
LINDA

Linda is different, which is why we've put it into a separate chapter. Linda is not a
programming language, but a way of extending (in principle) any language to include
parallelismIMP13, IMP14. It was originally intended for parallel programming rather than
operating systems as such, but the topics are obviously closely related. It will work with
any language for which one can write procedures which implement its (rather simple)
interface, and is most usefully thought of as an extension to the application programmer
interface. Its authors have aimed for machine independence, portability, automatically
handled interactions between processes, automatic scheduling, and efficient
implementation. Processes communicate through a shared memory called tuple space,
which we discussed briefly in the MEMORY MODELS chapter. By ingenious and
elegant trickery in the implementation of access to the tuple space, the Linda manager
guarantees mutual exclusion and synchronisation where required. This goes quite some
way towards "factoring out" the concurrency issues, as envisaged by WirthIMP10 in his
intentions for Modula.

Some details are given in the excerpt which followsIMP15. Notice the appearance of
"Kernel Linda", intended for lower level use than Linda proper.

Linda is a parallel communication
mechanism developed by David
Gelernter at Yale University. Rather than
communicating with messages or
through shared memory locations,
processes communicate in Linda via a
shared data space called tuple space.
Tuple space acts something like an
associative memory, since tuples are
identified by matching on a key rather
than using a specific address. There are
four fundamental operations on tuple
space:

out place a tuple in tuple space
in match a tuple and remove it from tuple

space
rd match a tuple and return a copy of it
eval create an active tuple (a new

process)

A tuple is an ordered collection of
data items. For example, the tuple

 ("hello", 42, 3.14)

contains three data items: a string, an
integer, and a float. The operation

out("hello", 42, 3.14);

places this tuple into tuple space. The out
operation never blocks, and there can be
any number of copies of the same tuple
in tuple space.

Tuples in tuple space are accessed
by matching against a template. For
example. the operation

int i; float f;
in("hello", ?i, ?f);

will match any tuple in tuple space with
three fields whose first field is the string
"hello," and whose second and third
fields are an integer and a float,
respectively. In this case, the string
"hello" is the key used to find the
matching tuple. If a matching tuple is
found, the variables i and f are assigned
the corresponding values from the
matching tuple, and the tuple is removed
from tuple space. If no matching tuple is
found, the current process blocks. If the
template matches more than one tuple, an
arbitrary one is picked. The rd operation
is like in, except that the matched tuple is
not removed from tuple space.

The eval operation resembles out,
except that it creates an active tuple. For
example, if fcn is a function, then

eval("hello", fcn(z), true);

creates a new process to evaluate fcn,
which proceeds concurrently with the
process that made the eval call. When the
new process completes, it leaves the
resulting passive data tuple in tuple
space, just like an out operation.

Linda is a high-level tool for
parallel programming in that it is not
directly based or dependent on a specific
hardware mechanism. As with any
higher level tool, there will always be
some overhead associated with Linda,
but it is not excessive (see the sections
entitled "Implementing Linda" and
"Kernel Linda"). This is similar to higher
level languages compared with assembly
languages, where any overhead is

usually outweighed by the benefits of
easier programming and portability.
Likewise, the flexibility of Linda can
more than make up for any overhead.
For example, dynamic load balancing,
where the processing load is dynamically
adjusted between multiple processors, is
rarely used in parallel programs because
it is difficult to implement using message
passing or semaphores, despite its
potential performance improvement; but
it is relatively easy to implement using
Linda (an example of dynamic load
balancing is given in a later section).
Linda also makes it easy to experiment
with the parallel structure of a program to
increase its performance.

Using Linda like a shared-memory
model. Linda can be used to model
shared memory, but with the advantage
that it is easy to avoid unwanted
nondeterminism. In the example above,
where the shared variable x was
incremented by multiple processes, a
semaphore was used to protect the shared
variable from simultaneous access.
Using Linda, we can represent a shared
variable x as a single tuple whose key is
the name x (we assume that no one else
is using x as a key); to increment the
variable x in tuple space, the following
operations would be used:

in("x", ?i);
out("x", i+1);

Since the in operation removes the
matching tuple from tuple space, any
other process trying to access the value
of x will block until the tuple is put back
by the out operation.

Using tuple space as a shared data
space is not limited to systems with
shared memory; it will also work with
distributed-memory computers. This
makes programs written in Linda
portable between shared-memory and
distributed-memory systems.

Using Linda like a distributed-
memory model. Linda can also
support the message-passing style of
programming. In Figure 2, a message is
sent using an out operation and received
using an in operation.

Sender

Receiver

"x", 5

Tuple space out("x", i)

in("x", ?j)

Figure 2. Message passing using
Linda.

If the receiver gets ahead of the
sender, it will block waiting on the next
message. The sender is allowed to run
faster than the receiver because the out
operation is asynchronous (it never
blocks). As in any asynchronous
message-sending situation, if the sender
can get significantly ahead of the
receiver, some sort of flow control must
be used to avoid overflowing processor
memory (an example of using flow
control is given in a later section).

In Linda, the ordering of messages
is not guaranteed. For example, if one
process executes two out operations in
the following order:

out("x", 1);
out("x", 2);

then a separate process doing an in
operation on the key "x" may receive the
tuples in either order. The order is often
unimportant but if not, an additional field
in the tuple can be used to sequence the
messages. For example, both the sender
and receiver can keep a local sequencing
variable, initially set to zero. The out and
in operations in Figure 2 are changed to

// in the sender process
out("x", send_sequence++, i);

// in the receiver process
in("x", recv_sequence++, ?j);

and the correct order is guaranteed. If
there are multiple senders or receivers,
then the sequence variables can be shared
by storing them in tuple space.

Linda provides decoupling between
the sender and receiver of a message in

both time and space. Messages are
decoupled in time because the out
operation is asynchronous and because
messages travel via tuple space. Since
messages can be held in tuple space,
sending a message between two
programs not running at the same time is
even possible. This is crucial in an
operating system, where operating
system services must be able to
communicate with user programs that
typically were not written when the
operating system was written.

Messages are decoupled in space
because individual messages are
identified by their contents. Neither the
sender nor the receiver needs to know the
other's identity or location. This allows
communication in Linda to be more
dynamic than in systems where the
sender and receiver of a message must
explicitly rendezvous. In particular,
sending and receiving processes can be
located on any processor, or even
dynamically moved between processors,
with no effect on the program. This
important property of Linda facilitates
writing parallel programs.

Unlike some message-passing
systems, Linda is not limited to a single
sender and receiver for a message
stream. With the number of clients
changing over time, this is useful for
writing server processes, which receive
messages from many different clients. In
this case, if the client requires a message
in return, it should identify itself in the
message to the server so the server can
respond to the correct client.

Implementing Linda. At first glance,
it might appear that tuple matching
requires searching tuple space for each
operation, a process that would clearly be
too slow for use on a parallel computer.
Fortunately, a number of techniques are
used to speed up the matching process.
The goal of these techniques is to reduce
the amount of searching necessary and
make the remaining searching as efficient
as possible.

The most common approach to
making Linda more efficient is to use a
preprocessor to reduce or eliminate
runtime searching. The preprocessor
analyzes a Linda program to determine
the patterns of tuple usage. For example,
consider a Linda program that contains
two processes. The first process contains
a single out operation:

out("x", i);

and the second process contains a single
in operation:

in("x", ?j);

where i and j are integer variables. Since
the key "x" is a constant at compile time,
the Linda preprocessor determines that
this pair of Linda operations can be
implemented as a queue between the
variables i and j. On a shared-memory
system, this could be realized as a shared
queue protected by a semaphore; on a
distributed memory system, this could be
realized as an asynchronous message
send. Thus, no searching is done, and
the most efficient implementation for the
target architecture is used without
changes to the program's source code. In
this case, there is no overhead from the
use of Linda.

Using a preprocessor is not always
possible if Linda is used, for example,
with interpreted languages such as Lisp,
Postscript, Smalltalk, or Prolog, since
tuple space usage can change while the
program is running. Even with compiled
languages, determining tuple space usage
is not always possible at compile time if
the programs that will be communicating
cannot be preprocessed at the same time
(in particular, for communication
between the operating system and a user
program).

A common technique used by
Linda implementations that do not use a
preprocessor is to restrict the key to a
single field. In this case, hashing is used
so the search can be performed (on
average) in constant time. The
performance of such an implementation
is quite acceptable, since the overhead of
a hashing function is reasonably small
compared with the cost of data transfer
on a typical system. Allowing but a
single key in a tuple places some
restrictions on Linda, but Linda's main
advantages—including portability and
decoupling in time and space—remain.
For instance, all examples of Linda in
this article need only a single key.

A third technique used to make
Linda more efficient is to split tuple space
into smaller pieces, for example, through
the use of multiple tuple spaces; doing
so, less space needs to be searched even
if searching is required. This technique is

also helpful for systems that use hashing,
since smaller hash tables can be used.

Kernel Linda

Until now, Linda has been used
primarily to support application-level
programming. To use Linda for system-
level programming, a number of
modifications were made. This section
discusses those modifications and shows
how they benefit system-level
programming.

Kernel Linda is a version of Linda
designed to be used for system-level
programming, as the interprocess
communication (IPC) mechanism for a
parallel operating system. Kernel Linda
was also designed for use as the runtime
system for the original Linda. In this
case, the Linda preprocessor is used to
generate calls to Kernel Linda, rather
than to the normal Linda runtime library.
This allows programs written in Linda to
be integrated into an operating system
based on Kernel Linda.

Since Kernel Linda is designed to
support communication between
operating system processes and user
processes, a preprocessor cannot be used
to speed up tuple space operations.
Consequently, for efficiency, tuples in
Kernel Linda are allowed to have only a
single key. Except for the single-key
restriction, Kernel Linda is a superset of
Linda and includes the following
extensions:

• multiple tuples spaces,
• the ability to store a tuple space as a

field of a tuple, and
• a set of language-independent data

types.

In addition, the ordering of tuples
in tuple space is guaranteed in Kernel
Linda. If one process executes the
following out operations in the following
order:

out("x", 1);
out("x", 2);

then a separate process doing an in on
the key "x" is guaranteed to receive the
values 1 and 2 in that order (assuming
that no other Linda operations use the
key "x" in this tuple space). This avoids
the need for extra sequencing keys, and
also means that Kernel Linda can be used

to transmit a stream of ordered messages
from one process to another.

Multiple tuple spaces. Kernel Linda
incorporates a unique implementation of
multiple tuple spaces that allows the tuple
space name to be used somewhat like an
additional key in a tuple. In traditional
Linda, multiple keys in a tuple are often
used to restrict communication to specific
data structures; in Kernel Linda, this
function can be more efficiently
performed using multiple tuple spaces.
The provision of multiple tuple spaces
removes much of the need for multiple
keys.

For example, in the out operation

// which row in the matrix
int RowNumber;
// data for the row
float data[SIZE];
out("MatrixA", RowNumber, data);

the constant "MatrixA" identifies a
specific data structure, and the identifier
RowNumber identifies a specific row in
the matrix. A specific row of the matrix
would be retrieved by searching on the
first two keys:

int RowNumber = 42;
rd("MatrixA", RowNumber, ?data);

In Kernel Linda, the need for
multiple keys can be eliminated by
placing matrix A in its own tuple space,
with the key being the row number. This
also reduces the amount of searching
required, since the name of the matrix is
not used as a key during matching. In
Kernel Linda, the above out operation
would be written (in C) as

out(aMatrix, RowNumber, data);

where aMatrix is the name of a Kernel
Linda tuple space. In C++, the special
role of the tuple space is syntactically
highlighted:

aMatrix.out(RowNumber, data);

The provision of multiple tuple
spaces has other benefits for parallel
programming. In a single global tuple
space, name conflicts can occur between
programs using the same key to identify
tuples. Multiple tuple spaces allow
communication to be more structured. In
a multiapplication environment, some
tuple spaces can be local to specific

applications, while other tuple spaces can
be common to some or all applications.
This allows Kernel Linda to support both
multiprogramming (separate applications
running concurrently) and
multiprocessing (single applications
running on multiple processors).

Subsequent to our implementation
of multiple tuple spaces in Kernel Linda,
another design for multiple tuple spaces
was done for Linda as part of the design
of Linda 3, although it is not the type of
system we describe here.

Tuple spaces as tuple fields.
Kernel Linda allows a tuple space to be
used as a field in a tuple, which allows
Kernel Linda to be used as its own name
service. This is done by using a name as
the key and the tuple space as the value
of a tuple in another tuple space. No
other naming mechanism is required. A
tuple space can be used like a directory in
a hierarchical file system, except that
arbitrary graphs can be constructed. For
example, all tuples spaces associated
with an application can be given "names"
by storing them in a tuple space, or one
process can be given access to a tuple
space owned by another application via a
common tuple space. This is diagramed
in Figure 3, where process P is
computing with three matrices: A, B, and
R, and a separate process Q has been
given access to the R (result) tuple space.

P Q

("A", •)

("R", •)

("B", •)

Matrix A

Matrix B

Matrix R

Figure 3. Tuple spaces as fields
in a tuple.

Language-independent data types.
Linda is traditionally implemented to
work within a single language and
borrows the data types from that
language. Kernel Linda is designed to
work with many different languages
(both compiled and interpreted), so it

provides a set of language-independent
data types. For example, this allows a
tuple space created by a C++ program to
be accessed by a debugger or tuple space
browser written in Postscript.

In traditional Linda, all fields in a
tuple are passed by value. This is
reasonable for small fields, such as
numbers or even names. But, for large
fields, such as structures or long
character strings, this can result in extra
copying. Passing some types by
reference avoids this extra copying. More
importantly, if a tuple space is to be
passed as a field in a tuple, it must be
passed by reference, because two
processes must have references to the
same tuple space to communicate.
Consequently, the Kernel Linda data
types are divided into two groups, simple
(pass-by-value) and composite (pass-by-
reference). The simple types are

int a 32-bit integer
real a 32-bit floating-point

number
real64 a 64-bit floating-point

number
name an atomic identifier
struct a structure containing user-

supplied data
null the error value

The simple types are always passed
by value. If a process passes one of these
objects to another process (for example,
via tuple space), each process will have a
separate copy of the object, so modifying
the object in one process will not affect
the value of the object to the other
process. The composite types are

dict a Kernel Linda tuple space
(dictionary)

string a string of characters
block an array of bytes
array a heterogeneous array of

other Kernel Linda objects

Composite types are always passed
by reference; if a process passes one of
these objects to another process (again,
typically via tuple space), then both
processes will have a reference to the
same object, even if the processes are on
different processors. Thus, modifying
the object in one process will affect the
value of the object to the other process .
This is the only Kernel Linda
communication mechanism: modifying a
shared object. In particular, the Linda
operations (in, out, and rd) modify
shared dictionaries. Shared objects are
implemented on a distributed-memory
computer using a mechanism called
locators, described in the next section.

Of course, it is possible to make a
copy of a Kernel Linda object. Making a
local copy of an object that was passed
by reference gives the equivalent
semantics as pass-by-value.

A dict (dictionary) is the Kernel
Linda name for a tuple space. A tuple in a
dictionary consists of a single key/value
pair. The keys are almost always names
or integers but can be of any data type. A
value associated with a key in a
dictionary can also be of any type, for
example, another dictionary. Tuples are
only allowed to have a single value, but
this value can be a structured object, such
as an array, which holds multiple values.
As in Linda, multiple copies of the same
tuple can be held in tuple space; this

corresponds to a key in a Kernel Linda
dictionary having multiple values.

To allow the user to choose
between value and reference semantics,
strings and names are essentially the
same type, except that strings are passed
by reference and names are passed by
value. The same is true of blocks and
structs. This allows copying to be
avoided, if desired. For example, names
are typically used as keys in tuples, while
strings are used for long strings of text
such as shell scripts. Likewise, an
executable load module is normally
stored as a block to avoid making extra
copies, but simple data structures,
corresponding to a struct in C, are
normally stored as a Kernel Linda struct.

Implementation. Kernel Linda
evolved through several
implementations, both on single-
processor and distributed-memory
computers. On a single-processor
computer, and within a single processor
on a distributed system, Kernel Linda is
implemented as a shared-memory-model
program. Internally, composite objects
are protected by a semaphore to guard
against concurrent updates. This
semaphore is controlled by the system
and is not visible to the user.

The implementation on a
distributed-memory computer, where a
distributed-memory-model program is
used, is much more interesting. In this
case, composite objects are manipulated
using a form of distributed pointer called
a locator, which, in addition to other
information, contains the processor ID of
the processor on which the object is
located. When an operation is to be
performed on a remote object, a message
is sent to the processor containing that
object, and a server process on the
remote processor performs the operation.
When an operation is to be performed on
a local object (including operations by the
server process after receiving a request
from a remote processor), the shared-
memory-model program is used. The
implementation of Kernel Linda on a
shared-memory computer is more
straightforward than the one for the
distributed-memory computer because it
avoids the remote server process.

Despite the fact that Kernel Linda
does not use a preprocessor, the
overhead compared to that of message
passing is reasonable. This overhead

arises mainly from evaluation of the
hashing function, any required searching
within the hash table, and the locking of
a semaphore. For transfers of reasonable
amounts of data the overhead is about 10
percent, rising to as much as 50 percent
for shorter transfers (a synchronization
with no data transfer being the worst

case). This is comparable to the overhead
of higher level languages such as C, and,
of course, when this overhead is
unacceptable, the user can drop down
into machine primitives, analogous to the
way C programmers can drop down into
assembly language.

REFERENCES.

IMP13 : S. Ahuja, N. Carriero, D. Gelernter : "Linda and friends", IEEE Computer
19#8, 26 (August 1986).

IMP14 : N. Carriero, D. Gelernter : "Linda in context", Communications of the ACM
3 2, 444 (1989).

IMP15 : W. Leler : “Linda meets Unix”, IEEE Computer 23#2, 43 (February
1990).

–––
–––––––––

QUESTIONS.

What problems does Linda solve?

What is it that Kernel Linda does that Linda doesn't ? What sort of support
do they need from the operating system ?

–––

