
Support for execution : page 1.

PROCESSES IN COMPUTERS

Our tentative ideas of processes have helped us to organise the machinery for starting a
programme, but before going any further we should pause to make sure that we know
what we're talking about; it is not self-evident that ideas gleaned from an amateurish
model of a bakery can be carried over unchanged to the operation of a computer.

In fact, though, we did not choose our examples at random, so they have
reasonable analogues in the realm of operating systems. Here are some examples which
you might like to compare with the bakery examples in PROCESSES; they're not intended
to be identical, so look for baking equivalents of the computer examples, and vice versa.

• First, two people might execute the same programme at the same time. ( We don't
mean a programme which is designed to be used by several people cooperatively –
that would fit better into the third category. Think of something like a compiler
which many people want to use. ) There is no connection between the two people's
work, and we certainly want to speak of them as distinct activities. Perhaps it would
be useful to have separate memory links for code and data in the process table so
that we could use the same code without making a copy for each process.

• Second, a single task might involve more than one programme. Indeed, we shall
see that that's essentially what happens every time you start a new programme in a
Unix system. Do we use the same PCB, or start a new one ? It's a continuation of
the same activity, so there's no reason why we can't keep the same one. In older
systems, it wasn't uncommon to find a programme instruction often called chain or
something of the sort which you could use to switch smoothly from one programme
to another as a part of the same activity. ( Whether or not this is possible in a
particular case depends on the designer of the operating system. There is no reason
why new programmes must be started as new processes. It is often necessary for
the operating system to change the resources associated with a process as it
executes; the code used by the process is just another of these resources. )

• Third, as multiprocessor computers become more common, there is increasing
interest in speeding up execution by exploiting parallel processing within
programmes – so your programme might acquire half a dozen more processors and
split itself into seven strands for a while. Each processor is industriously executing
its code stream, but it is only doing one seventh of what the original processor was
doing before the split. ( Notice that, from the point of view of the programme,
nothing new in principle is happening. Unless the separate strands interact, the
same ( or almost the same ) code could be run in series on one processor. Seen in
this way, all parallel strands of execution within a programme are incidental parts of
a single task. ) Does that require more PCBs ? The static structure of the code and
data remain unchanged, and so far as the bits that live in the PCB are concerned the
main difference is that you need several different programme counters, one for each
strand. ( We haven't mentioned dynamic structures like the execution stack yet; they
will have to be multiplied too. ) In practice, that's probably enough excuse to make
new PCBs, but we might expect that they have to be connected together in some
way to show their relationship, so we must provide a linking field in the process
table entries.

• Fourth, two separate programmes – which may even be running on different
computers – might cooperate to complete some sort of job. ( Think of a network
file server. The task to be accomplished cannot be completed without the
contributions of both programmes, even though they are separate entities in the
system. ) Should we try to describe this interaction by a single PCB, or would it be
better to think of separate activities which can communicate ? In practice, it is usual
to choose to keep the processes separate, but the alternative is there.

These are samples from a wide range of possible requirements. It is important to consider
such possibilities, because however we choose to represent processes our method must
work in all cases - or, to put it another way, a poor choice of process representation can



make it difficult to implement some useful sorts of process organisation. We have
sketched possible responses to the questions raised by each of the examples, and we have
been able to do so without any major change in the process table idea; in practice the
process table model does seem to be a very effective way to keep track of what's needed,
and we shall assume it from here on.

So we had better decide what we really mean by a process. We have got so far on
the merits of analogies with cake baking and general knowledge about what goes on in
computers, but we have certainly been making up answers as we go along. We have
found a few cases where we can choose whether or not to make a new process control
block, and, by implication, a new process, but we've had no guidelines as to which might
be preferable. We have a vague notion that a process is a basic unit of computation, but
we don't know how to work out how many processes we want to execute a particular
piece of code, nor how they fit together. Can we do better ?

PROCESSES AND PROCESSES.

When we come to analyse these structures more carefully, we find ourselves once again
in an area which looks rather different from different viewpoints. We discovered that for a
full discussion of memory management, we had to see the problem both from the point of
view of a process ( whatever that is ) and from that of the system; we made a similar
discovery about files, which led us to invent streams, and we'll do it again for the disc
system when we come to discuss its implementation in more detail. Now we're about to
examine programme execution in a similar way, and once more we'll find it useful to
speak of two views.

Why does this keep happening ? It's because of our
attempt at top-down analysis, and our close approach
to the real computer hardware. At each point in the
discussion, we are considering some facility which
we have decided that the operating system must

provide ( in this case, certain patterns of programme
execution ), and wondering what lower-level

machinery ( hard or soft ) we need to make it happen.
At the higher levels, we can often just invent a
plausible lower-level mechanism without much

constraint, but now that the lower level is very much
constrained by the hardware available we have to
make sure that any proposal we make really can be
implemented – which is to say, we have to evaluate

it from the hardware viewpoint.

The views in this case are, first, what we – the programmers – want in order to
construct useful programmes effectively and easily, and, second, what the hardware
provides.

The four descriptions above are examples of things that programmers might like to
do. They all – unsurprisingly – fit in with our fundamental aim of getting work done,
and they all share the idea that a good way to get work done is to make a processor
execute a sequence of instructions. But "work" itself is not a continuum; we see it as a
collection of jobs to be carried out to completion, with each job having some internal
cohesion which distinguishes it from other jobs. This idea of completeness is important to
us in thinking about our work, and it will help us if we can carry it over into our
computing activities.

We also know ( structured programming again ) that completeness is a hierarchic
quality. We have found that a good way to tackle a complex task is to split it into simple
ones, and to keep doing so until we come to a level at which the structure of the task is so
simple that we can easily decide how to write the code which will do what we want.
Certainly, from the design viewpoint, the acts of executing these fragments of "doing
work as instructed" are in some sense the atoms of our computation, and we shall call
them elementary tasks. To make all this work, then, we need some means of executing



Support for execution : page 3.

the fragments of code which we write at the bottom level of the analysis, and of tying
them together in the right order. Sometimes the order of these elementary tasks is
important; sometimes, as in the parallel processing example, it might not be, but provided
that we can get the right order when it is wanted, that's all right.

The elementary tasks are associated with pieces of the programme. That is not to
say that the collection of tasks is the same as the programme. In executing a programme,
it is unusual for all its tasks to become active. Instead, we can think of the programme as
a collection of potential tasks, some of which are selected during each execution according
to the vagaries of the programme and the data given at the time.

Are these the tasks we wanted ? Almost. The elementary tasks we've described are
certainly the raw material from which we can construct the rather larger tasks described in
the examples. The main difference is really a matter of usage. We have used terms in such
a way that each of the larger tasks must be constructed from one or more elementary
tasks. In the first example, each execution of the programme is a different task, and the
two are quite likely to include different selections of elementary tasks. In the second, the
tasks happen to include examples from two different programmes. In the third, it turns
out that some of the elementary tasks can run concurrently without interference. In the
fourth, the elementary tasks again come from different programmes, but this time the
programmes must run concurrently. Clearly, in defining the elementary tasks we have
identified something closely related to what we want, but there is nothing in the
descriptions of the examples to identify it more precisely.

Perhaps the view from the processor will be illuminating. What is it like ? Rather
simple. At the lowest possible level, it is quite boring. Almost all the time ( provided that
it is running at all ), the processor is executing an instruction, which tells it, implicitly or
explicitly, where to get the next instruction. And that's it – except for interrupts. And ( if
you're a processor ) the main excitement in an interrupt is that it is another way to
determine where to find the next instruction. You don't know that an interrupt will mark a
significant change in activity, which is likely to imply a new ( still  undefined ) process.
There's certainly no reason to suppose that an interrupt is an essential part of switching
from one process to another, so – from the processor's viewpoint – the change could be
quite imperceptible.

The significance of this observation is that if we want to define processes then we
must do so at a level higher than the basic hardware. In fact, we have already argued that
we do want to define processes, and we are trying to do so. In this search, there is more
to be gained from our expectations of how the processor will operate, and, in particular,
from our requirement for multiprogramming. It is not an accident that three of the four
examples are of situations in which two or more things are going on at the same time, for
it is unlikely to make much sense to try to discern processes where only one thing is
happening. If we are trying to execute several processes, though, we expect that they will
from time to time be stopped ( for example, to await service from the virtual memory
system ) and then carry on from where they were halted. The system's action in directing
the processor's attention from one process to another is sometimes called a context
switch.

It is here that the notion of a process becomes very important, for it is the process
which carries the sense of continuity in the execution of any activity. But at what level do
we wish to apply the label "process" ? The notion of continuity and completeness is there
at all levels, as much at the job or programme level as at the level of elementary tasks,
which correspond to the segments of the code. In the abstract, it might be appropriate to
regard all levels as processes and to recognise that processes are nested in much the same
way as procedures are nested.

As a guide to implementation, this is not such an attractive idea, because it requires
that we should maintain many entries in the process table for each computation, which
would require links to show their relationships. On closer inspection, though, it turns out
that much of this obvious structure does nothing useful for us. Consider this ( somewhat
contrived, but adequate ) example of a programme :



A;
A;
if E1
then begin

while E2
do begin

B;
C;
end;

end
else begin

if E3
then D
else E;
F;
end;

G;

Each piece of code represented in capital letters is one of the elementary tasks which we
mentioned, and we suppose that the complete task is called PROGRAMME. As this code
is executed, the corresponding process stack will expand and contract as shown in the
diagram below, where the stack is shown growing upwards, and time increases ( with
potential repetitions around the E2 loop ) from left to right.

B C D E

E2 E2 loop E3 E3 true E3 false F

A E1 E1 true E1 false G

PROGRAMME

Up to four process control blocks will be used, and there will be a significant expenditure
of effort in maintaining the process table. But what will be in the four blocks ? Consider
the situation when process B is active. E2 loop, the E1 true block, and Programme are all
simultaneously active, and it is certainly reasonable to think of each of these as legitimate
subtasks within the programme. But much of this information is redundant - for if B is
active the structure of the programme guarantees that the processes below cannot but be
active, and the information we might keep in the PCBs for the lower processes adds
nothing to that held in B's PCB.

It is therefore legitimate to limit the complexity by maintaining only one PCB for a
case like this, which is usually regarded as PROGRAMME's control block. If we wish to
articulate the principle behind this decision, we can say that we identify the process as
the highest level elementary task which we can choose without losing any significant
information. If we choose the higher level, we have no representation in the system of
the finer details of task structure, but provided that has no ill effects it might be a sensible
choice. In practice, we find that the higher level, corresponding to the programme, is a
helpful abstraction, and this is what we usually choose as the model for a process. This
brings us back again to the idea of work as composed of distinct jobs.

The process is therefore that sequence of operations which corresponds to the
execution of a programme, and which, even though prematurely stopped, must be able to
start again as though nothing had happened. The process is the abstraction of continuous
execution which we ( the programmers ) wish to be able to assume so that we don't need
to worry about the elementary tasks being interrupted, and the operating system's job is to
implement this abstraction so that the programmers can use it, no matter what the
processor happens ( or processors happen ) to be doing at any moment.

The identification of process as a processor executing a programme works well in
many circumstances, but sometimes it falls short. This is notably true in the case we
mentioned earlier, where a single task splits into several parallel tasks. Here, we are
concerned with structure within a process which is significant in its execution; we are
coming closer to the level of the elementary tasks we identified earlier. It is reassuring that



Support for execution : page 5.

our definition above still serves well; to definite the process at the level of the programme
would clearly lose important information, so we must identify the separate lower-level
tasks as the processes. As we saw, these are also characterised by continuity and
completeness, but we regard these potentially parallel operations as more mutually
dependent than separate programmes. ( Even here, there is a continuum : consider the
cooperating programmes in our fourth example. )

Should these tasks also be called processes ? If we base our definition on the
"abstraction of continuous execution" criterion, then they certainly are – but they are not
as aggressively independent as processes which are executing different unconnected
tasks. They are sometimes called lightweight processes or threads . Here we shall use
the word "process" to mean a heavyweight process, and speak of "threads" when we
wish to refer to the lightweight processes. We shall also suppose that, as is still the
common case, a process has only one thread unless we explicitly state otherwise.

The reason for making the "heavyweight" and "lightweight" distinction is the
significant difference between the administrative overhead for setting up a process from
scratch and for setting up a new activity within an existing process. Details will follow,
but in general to set up a process the system must find a code file, allocate memory, and
make adjustments in and links to many system tables, and this work is costly in time. In
contrast, a thread within a process usually works within the resources already allocated to
the process, and therefore causes very little disruption. Threads are important because if
they are not much easier to set up than "heavyweight processes" then much of the
advantage of parallel processing might be lost

Are two levels sufficient ? Should there be – so to speak – more levels of
threadedness ? There is certainly no obvious reason why a thread should not itself divide
further into more subthreads, and so on. The answers are probably "yes" to the first
question, and "no" to the second; the argument is similar to that we used earlier to justify
limiting the number of levels at which we represented the elementary tasks. Unless we
can show that we need an additional level to keep useful information, there is no point in
having it.

A second, and at least equally important, distinction is found when processing
switches between threads. Because of these differences in environment, switching
between two threads belonging to the same process is likely to involve very little
overhead, as most attributes remain the same. Switching between threads belonging to
different processes is likely to require much more extensive changes to the processing
environment, as most attributes of the environment – code, data, protection status, and so
on – must be changed.

The significant distinction is therefore between threads which cause sufficiently little
disturbance for it to be ignored, and those which cause sufficient disturbance to be a
nuisance. While the threshold might perhaps be difficult to define in quantitative terms,
there is only one of them, so only two sorts of thread.

It is interesting to notice that these ideas are not new, though as we have come to
understand more clearly what is involved in concurrent execution they have become
clearer and more standardised. Something very similar to the idea of threads was possible
in IBM's venerable OS/360 operating system, where a job could be given a large address
space and many tasks could be run within the job. In the Burroughs MCP, starting a new
thread was as easy as calling a procedure; with a few not very worrying restrictions, you
could enter a procedure as a subroutine, as a coroutine, or as a new thread. Because of the
organisation of the Burroughs' stack architecture ( the stacks could branch, which made
sharing address spaces trivially easy ), it made very little difference to the system.

In practice, different definitions of a process are used in different contexts, and
particularly in descriptions of different operating systems. The important notions are the
continuity and completeness characteristic of processes, and the continuity, more local
completeness, and complementarity of the threads. These are important ideas, and are in
practice worth implementing.



TWO PARTS TO A PROCESS.

With the advent of affordable multiprocessors, running different threads of a process on
different processors is becoming increasingly important. This highlights the two different
sides of a process's nature. To represent a process the operating system must keep track
of the current point of execution of each thread in the code which it is running. The
operating system must also keep track of the resources to which the process has access.
Corresponding to each of these tasks there must be a data structure to preserve the values
when necessary.

In many systems, these two sorts of structure are combined in the process control
block. That is reasonable if there is only one thread of execution and one collection of
resources for each process. When a switch occurs from running one process to another
there has to be a complete change of the resources known to the processor ( think of
memory in particular ) as well as a change in the code being executed. Once we permit a
process to split into several threads, though, it might make sense to have most of the same
resources being shared by the threads. If this is the case, moving from one such thread to
another requires a lot less work than the full switch mentioned above. Should we, then,
separate the resource management functions from the execution control ?

No, we shouldn't, unless we have some more clear evidence that it would be
useful. So far as we can see, while the points raised above are valid, they are outweighed
by other factors. The main consideration is that once we have split a process into threads,
we can't tell what the threads are going to do. It is quite possible that they will move on to
execute quite different parts of the programme, when the resources they use will be
significantly different. In the interests of generality, therefore, it is better to ensure that
our representation for threads can always cope with anything that might be required of it,
and the only way to be sure of that is to give each thread a full PCB.

The requirement that there should be just one thread
of execution and one collection of resources is not

quite met in Unix, but the system is so organised that
each process can assume that the assertion is true –
the system maintains it as an abstraction. Processes
can share the same code as a matter of course, but, as

the code doesn't change at all, the abstraction is
maintained. We'll see a special case later

( PROCESSES IN ACTION ) : a newly constructed
process shares the code of the process which
constructed it. The processes also share open

streams, which is rather harder to fix, but Unix
provides special structures to make sure that the

abstraction still works.

Some people treat lightweight processes as distinct from threads. They would say
that a "thread" places the emphasis on the sharing of resources whereas a "lightweight
process" places the emphasis on the ease of switching from one process to another. If you
followed our argument above, you will see that there is really very little difference
between these two notions, as it is the degree of sharing which determines the ease of
switching.

When it comes to using a multiprocessor we can run multiple threads of a process
truly simultaneously. We will look at this in more detail in a later section.

GOING TO EXTREMES.

Even with the threads, we have not necessarily reached the level of our elementary tasks.
We have stopped at a rather arbitrary level defined, in practice, by our ideas of what might
be useful programme fragments to execute ( at least potentially ) in parallel. Wouldn't it
be better to use the elementary tasks as the units of execution, in much the same way as
we use the segments as our units of memory management ? Accepting that a process's



Support for execution : page 7.

memory demands are really determined by the segments rather than by the whole process
we were able to design memory managers responsive to the real system behaviour.
Perhaps if we similarly seek ways of managing processing in terms of the processing of
elementary tasks, we might be able to produce process managers which would
automatically execute the elementary tasks for us. With a system of that sort, we could
just let our programmes run, and everything else would fall into place automatically; tasks
which could run in parallel would do so, and those which had to be serial would be run
accordingly.

Unfortunately, things are not as simple as that. The analogy fails because any set of
segments can coexist in memory without affecting each other, but the execution of one
elementary task might be strongly dependent on the execution of certain others, and we
could not guarantee our functional system if the order were not maintained. We recognise
this traditionally in the constraints we place on execution order by executing our
programmes sequentially. In practice, the conventional programming languages overdo
the constraint by forcing us to impose some order on operations which we know do not
interfere with each other and could therefore be run in parallel. Parallel programming
languages and techniques have been developed in order to overcome these constraints
where possible, but the decision on what can be made parallel is still mainly dependent on
people's decisions. ( Compare memory management by overlays. ) The system could
only guarantee to execute the elementary tasks in the correct order if it was given
sufficient information to define the order, and so far it has proved very difficult to
generate this information automatically for any but the simplest cases.

The problem can be solved by changing to a rather different sort of computation.
The dataflow computer architectureEXE1 is designed so that each instruction can only be
executed when its data are ready, and the information contained in a dataflow programme
is sufficient to guarantee the correct order. This is parallel execution right down at the
level of machine instructions. It seems to work ( we have no direct experience of it ), but
is at present confined to experimental implementation.

PROCESSES AND RESOURCES.

In this section, we explore how to make this real work happen as we want it to
happen. We have already said quite a lot about that in earlier sections. Some examples :
we might want to use many processors; we might want to run many activities "at once" in
multiprogramming; sometimes activities have to wait for certain resources to become
available before they can continue. These are just some of the complications which we
want to support with our simple model of a running programme. How can we do it ?

We already know how to do it; we shall use the notion of a process to guide our
management of the computer's activity, much as we use the notion of a file to guide our
management of its storage. We discussed processes in the abstract at the end of the
previous section, and defined ( in IMPLICATIONS OF PROCESSES ) something of
what that would mean. Now we must find ways of putting this abstract specification into
practice. We have covered quite a good proportion of the requirements in our discussion
of memory, but there remains the final item of the list : "a structure which we have called
the process table will be necessary in order to keep track of the active processes and their
current activities".

What we have not yet done is get down to specifics. That's because we have to
consider the requirements of a real system to determine just what we want to keep in our
process table. In practice, this shows up as differences between the details of process
tables implemented in different systems; while there is a core set of items which appear in
pretty well all the tables, there are others which some system designers find useful while
others don't. We shall take the approach of following the operations of an imaginary,
though plausible, system, and as we go we shall identify items which should be recorded
in the process table, as well as their connections with other parts of the system.

A process is a rather abstract entity, which is one of the reasons for our difficulty in
defining it, but it has much less abstract connections. If that were not so, process



management would be simple; as it is, we have to find the resources which a process
needs before it can proceed with whatever it's supposed to be doing. In practice, process
management is to a large extent a matter of allocating resources to processes as they are
needed.

What do we mean by a resource ? It's anything which a process must "own" in
order to proceed. We've quoted "own" because it means rather different things in
different cases; it might imply that the resource has been allocated to the process
( memory ), or that the process has permission to use the resource ( a file ), or that the
process has staked a claim which persists until the process gives it up ( a lock ), or that
the process has received a consumable resource ( a message ). In all cases, though, the
process has whatever is needed to continue with its work.

The basic resources are code and data, and a processor. Other resources are needed
to accommodate the code and data – memory and files – and to get them into and out of
the system – devices and communications channels. There are also more abstract
resources, which amount to permissions, often used to manage shared resources – so a
process might require protected access to a shared area of memory so that it can carry out
some operation involving the contents of the memory with a guarantee that the contents
cannot be changed by another process during the operation. ( We shall study this
requirement for mutual exclusion in some detail in the chapter PROBLEMS OF
CONCURRENT PROCESSING. ) Parallel threads of a single process might have to wait
for all the other threads to complete before they can recombine to form a single thread
again. In all these cases, something has to wait. These abstractions are implemented by
locks and other synchronising resources of various sorts.

Much of process management is therefore concerned with keeping track of the
resources owned by a process, finding new ones when required, and dealing with the
process itself according to the resources available. You will read much more about these
topics in the next few chapters.

In a system designed to run a single process, many of these concerns are less
pressing, because the competitive aspects of resource allocation are no longer of the same
concern. Resource management can then be reduced to its simplest : if the resource is
there, use it. Even in this case, it is good policy to take process management seriously,
because the techniques used provide a very orderly way of keeping track of what's going
on.

An alternative view might be that the last paragraph should have
begun "In a system designed to let a single programme run itself
...". Few small systems are designed with any very clear model of
processes, let alone threads, simply because there is very little
need for process management. We would argue that it is
nevertheless useful, if only as an aid to clear thinking, to identify
such entities. Typically, as well as the programme to be executed
( rarely more than a single process ) there are identifiable
processes which drive devices and deal with interrupts. They have
their own code and data, and communicate with each other in
various ways. To recognise this structure in the system, and to take
account of it when designing and constructing the system, is likely
to lead to a product which is comparatively easy to adapt to new
requirements when necessary; the alternative of building
something which will do the job but without clear structure, though
it has a long history, is less likely to give a system which is
flexible.

In designing the Macintosh system, the intention was to provide an environment in
which programmes could be executed, and also in which many useful ( or not so
useful ) facilities would be available all the time. These were ( and, at the time of writing
( 1995 ), still are ) called desk accessories. Like anything else in a computer, they were
implemented by programmes – but, as the system was designed for a single process,
they had to be special in some way. They were implemented as a rather special sort of



Support for execution : page 9.

device driver ( see the IMPLEMENTATION section ), apparently because device
drivers were expected to hang around all the time and burst into action when wanted. In
fact, though, there is – and never was – any good reason to regard them as anything but
ordinary processes, and as the system has evolved into a multiprogramming system the
special position of desk accessories has become an anomaly. In System 7, the distinction
has essentially disappeared, and all processes are managed in much the same wayEXE2 :
"There are no compelling reasons to create desk accessories for System 7.0". We don't
know why they didn't start off with this design from the beginning.

LANGUAGE.

Within the subject called operating systems, processes are about the most lively entities
around. While it is processors and devices which directly cause things to happen, they are
always instructed by processes; the processes are the components of the system in which
decisions are most obviously made and wheels set into motion to carry them out. It is
therefore quite difficult to avoid thinking and speaking of processes as though they were
people, having desires and needs, making decisions, acquiring resources they need in
order to satisfy their desires and carry out their decisions, and otherwise behaving quite
like we do.

There is a school of thought in which this anthropomorphism is thought of as
undesirable, on the grounds that it is factually wrong, and therefore likely to lead one into
further error. This view is certainly correct on the first count; any desires, decisions, or
needs have more to do with the plans of the system designer than with the software, and
can always ( one could hope ) be traced back to some design decision. There is also
undoubtedly some danger of the second possibility, if only because people might neglect
to enquire too closely into the process's motives, regarding the exercise, by analogy with
the corresponding exercise with real people, as fairly futile. Any such view is of course
silly; a process's reasons for actions are always to be found in its code, and ( one could
again hope ) in its documentation. We might also observe that a significant part of the
computer industry is dedicated to presenting false ideas about computers; we have already
studied these system metaphors ( particularly in the chapters GUI : GRAPHICAL
USER INTERFACE and ABOUT GRAPHICAL USER INTERFACES ), and seen how
they can contribute to making it easier to learn to use a system.

Our view is that a little anthropomorphism does no harm, and can often make for
much simpler explanations – provided that the reader bears in mind that it is just as much
a part of the system metaphor, and therefore just as illusory, as the desktop. For most
people using computers, it is probably quite reasonable to think of computers as having
some human attributes as part of the system metaphor; students of operating systems
might use the vocabulary, but should decline to be fooled.

We shall not go out of our way to attribute human desires to processes, but will do
so occasionally if it seems to make a description easier to understand. We shall expect you
to interpret such descriptions appropriately. Just don't start believing that computers have
feelings.

COMPARE :

Silberschatz and GalvinINT4 : Sections 4.1, 4.5.

REFERENCE.

EXE1 : A.H. Veen : "Dataflow machine architecture", Computing Surveys 1 8, 365
( 1986 ).

EXE2 : THINK Reference ( Symantec Corporation, 1992 ).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

QUESTIONS



In the history section we saw that multiprogramming was introduced i n
order to maximise the use of the expensive computer hardware. What are
the current reasons for multiprogramming, especially with regard to
computer systems designed for individual use?

Has the change in emphasis raised in the previous question caused any
difference in the way multiprogramming has been provided by the
operating system?

We suggested that "if we want to define processes then we must do so at a
level higher than the basic hardware". That's a conclusion which follows
from a simple model of a processor. Would it be useful to construct a
processor which was conscious of processes ? What advantages would there
be to doing so ?

Our decision that threads must be provided with full PCBs was forced upon
us because we couldn't tell what a thread was going to do. Is there any
reason why we couldn't define threads with built-in constraints which
would be easier to manage than full PCBs ? ( Perhaps their not-quite-PCBs
would only need to accommodate programme counters, for example. )

If we were able to move a running process from one computer to another,
what extra information would we need ?

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––


