
Computer Science 415.340

Operating systems

HOW TO DO IT

IMPLICATIONS OF MEMORY

What must we have in order to implement a memory manager ? The major implications of
these requirements amount to a specification of hardware functions. It is unfortunate that
in most cases we can't order specific hardware functions; the hardware is given, and
there's often little enough evidence that it's been planned to suit the convenience of
anyone but the hardware designers.

Recall that we have arrived here after a long process of analysis which began with
the requirements of people who use computers. Whether or not the specific details of our
arguments are correct is beside the point; the important thing is that some such process is
possible, and we end up with a hardware specification which we believe will support an
operating system designed to give good service. The hardware designers then tell us, after
the manner of Henry Ford, that we can have any sort of memory we like so long as it's
flat. (In fact, our arguments might very well be wrong, as we've compromised all the
way along by accepting that we have to cope with a flat memory.)

That might be just a little cruel to the hardware designers, who are
doubtless compassionate and well meaning people; but here’s the
introduction to a fairly recent paperEXE22 :

The computer designer's objective is
to produce a product that will succeed
in the marketplace. This requires
optimal use of available hardware and
software technologies. If bottlenecks
exist that prevent the exploitation of
these technologies, they must be
identified and eliminated.

To accomplish this objective,
the computer designer has three
choices:

(1) Do no analysis whatsoever, just
design the machine from some
cosmic understanding of what
needs to be optimized.

(2) Do analysis based on analytic
models, such as Petri nets and
Markov chains.

(3) Do analysis based on
experimental techniques, for
example, trace-driven
simulation of benchmark
programs or hardware
monitoring of an engineering
prototype.

The first option can be rejected
out of hand, although it is
unfortunately still used. There are
well-known examples of products
that were designed without proper
analysis that have not been successful
in the marketplace. There is probably
a larger number of lesser-known
projects that were fortunately
canceled before reaching the
marketplace after the appropriate
analysis suggested that cancelation
made sense.

It’s true that there’s a reference to benchmark programmes – but
those are commonly designed to test the performance of average
software on existing machines, and therefore already embody the
assumptions people make when using existing machines.

However, for what it's worth, here's an attempt to list our requirements. It isn't
guaranteed to be complete or accurate; think critically about it. As always, we assume we
begin with a flat memory implemented in hardware.

MEMORY.

A linear array of addressable memory elements.

ADDRESSING.

To give each process an address space starting at zero, we need base registers.

If we are concerned about segments, then for protection against addressing errors, we
need limit (or range) registers .

To permit flexible use of memory, we require address mapping; the hardware should be
able to manage addressing via page or segment tables automatically.

For segmented memory management, hardware help with list management is useful, but
not essential.

VIRTUAL MEMORY.

The basic requirement for a virtual memory is the machinery for recognising an
addressing fault. The addressing table must include a present bit, which is inspected by
the hardware on every reference to memory; if the address sought is not resident in
memory, the virtual memory system must be brought into action.

That might be all there is to say; to some extent, it depends on your analysis of the
structure of the system. Is memory management a single activity, or should we regard
managing internal memory and virtual memory as essentially separate tasks ? If we
favour the separate tasks model, we could take the position that the rest is up to the
hardware to deal with – once the hardware has detected a reference to an absent address,
the hardware had better do something about it. With that point of view, the virtual
memory software becomes a service called on by the hardware. This is perhaps the better
logical structure, as it then becomes very clear how to incorporate a hardware
implementation of virtual memory. In effect, the higher level memory manager is a server
providing memory on demand to processes which need it, drawing from an infinite pool;
then a lower level manager supports the infinite (well, very large) memory abstraction
by implementing virtual memory.

A more conventional view is that the virtual memory software is just another part of
the memory manager, and the hardware functions only as a sort of switch which sets it in
operation. This view concentrates more on what the parts of the systems do than on the
nature of their interrelationships, and emphasises the close relationship between the two
components, particularly obvious in their common concern with the addressing tables.

Either way, the virtual memory software is a part of the operating system, so we
have to talk about it somewhere.

To implement a good memory replacement strategy, hardware help of several sorts
is useful. The simplest is the dirty bit, a bit in the addressing tables marking a page or
segment as having been changed. Other more elaborate schemes might use several dirty
bits, or maintain a chain of pages or segments to implement a least-recently-used queue.

REFERENCE.

EXE22 : Y.N. Patt : "Experimental research in computer architecture", IEEE Computer
24#1, 14 (January 1991).

–––

