
Computer Science 415.340

Operating systems

IMPLEMENTATION.

EXAMPLES OF SYSTEMS PROGRAMMING LANGUAGES

In this chapter we give examples of three languages designed for programming operating
systems (or the broader class of real-time systems). This discussion is not intended as
an exhaustive survey, but only to illustrate something of the range of possibilities, and in
each case to emphasise some feature of programming which is required in an operating
system, but not addressed in conventional languages.

ADA.

Ada is a member of the Pascal extended family, though greatly extended beyond Pascal
itself. It was specifically designed for real-time systems, of which operating systems form
a rather specialised subset. It was deliberately constructed from well known and well
understood traditional techniques in the interests of reliability; as far as possible, new and
untried techniques were not used. Ada was intended to do everything, and in consequence
is very large and complex, both in the extent of the language itself and in the extent of the
software which implements it. It has been strongly criticised because of its old-fashioned
design and its complexity, and – like C – has come in for its share of ridiculeIMP8, but its
defenders argue that the complexity is inevitable in a language which covers such a wide
range, and the wide range is desirable so that compatibility can be guaranteed for any
application area.

This exampleIMP9 illustrates the use of the rendezvous, which is Ada's process
synchronising technique.

10.4.3 Ada

Ada is a higher-level programming
language, sponsored by the United States
Department of Defense, designed under
the leadership of Jean Ichbiah. The
language can be used for conventional
programming, as well as for special
technical requirements, such as driving
or monitoring various devices in real
time. In this section, we are only
concerned with those language constructs
that are intended to provide a facility for
writing concurrent programs. Central to
this facility is the concept of the task,
which is a program module that is
executed asynchronously (a task can be
viewed as a sequential process, as
defined in Chapter 9). Tasks may
communicate and synchronize their
actions through the following:

• The accept statement is a
combination of procedure calls and
message transfer.

• The select statement is a non-
deterministic control structure based
on Dijkstra's guarded command
construct.

We now briefly elaborate on these two
language constructs.

Central to the communication
facility is the accept statement, which
has the following form. (Square brackets
[] denote an optional part, while braces
{ } denote a repetition of zero or more
times.)

accept <entry-name> [<formal
parameter list>]

[do <statements> end;]

The statements of an accept statement
can be executed only if another task
invokes the entry-name. Invoking an
entry-name is syntactically the same as a
procedure call. At this point, parameters
are also passed. After the end statement
has been reached, parameters may be
passed back, and both tasks are free to
continue. Either the calling task or the
called task may be suspended until the
other task is ready with its corresponding
communication. Thus the facility serves
both as a communication mechanism and
a synchronization tool.

Choices among several entry calls
is accomplished by the select statement,
which is based on Dijkstra's guarded
command concept. For brevity, we
describe a restricted form of the select
statement, with no delay and terminate
statements. The select statement has the
form:

select
[when <boolean-expression> ⇒]
<accept-statement>
[<statements>]

{or [when <boolean-expressions>
⇒]

<accept-statement>}
[<statements>]

[else <statements>]
end select;

Execution of a select statement proceeds
as follows:

1. All the boolean expressions appearing
in the select statement are evaluated.
Each accept statement whose
corresponding boolean expression is
evaluated to be true is tagged as open.
An accept statement that is not
preceded by a when clause is always
tagged as open.

Implementation : page 3.

2. An open accept statement may be
selected for execution only if another
task has invoked an entry
corresponding to that accept
statement. If several open statements
may be selected, an arbitrary one will
be chosen for execution. If none can
be selected and there is an else part,
the else part is executed. If there is no
else part, then the task waits until an
open statement can be selected.

3. If no accept statement is open and
there is an else part, the else part is
executed. Otherwise an exception
condition is raised.

The accept statement provides a task
with a mechanism to wait for a
predetermined event in another task. On
the other hand, the select statement
provides a task with a mechanism to wait
for a set of events whose order cannot be
predicted in advance.

These concepts can be illustrated
with the bounded-buffer
producer/consumer problem:

task body bounded-buffer is
 buffer: array [0..9] of item;
 in,out: integer;
 count: integer;
 in := O;
 out := O;
 count := O;

begin
loop
select
when count < 10 ⇒
accept insert (it: item)
do buffer[in mod 10] :=

it end;
in := in + l;
count := count + l;

or when count > O ⇒
accept remove (it: out

item)
do it := buffer[out mod

10] end;
out := out + l;
count := count – l;

end select;
end;

end.

The producer task puts an item p
into the bounded-buffer by executing:

bounded-buffer.insert (p);

The consumer task gets an item q from
the bounded-buffer BB by executing:

bounded-buffer.remove (q);

In contrast to CSP, we have complete
symmetry between the producer and
consumer tasks.

––

MODULA-2.

If Ada can be described as a member of the Pascal extended family, then Modula-2 is a
member of the Pascal nuclear family, for its immediate parent (Modula) was developed
from Pascal by Niklaus Wirth, the developer of Pascal itselfIMP10. A significant aim of
Modula-2 is to facilitate concurrent programming by "factoring out" the concurrency
features into separate modules which can be called on by other, conventional, models for
concurrency services when needed. A programme in Modula-2 runs as a set of modules
operating as coroutines, with a prescribed discipline for switching between the processes.

The exampleIMP11 below shows how a semaphore system can be implemented in
Modula-2. (There's another Modula-2 example later, in DEVICE CONTROL
SOFTWARE.)

As an example, the following is a simple
process coordinator that implements a
semaphore mechanism written in
MODULA-2.

MODULE coordinator;
FROM SYSTEM IMPORT process,

newprocess,
transfer;

EXPORT sem, wait, signal, init;
CONST maxproc = 8; {number of

processes}

TYPE sem = RECORD {semaphore data
structure}

c: 0..maxint; {semaphore
count}

q: 0..maxproc {queue header}
END;

VAR proclist: ARRAY [1..maxproc] OF
{process list}

RECORD
p: process; {process

variable}
s: (halted, free); {status}
1: 0..maxproc {semaphore

queue link}
END;

cproc: 1..maxproc; {current process}
coord: process; {for return to

coordinator}

PROCEDURE init (VAR s: sem; val:
0..maxint);

{initialise semaphore}
BEGIN
ŝ .c := val; {initialise

count}
ŝ .q := O {no processes

halted}
END;

PROCEDURE wait (VAR s: sem);
BEGIN
IF ŝ .c > O THEN

ŝ .c := ŝ .c – 1
ELSE
proclist[cproc].1 := ŝ .q;
ŝ .q := cproc; {add cproc to

sem queue}
proclist[cproc].s := halted;

{mark cproc
halted}

trans
END
END;

PROCEDURE signal (VAR s: sem);
BEGIN
IF ŝ .q = O THEN {no processes

halted}
ŝ .c := ŝ .c + 1

ELSE
proclist [ŝ .q].s: = free;

{make one
process free}

ŝ .q := proclist[ŝ .q].I
END
END;

BEGIN
FOR cproc := 1 TO maxproc DO

newprocess (?, ?, ?,
proclist[cproc
].p);

proclist[cproc].s := free :
proclist[cproc].l := O
END;

loop
FOR cproc := 1 TO maxproc DO
IF proclist[cproc].s = free

THEN
 transfer(coord,

proclist[cproc
].p)

END
END

END
END;

––

OCCAM.

Occam is a curious language developed for use with Transputer processors. It is derived
from an earlier language called CSP, which stands for Communicating Sequential
Processes, a rather precise description of its speciality. Transputers were designed
specifically for use in multiprocessor systems, and were equipped with four high speed
communications channels intended for interprocessor communication. CSP's provision
for interprocess communication was well suited for this purpose, and occam is derived
from CSP by emphasising simplicity and certain other useful features – note the last
paragraph in the transcribed text.

The name "occam" reflects this concern for
simplicity. William of Occam (around 1280 – 1349)
apparently didn't propound the heuristic principle

Implementation : page 5.

nevertheless known as Occam's Razor, which is
usually quoted in some such form as "entities should
not be multiplied without justification" (or, if you

want to show off, "entia non sunt multiplicanda
praeter necessitatem"); being interpreted, that is an
exhortation to keep arguments as simple as possible.

The language is unusual in that structure is indicated by indenting (not itself a
syntactic feature in many languages), and by the convention that instructions appearing
in the same "compound statement" are executed in parallel unless sequential execution has
been explicitly requested by a SEQ instruction.

This exampleIMP12 illustrates how a simple machine controller can be implemented in
occam.

The use of occam is illustrated by the
design of an automatic tea maker. This
wakes you up in the morning with a
message and offers a hot cup of tea. It is
also a clock and will make tea at any
other time, on request.

The tea maker has a number of
units which interact with each other: the
tea brewer which makes and pours the
tea, a speech synthesiser for saying
'good morning' and telling the time,
request buttons and an overall controller.

These units can be represented as a
network:

Controller

>>> speak

>>> pour

<<< press

Machine

speaker

made
brewer

button

In occam, each of the units is described
by a process and each connection by a
channel. The processes communicate by
sending messages via the channels. A
process can be constructed from smaller
processes, as in the case of this machine
which has a number of parts. Indeed the
collection of processes is itself a process
in occam, and could be part of some
larger system.

This network is represented by
defining the channels and the processes
like this:

CHAN speaker, made, brewer,
button :

PAR
... -- controller

PAR -- machine
speech.synthesiser
tea.brewer
control.panel

Consider programming the
controller. One of three things can
happen. Firstly, it may receive a message
on the button channel :

button ? request
IF
(request = tea.please) AND NOT

brewing
PAR
brewer ! make.tea
brewing := TRUE

request = time.please
speaker ! say.time; NOW

This inputs a request from the
button channel, and determines whether
it is a request for tea, or a request for the
time. A request for tea causes an output
on the brewer channel telling the tea
brewer to make tea, and the variable
brewing is set to prevent further attempts
to initiate tea making. A request for the
time causes an output on the speaker
channel to activate the speech
synthesiser. The multiple output to the
speaker channel has the same effect as
two single outputs.

Secondly, the controller may
receive a message from the tea brewer,
telling it that tea is made:

made ? ANY
SEQ
speaker ! say.message;

tea.made
brewer ! pour.tea
brewing := FALSE

Finally, at daily intervals, the tea
maker says 'good morning' and makes
tea:

WAIT AFTER alarm.time
SEQ
alarm.time := alarm.time +

one.day
speaker ! say.message;

good.morning
IF
NOT brewing
PAR
brewer ! make.tea
brewing := TRUE

These individual program sections,
each of which is a process, are combined
into the complete controller process by
declaring the local variables, and by
using WHILE and ALT to enable the
controller to perform whichever
alternative is required :

VAR alarm.time, brewing :
SEQ

alarm.time := 0
brewing := FALSE
WHILE TRUE
ALT
button ? request
IF
(request = tea.please)

AND NOT brewing
PAR
brewer ! make.tea
brewing := TRUE

request = time.please
speaker ! say.time;
NOW

made ? ANY
SEQ

speaker ! say.message;
tea.made

brewer ! pour.tea
brewing := FALSE

WAIT AFTER alarm.time
SEQ
alarm.time :=

alarm.time +
one.day

speaker ! say.message;
good.morning

IF
NOT brewing
PAR
brewer !

make.tea
brewing := TRUE

15. Summary.

There are many applications, especially
those in which high performance or a fast
response to external events is required,
which can be simplified by the use of a
number of communicating processors,
where each processor deals with a part of
the problem. Even when only one
processor is used, many applications are
most easily structured in terms of a
number of concurrent operations.

In the future systems will be
developed which involve large numbers
of communicating processors. Occam is
designed for implementing them, and for
implementing applications languages
which can exploit concurrency in their
implementation.

Occam is intended to be the
smallest language which is adequate for
its purpose; however, suggestions for
further simplification would be welcome.

REFERENCES.

IMP8 : H.G. Baker : "I have a feeling we're not in Emerald City anymore", Sigplan
Notices 32#4, 22-26 (April, 1997)

IMP9 : J.L. Peterson, A. Silberschatz : Operating System Concepts (Addison-
Wesley, 2nd Edition, 1985)

IMP10 : N. Wirth : "Towards a discipline of real-time programming", Comm.ACM 2 0,
577 (1977)

IMP11 : C.J. Theaker, G.R. Brookes : A Practical Course on Operating Systems
(Macmillan, 1983)

IMP12 : D. May : "OCCAM", Sigplan Notices 18#4, 69 (April 1983)

–––________

