development of the toolkit
presented the software engineers with a
number of challenges. The major
challenge was to develop several
different layers of the architecture at the
same time. Further, none of the layers
had proven suitable for their designed
task. Therefore, it was difficult to predict
the performance characteristics of the
layers.

To reduce the inherent risks of this
situation, we established a development
plan that allowed major functionality to
become available for serious application
development early in the product
development cycle. We then used the
applications to determine whether the
goals of the DECwindows program, in
general, and the toolkit, in particular,
were being met.

Intrinsics and Toolkit Codevelopment

Our plan to design and implement the
toolkit and the intrinsics simultaneously
was further complicated by the fact that
the layers below the intrinsics, i.e., Xlib
and the X protocol, also were being
changed Some of the changes were
driven by the needs of the toolkit and
intrinsics. Others were due to the lack of
maturity of the Xll protocol. Because of
these changes, we had to respond to a
number of releases of the lower layers of
the architecture.

The intrinsics design was changed
several times during the first year of
development as a result of two major
factors. First, the problems and
deficiencies of the intrinsics and the
toolkit became apparent when we began
to write serious applications. Second,
other companies became more involved
in the definition of the intrinsics
standard. Therefore, we had to work
with a formal process of proposing and
reviewing changes to the standard and
negotiating the inclusion of those
changes with engineers from MIT and

other companies. As each of these
changes then became standardized, each
would, in turn, cause changes in widget
code, which caused changes in
application code.

Each time a significant change in a
layer of the architecture occurred, all of
the layers above it had to change in a
coordinated manner to provide a
consistent development environment.
Much time was spent in planning the
management of these changes. Also, the
changes necessitated rewriting code that
had already been completed. We had not
accounted for the time taken by these
unanticipated changes in our original
development plans.

Performance

Performance was the most serious
problem encountered during early
implementation. The first internal field
test of the DECwindows software
provided fairly complete functionality for
the toolkit and the layers below it.
However, the DECwindows developers,
including the toolkit team, had devoted
nearly all their efforts toward developing
the functionality and postponed
measuring, examining, and improving
performance. Now that we had an
existing collection of applications,
serious work could begin on
performance.

In the initial measurements of the
system's performance against the goals
described earlier, even the worst-case
goal was missed in many areas. Early
investigation also indicated that the
performance problem did not seem to be
localized. That is, the problems could not
be isolated to a single component in the
architecture. With this information, a task
force with members from most
DECwindows development groups was
convened to determine where the
performance problems were and what
could be done about them.

We quickly learned that we could
not determine where the performance
problems were as easily as we could
have in the typical engineering
environment to which we were
accustomed. Our experience was in
evaluating isolated layered applications,
such as compilers, and individual
primitive operations, such as system
calls. However, the user interface actions
that were being measured involved the

Implementation : page 3.

issuance of possibly hundreds of X
primitives, and the interaction of up to
three separate processes (i.e., the
application, the X server, and the
window manager). Although the usual
evaluation tools were of some help,
additional tools were needed.

Existing tools, such as the VAX
performance and coverage analyzer on
the VMS system, were used to locate
performance bottlenecks. These tools
helped but did not provide the level of
improvements that were necessary. A
number of internal tools to aid in X
performance analysis were used to
supplement the traditional tools. These X
performance tools included:

• An instrumented X server that counted
the resources an application requested,
such as graphic contexts, windows,
and pixmaps

• A set of tests that measured the
performance of Xlib primitive calls

• A protocol monitor that recorded the
inter- actions between an application
and the X server

• A tool that recorded the dynamic
memory allocation of an application

By using these tools on the applications,
a large amount of data was collected and
evaluated. Some of the more important
observations were:

• Applications were using more server
resources than anticipated. The most
common overuse was windows
because each user interface object had
its own X window. However,
application use of other resources,
such as graphic contexts, pixmaps,
and fonts was also at a higher level
than anticipated.

• Applications were using too much
memory. The object-oriented design
of the toolkit and the Xll Style Guide
encouraged applications to use
hundreds or thousands of widgets,
and each widget was then using about
600 bytes of memory. A number of X
toolkit intrinsics features, such as
resource management and translation
management, also used a large amount
of memory.

• Application start-up was slow. Loading
the large programming libraries,
connecting to the X server, and
creating widgets were some of the
principal functions that slowed
application start-up.

• The Digital Xll server design was
optimized for graphic primitives, e.g.,
line and text drawing. The
performance of these operations was
very good. However, in optimizing
the graphics aspect, the design had
traded performance in windowing
operations, for example, window
creation and mapping. The analysis
showed that windowing operation
performance was important
throughout much of the direct
manipulation style user interface.

• Many context switches existed between
the server and the application during
time-critical operations. Even simple
applications required the coordinated
efforts of the application, a window
manager, and a server. Careful
analysis and planning were needed to
minimize the communication traffic
and switching among the processes.

• The basic round-trip time between the
server and the application using the
DECnet transport was higher than
anticipated. This factor increased the
need to reduce the amount of
communication traffic between the
application and the server.

L.P. Treggiari, M.D. Collins : "Development of the XUI toolkit", Digital Technical
Journal 2#3, 24 ("Summer" 1990).

––___––––––––––––––

