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COMMUNICATION BETWEEN PROCESS AND SYSTEM

TYPES OF INTERACTION BETWEEN PROCESS AND SYSTEM.

In the preceding chapters, we have described various operations which the system must
perform on the processes, most of which are invisible to the processes, and indeed are
carried out for reasons which have nothing directly to do with a process's own
requirements. In other cases, though, the operating system is called upon by a process to
perform various necessary functions through system calls, sometimes known as
supervisor calls. Now we must discuss them in more detail, for these components of the
API are among our basic tools for exchanging control of the processor between running
process and operating system, and as such fundamental to process management.

These are not the only interactions between system and process. While system calls
are intended for planned communication between process and system, we must also
provide for at least two sorts of unplanned requirement for system services which might
arise while a process is running. These are undesired events detected by hardware or
software as the code is executed ( usually processing errors of some sort, such as
arithmetic overflow, or attempts to address memory outside the process's address space
or to execute an illegal instruction ), sometimes called exceptions, and events which
require immediate service originating outside the process ( typically in peripheral
devices ), called interrupts. While they are similar in that they are unprogrammed calls
on the system, they differ in their relationship with the current environment. The
exceptions are connected with events within the execution of the current process, and
access to the process's memory areas might be required if any action, including preparing
error reports, is needed. The interrupts are not necessarily dependent on the current
process for treatment by the system.

Having clarified the confused situation, we now issue a warning : in practice, the
whole issue is confused anyway, and we again face the problem of arbitrary
nomenclature. Our classification into three sorts of interaction is an attempt to cover the
field, but certainly doesn't exclude other possibilities. System calls need not be the same
as software interrupts, exceptions and interrupts need not be distinguishable, different
sorts of exception ( such as those for illegal instructions and reserved instructions ) can
be directed to different system code, and so on. It is not helpful that the terms themselves
are not used consistently. The fact underlying all these methods is that it is possible to
provide processor hardware with which the usual sequence of code execution can be
suspended in an orderly way to permit other activities to be carried out; given such
hardware, it can be used in many different ways. We think that our classification covers
the main features.

Further to confuse the issue, the "interrupts"
commonly discussed in MS-DOS manuals are system
calls. Real interrupts exist, but are normally caught

by device drivers in IO.SYS and not allowed out into
the rest of the system. That's why manuals contain
phrases such as "When IO.SYS receives input from

the keyboard, serial A, or serial B device, it
generates a software interrupt.". There's a good

reason for this design : MS-DOS itself was originally
intended to be independent of any specific hardware,

and that obviously wouldn't be so if it had to deal
directly with such hardware-specific things as real

interrupts.

The common feature of these three rather similar sorts of event is that they must be
handled by the operating system, either because some active component requires service
from an identified operating system function, or because some active component has lost
control so that system intervention is necessary. Details of the implementation obviously



depend strongly on the hardware available. Here we shall assume that the types of event
can be distinguished ( by parameters, flags, direction to different system addresses,
etc. ), and comment on their subsequent treatment by the system.

One component of the common treatment is essential : execution of the code which
makes the call is suspended for a duration while something else happens in a different
address space, and it must then be possible to return to the interrupted process after the
event has been dealt with. Because of this requirement, the current state of the processor
must be preserved, in much the same way as for a procedure call. Indeed, though we
shall draw some significant distinctions shortly, interrupts can often be thought of as
unexpected procedure calls. Consider this comparison :

Procedure call System call Interrupt Exception

Initiated by the
process

Initiated by the
process

Initiated by
something external

Initiated by the
system after

process
misbehaviour

The same thread
continues

The same thread
continues ?

The thread is
interrupted

The thread is
interrupted

The new address
space belongs to
the same process

The new address
space belongs to

the system

The new address
space belongs to a
process specified
for the interrupt

The new address
space belongs to

the system, but the
process's address

space might be
relevant

One can debate the suggestion that "the same thread continues" after the system call. The
argument is that the processor starts work on code which, though in a different place, is
still concerned with something required by the calling process, so maintains the essential
continuity – in effect, the system call is just a way of having one of the process's
elementary tasks performed somewhere else. On the other hand, one can equally argue
that, in some cases at least, the system call is a branch to another process which has been
waiting until it is required, and has perhaps been in existence since before the running
programme started. This notion might seem more reasonable if you consider that a system
call is the way into client-server services and remote procedure calls, both of which are
ways of carrying on the same process somewhere else.

In the case of a system call, then, does the same thread continue or doesn't it ? The
answer is, unfortunately, yes, but there is a clear difference between the two
possibilities : the thread of continuing computation which might be thought of when the
programme was designed does continue, but the thread of execution which is of concern
to the operating system is likely to switch to a different process. The uncertainty is a
symptom of the two views of programme execution which we mentioned earlier. As our
concern is now at the level of executing the programmes, we shall take the second view
henceforth.

SYSTEM CALLS.

We already know something about system calls. We first met them ( in the chapter
ONWARDS AND UPWARDS – THE OPERATING SYSTEM )  as a means for
processes constrained by memory protection methods to gain access to operating system
functions. They were developed when it became clear that ordinary programmes could not
be permitted to have uncontrolled access to the operating system, and depend on special
hardware for their implementation. They constitute an essential part of any protection or
security system ( see the chapter SAFETY ). After a system call, the processor has been
switched from its normal mode of operation to a privileged state which we called
supervisor mode, in which certain processor instructions which are inaccessible in
normal mode can be executed. Other names for these two processor modes are user and
kernel modes, or problem and supervisor states.
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It is common to implement system calls in the API so that they can be used just like
calls to external procedures from the high-level-language programmer's point of view, in
accordance with the suggestion that the same thread continues. In practice, this might be
yet another bit of the system illusion; so far as the mechanism is concerned, it is
frequently more convenient to operate system and process as coroutines. This is certainly
a more realistic view from the operating system's side, as it makes sense of system calls
which never return ( because something was found to be amiss during the execution ),
or don't return for a very long time ( because the process has to wait for a file to be
opened, or a swapped-out page of memory to be fetched ), or return twice ( fork(  ) ) .

We saw that a system call must do two things : it must cause a branch to an area of
operating system code, to carry out the request of the programme, and it must
simultaneously change the mode of the processor so that the privileged instructions can be
executed. Most of the more ambitious processors have an instruction designed to perform
this task. This instruction is variously called an operating system trap, software interrupt,
supervisor call ( SVC ), or change-mode-to-kernel ( CHMK ), and doubtless other
names will evolve.

If the system call is to be fully secure, it is essential that the operating system must
take control immediately after the branch, so the hardware is normally constructed to
direct all these branches to the same place. System code at that location receives all the
branches, and passes on responsibility for handling the requests executed after the branch
to appropriate parts of the system as determined by parameters passed in the ordinary
way, or set in processor registers. We shall call this code which protects entry into the
operating system the system call interface.

EXCEPTIONS.

We have already seen how in principle such faults should be handled to convey useful
information back to the user (  SOURCES OF INFORMATION ); now we should
explain how to make it work.

We are not going to do so, because we don't know a general answer. Ideally, as we
said before, the exception should be reported in terms appropriate to the programme in
which it occurred, and therefore likely to be comprehensible to anyone using the
programme. Just how to do so evidently depends on the nature and structure of the
programme, so is outside the scope of the system. All we can say is that it should be
possible for the programme to provide code which will be executed if an exception
occurs. It is probably ( though debatably ) preferable that the system does not transfer
control back to the process during exception handling, to avoid the possibility of the
process's promptly repeating the exception and initiating an error loop which is very hard
to break.

In practice, the usual system response to an exception is the simplest : stop the
process. As an exception usually means that the process has gone wrong, that isn't as
unreasonable as it sounds. It becomes even more reasonable when one reflects that very
few programming languages provide you with means to deal with exceptions in a sensible
way. It would obviously be appropriate for the system to give any information which
might help to determine what had gone wrong, such as informative error messages
( essential, but see above ) and memory dumps ( the other extreme, but useful if you
have the understanding or software to interpret them ).

More sophisticated approaches are possible. For some programming languages –
PL/I and Ada, for example – they are necessary, for the designers of these languages
have provided means of encoding responses to exceptions. The compilers for these
languages must be able to generate links from the operating system's exception handling
components to code prescribed in the programme. Exceptions are also defined in Java,
though as Java can be executed with a virtual machine the exception management can be
handled without explicit system help – but even so it becomes much simpler if the system
already provides effective exception-handling procedures.



INTERRUPTS.

An interrupt causes a switch to supervisor mode and a "procedure entry" to an interrupt
handling routine. Interrupts are useful to ensure that the processor can react to external
events. They are commonly used for switching a processor to code which handles
peripherals, and also, in the special case of the clock interrupt, to allow the system to
determine whether a processor should be reallocated to a different process.

We shall discuss interrupts and their influence on scheduling in more detail in the
chapter INTERRUPTS, but it is convenient to discuss here a question of principle
concerning the interaction between interrupts and processes. If you refer to the table
above, you will see that the unique feature of an interrupt is that it is not in any way
originated by the running process. The question is, therefore : how can the system
manage the potential conflict of interests ? Relevant issues include how to minimise the
disruption caused by the interrupt, how to ensure that security is preserved, and – on a
more mercenary level – who will be charged for the time taken by the interrupt. The
common feature of these concerns is the possibility of the interrupt code using
resources – time or code – belonging to the interrupted process.

When interrupts were first invented, such questions didn't arise; without memory
protection, anything running in the system could address any part of memory, and
multiprogramming was rare. The interrupt saved the current execution address
somewhere, and replaced the processor's address register with the entry point of the
interrupt procedure. It was then up to the interrupt routine's programmer to make sure that
the interrupt code did no harm, which usually meant that the contents of any processor
registers used had to be saved and restored before returning, but apart from that the
processor could just execute the interrupt-handling code and then return. As only one
process was running, the interrupt time could reasonably be charged to that process.
Further, no process stack was recognised by the system, so changing the code address
and other registers really did destroy the significant connections to the process's address
space.

With a shared system using memory protection and possibly a process maintaining
a process stack and using memory redirection through page or segment tables, things are
not so simple. The interrupt which occurs while process A is running might not be doing
process A's work, so perhaps it should be charged to someone else; it is not self-evident
that the interrupt code will be within A's address space; even if it is, do we really want the
code that deals with B's interrupts to have unhindered access to A's data ?

There are various possible answers to these questions, and in practice different
systems use different methods. If we are really very concerned about security, then we
can make sure that every interrupt is dealt with by a heavyweight context switch to a
special interrupt process, devoted to that interrupt. That's quite a straightforward thing to
do; it's æsthetically satisfying, too, as the separate functions are thoroughly decoupled,
it's very good for security, and it's hard for anything to go wrong. Unfortunately, it's
also quite expensive; it means that for every interrupt there must be two full context
switches. For that reason, it's rarely done unless security is a prime issue.

If we don't want to switch contexts, we are stuck with process A's context, and we
have to rely on the interrupt code to behave itself. We also have to get to the interrupt
code. We can do so directly if the interrupt code is accessible from A's addressing table,
as in systems using memory redirection in which operating system code is automatically
shared between all processes, or if the processor has an absolute addressing mode, which
is more likely in systems without memory redirection; in either case, we must make sure
that access is only permitted while interrupts are being dealt with. In other cases, the
interrupt mechanism must provide for the changeover. However it's managed, much of
A's process structure remains undisturbed, and to that extent we can say that the interrupt
is handled in the context of the current process.

And, that being so, A's owner will be charged for the time consumed by the
interrupt. Does it matter ? There are two reasons why we shouldn't worry too much
about it. First, in most systems it makes sense to think of interrupts as a sort of steady
background noise. Almost all ordinary processes use them for input and output, for
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memory management, and so on, and the cost in time to your process is more or less
balanced out by the cost of your time to other people's processes. Second, in any well
constructed operating system, the time taken by any interrupt service routine is kept as
short as possible, because it is unwise to have a processor running in an abnormal state
for an extended period. The load is therefore minimised.

DEALING WITH PROCESS INTERRUPTIONS.

While all these forms of event must be handled immediately, they have slightly different
requirements which affect the detail of the techniques used to deal with them. As well as
that, different operating systems use different methods, and vagaries of processor
hardware might also determine what can and can't be done.

Nevertheless, there is a widely adopted sequence of operations which is close to
inevitable after an interrupting event, and we shall describe this sequence, with notes on
variations or examples where it seems appropriate. We'll stress the system calls, because
that is our main topic, but bear in mind that similar considerations apply throughout.

0 ( or –1, if you prefer, because this is not strictly after the interrupting event ) : The
event occurs. The process takes no deliberate action for an interrupt or exception,
but it must ask for a system call. In Unix, it may use a function from the C library;
in MS-DOS, an assembly language INT directive. Generally, there might be
parameters to transfer. These might be left on the process's stack, or in machine
registers, according to the conventions established by the operating system.
Operating systems commonly provide procedures which look after the details to
assist programmers in making the system calls correctly.

1  : The software uses some of the information passed to find the code which must deal
with the call. For interrupts and exceptions, the appropriate device or exception
handler is identified; for a system call, the nature of the call is determined and
parameters transferred.

2  : Unless the hardware is otherwise designed, the processor registers are still pointing
to the interrupted process. This might or might not matter. For an interrupt we
might wish to enforce a context switch to preserve security, while for an exception
it might be desirable to retain the environment to assist in diagnosis. With
supervisor calls a switch in context to some suitable system code is usually desired.
The context change is the most complicated case, so we'll assume that's what we're
talking about from here on. We therefore suppose that the code of the system call
interface requests the process manager ( the dispatcher, of which we shall see much
more later ) to suspend the current process and to cause the processor to continue
with the system code executing the required system call. The system call interface
can also do whatever is needed to convey any parameters to the system code.

3  : The current context of the process is saved in the PCB, thus suspending the
process. It can now safely be left alone for as long, or as short, as necessary. A
branch to the system call code is executed. Executing the system code might change
the saved context, for example, by storing a returned value into some saved
registers. If the system so decided – for example, if the event was an exception
marking a fatal error, or if anything goes wrong while executing a system call – the
process might never be restarted. That's one way to traverse the link from waiting
to finishing in the process state transition diagram; the process is tidied up and
dismembered as we have already described. We shall continue on the assumption
that this does not happen.

4  : Eventually – perhaps immediately, perhaps when requested resources have been
made available, perhaps after other processes have had a turn at running – the
suspended process is resumed. A system call is commonly made by a system
library procedure, so the process is likely to restart in the library procedure code.



5 : The library code will then look after the returned values, including any error
indicators, in some sensible way, after which it will return as an ordinary procedure
to the code which called it. In systems in which you can make system calls directly
as software interrupts or some equivalent, the programmer must make provision for
dealing with the returned state. For a low-level system, there might be conventions
which determine how results are returned through processor registers; at a higher
level, a procedure might be included in the API which deals with the nasty bits and
presents a respectable high-level procedural face to the world.

This is the simple case where no interrupts have occurred during the process interruption.
We have also glossed over many different places in which errors can occur. For example,
the system call interface must be constructed to take great care in checking the parameters
which are passed, for they might be used in a privileged environment when the normal
checks are not applied. Under these circumstances, an invalid address used as the
parameter of a read( ) system call could cause data to be read into some portion of
memory outside the calling process's address space.

MEANWHILE, BACK AT THE OPERATING SYSTEM ....

We've seen that a process making a system call is likely to be suspended while the system
carries out its part of the task, and that all manner of things might happen before it is
restarted. What is the system doing between processes ? Should we regard the system
code as a process ? – or is it better to think of it as something special, essentially an
extension of the hardware necessary for keeping the system going ?

Which brings us back once again to our search for a definition of a process, but
now we can do rather better. That's because we have invented the process table, in
which – by definition – there is a process control block for every process. Our definition
has been established for us ! – for now all we need say is that a process is that which is
defined by a PCB, and our definitions will necessarily be consistent. ( In small or old
systems which don't have recognisable PCBs, we'll have to fall back to our vaguer ideas,
but in practice we don't much want to talk about processes in these systems, so we can
live with it. )

That's almost cheating, but not quite. What we've done is to use a fairly vague
notion of a process to help us define something quite like the vague notion, and we've
constructed PCBs with which we can keep track of an activity which is pretty clearly a
fairly ordinary specimen of the rather vague idea which started us off. Experience has
shown that this is really a very useful approach – so now we're tidying up our
nomenclature so that the idea of a process is much more clearly defined.

This view helps us to answer our question. No, the system's administrative activity
which follows a system call isn't to be regarded as a process, because it isn't subject to
the disciplines we expect of a process. In particular, it can operate on processes
( changing their PCBs, for example ) in ways which are quite abnormal. We emphasise
that here we are discussing only the strictly managerial operations with which the system
looks after the switch between processes, and any other operations required to keep the
system running; we do not include any work which might be done to continue the "thread
of computation" which we introduced earlier, and which we agreed to regard as a
different process.

Of course, there is no reason why our agreement should be binding on people who
write operating systems, who might choose to carry out some comparatively simple
request without setting up a process to do it. This blurring of the arbitrary boundaries
used to be quite common, but is increasingly seen as a nuisance. This is one of the
reasons for the movement towards microkernel systems which we mentioned earlier. One
of the features of a microkernel system is that as much as possible of the system code is
executed as more or less conventional processes; they might be highly privileged, or
otherwise have special attributes, but they are executed like any other process.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

QUESTIONS.
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How would you go about providing means for a process to handle
exceptions ? Bear in mind that the code to handle the exceptions must be
executable when the exception happens, and that the system must not lose
control of subsequent events.

What process is running when interrupt code is being executed ?

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––


