
MEMORY MANAGEMENT : THE SYSTEM'S VIEW

In the previous chapter, we concentrated on the requirements of the programmes and
explored some ways in which these could be met. This is very proper, and thoroughly
consonant with our principle that the operating system's function is to offer computing
services to entities requiring those services. Now, though, we move another level
downwards, and ask what the system must do to support the services we have undertaken
to provide; this is a good example of the client-server model in action, with the processes
(or, if you like, the API procedures used by the processes) as clients and the system
memory manager as server.

The server's job is to provide raw memory as requested. The request might be for a
chunk of specified size in a segmented system, or for one page in a paged system, but in
either case the system's memory manager must be able to respond appropriately. In order
to do this, it must keep track of available space : there must be a page map or available
space list. (Both do the same job, but are appropriate to the different management
methods.) This is quite separate from the addressing tables : each process has an
addressing table, which is essentially a device for linking its pieces together into a single
addressing space; but the system's page map (or whatever) is used to identify the
unused parts of memory.

PAGING.

A paging system uses a page map, with an entry for each page in the primary memory.
This works because the number of pages in memory is fixed, so it's possible to allocate
memory space exactly for the map itself. The page map can be quite small, as all we really
need to know about each page in order to manage memory allocation is whether it is in
use or available – so just one bit per page is enough. In practice, it might be helpful to
remember more; for example, if the system knows which process owns each allocated
page, then it can reclaim a page if a process owning the page ends without explicitly
releaseing it (perhaps because it has a corrupt page table). If this reclamation doesn't
happen, the phenomenon called memory leakage can occur; we discuss this a little more
later. Ownership information is also necessary if the system is to charge for memory use.
Looking to the future, it's also useful to maintain some information used by the virtual
memory system. Typical memory maps might contain a few bytes for each page.

While we want to carry all the information we need to make administration possible
and effective, we do not want to waste space. Even a medium-sized computer system
these days might have several thousand pages of memory, so a large record for each page
can be quite expensive. We therefore would not usually include information which would
only rarely be of use. For example, we've seen that, if we want to share pages between
processes, it's helpful to have a usage counter; would it be sensible to keep that in the
page table instead of the in-use-or-not indicator, so that every page could easily be shared
if required ? The answer turns out to be more complicated than you might expect. First,
as only one bit is required for the indicator, while several bits at least will be needed for
the counter, the obvious answer is that unless a large proportion of the pages will be
shared (which is rather unlikely) one should not carry the counter in the page map
record. Second, though, it is quite likely that the single bit will be managed as a separate
variable, and will probably occupy at least one byte anyway – so one might be able to
carry a usage counter permitting at least 255-way sharing, which is enough for most
purposes, without wasting any space at all. Third, though, as the fact that the page is
shared is likely to be significant for any memory management operation, it will be
necessary in any case to link the page to the system's list of shared memory areas, so
there is plenty of room elsewhere for the usage counter, and it is more appropriately kept
with the other information about sharing. We might therefore end up with an extended
page map record anyway (to cater for the link to the shared table), but with the usage
counter kept with the shared-memory information !

As well as fixing the number of pages, the fixed page size itself is easy to handle.
There is only one sort of memory request – for one page – and the space vacated by a
page which is no longer required is exactly the right size to hold any other page. These
considerations might not strike you as astonishing; but compare the position for
segmented systems, which we review below.

The other side of the coin is that the programmes' actual requirements for memory,
not being of fixed size, do not fit the pages properly. Memory space is therefore wasted.
Such wastage, which occurs within the allocated memory space, is called internal
fragmentation.

A possible set of operations which might be implemented in a paged memory
management system is listed below.

OPERATION WHAT TO DO

In the (system's) page
map

In the (process's) page
table

get : find a free page in the page
map;

mark it allocated

return the page number mark the virtual page
allocated in the page table,

insert the actual page
number

release : mark the page free in the
page map

mark the virtual page
unallocated in the page

table

SEGMENTATION.

With a segmented memory system, a memory map of fixed size is less satisfactory,
because the number of segments is not known beforehand; a fixed area would either be
too big and waste space, or be too small and run out of slots. Instead a common device is
to link together the available segments in a list, with useful information about the segment
held in the segment itself. This useful information notably includes the segment size; this
is a good place to keep it, because it is used by both the system memory manager and the
memory access machinery, and if kept with the data it is easily accessible to both. Other
useful information might include the segment's owner, which is useful just as it is for
pages – for example, knowing the identity of the owner can help to avoid memory
leakage. Here's a diagram of a typical (though atypically small !) segmented memory
layout :

Available space

Header TrailerLength LengthFree ? Free ?Next

Header :

Trailer :

Available :

In use :

While there is no question of internal fragmentation with a segmented memory, as
each allocation is of the requested size, the constant need to find available segments to

match unpredictable requests inevitably leaves unused space between used segments. This
is external fragmentation.

The use of segments of different sizes in the memory makes it harder for the
memory manager to find space as required. Instead of being able to use any space vacated
by another programme, it must search through the available space list until it finds a
vacancy of adequate size for the request, then allocate the appropriately sized chunk to the
requesting programme, and return any significant surplus as a smaller available segment.
It is this need for constant searching in the available space list which constitutes the
biggest overhead for a segmented memory system. The Burroughs implementation of
segmented memory was supported by specially designed hardware operators which
would search linked lists in a single machine operation.

The task of searching for a vacant segment is peculiar to segmented systems.
Algorithms for performing the task are called allocation strategies, and several varieties
thereof are common. Here's a brief account of three examples

NAME METHOD REQUIRES CONSEQUENCES

Best fit Find the vacant
segment which just
satisfies the request.

Sorted free area list. Tiny crumbs.

Worst fit Always use the biggest
vacant segment.

Sorted free area list. No crumbs; no big
vacancies either.

First fit Take the first free
segment you find
that's big enough

Simple free area list. Anything could
happen.

The "crumbs" mentioned in those descriptions are tiny, and fairly useless, chunks of
memory left over after allocating requested segments from vacant areas which are slightly
too large. It is difficult to avoid such crumbs, and, once generated, they are very unlikely
to be used. It is therefore all too possible to find that quite a lot of unused space is thinly
spread throughout memory in the form of crumbs.

The obvious selection algorithm is perhaps the best fit method : choose the vacant
segment which is closest in size to the request, thereby minimising the waste. At the same
time, of course, it generates the smallest possible vacant fragment, which might turn out
to be a useless crumb. We can avoid the crumbs, to some extent, by going to the opposite
extreme, and using the worst fit strategy : always allocate from the biggest vacant
segment. This avoids the crumbs, but destroys large vacant spaces, so it can be hard to
satisfy a big request. To operate either of those strategies efficiently, it's necessary to
maintain a list of available space ordered in fragment size, which can be time-consuming;
we can avoid that by using the simple first fit strategy, where the system uses the first
sufficiently large vacant segment it finds in searching sequentially through an unordered
list of vacant segments.

Which is the best ? Unless your system is struggling for memory most of the time,
there isn't much difference. If your system is struggling for memory, the best answer is
to buy some more; it's a better solution than relying on marginal improvements which
might or might not accrue from a change in allocation strategy.

An interesting feature of the best fit approach is that
in many systems exact fits are often foundEXE17.

That's because the sizes of segments requested are a
long way from randomly distributed. Most systems
have some favourite memory sizes determined by

characteristics of frequently used system components
(they used to be 80 bytes, for punched cards, and 120
or 132 bytes, for line printers; now common sizes are

determined by other devices and system

requirements) which are commonly requested and as
commonly released.

If there is no sufficiently large vacancy, a memory manager for a segmented system
might try moving segments about to coalesce vacancies. In practice, this is fairly slow,
and the other processes can't run while you're doing it.

When processes release segments, they must be returned to the system in an orderly
way so that the space is available for allocation. In general, the necessary manipulations
follow from the specification of the memory structure as shown above. More specifically,
there are four cases which must be managed, according to the configuration of the
released segment, and they are described in the table below.

Before

After

The new vacant segment
is isolated; it is linked
to the available space
list.

Before

After

The new vacant segment
precedes another; the
existing vacancy is
removed from the
available space list,
and reinserted with an
appropriately changed
length and position.

Before

After

The new vacant segment
follows another; the
existing vacancy is
removed from the
available space list,
and reinserted with an
appropriately changed
length.

Before

After

The new vacant segment
lies between two
vacancies; the existing
vacancies are removed
from the available
space list, and the
single large new
segment reinserted.

We have assumed in this description that the available space list is kept in order of size,
and that vacancies are coalesced as they are found. If the size order is not important, all
cases but the first are simplified, as the originally vacant segment (or, in the last case,
one of them) can be changed to denote the enlarged new segment rather than requiring
removal and reinsertion. If vacancies are not immediately coalesced, the released
segments can simply be attached to the list by whatever means are simplest; in this case,
coalescence can be handled when segments are allocated, by checking for consecutive free
segments if a free segment is too small to satisfy a request. Other variants are also
possible.

This pattern of allocation, release, and coalescence leads to a curious consequence
summarised in Knuth's 50% rule. This ruleEXE18 asserts that, in a stably running
segmented memory management system, the number of vacant segments is about half the
number of occupied segments. Consider what happens when a segment is newly released;
the release must follow the pattern shown in one of the four entries in the table above. In
the first, the released segment is between two other occupied segments, so is in the

Centre of an occupied area; we call this (before release) a type C segment, and note that
after release the number of vacant segments has increased by 1. In the second and third
cases, each released segment is on the Boundary of an occupied block; it is a type B
segment, and its release does not change the number of vacant segments. In the fourth
case, the released segment is Alone, and must therefore be of type A; its release decreases
the number of vacant segments by 1.

If we now denote the number of type A segments by a, and so on, we can work out
the number of vacant and occupied segments, which we shall call v and s respectively :

s = a + b + c (because each allocated segment must be of one of the
three types);

v = a + b/2 (because to each type A segment there correspond two
vacant segment ends, and to each type B segment there
corresponds one vacant segment end).

(We have assumed that we can ignore end effects – which is equivalent to assuming that
there are many segments in the system. (Or that the whole of memory is segmented and
the system uses wrap-round addressing, which is unusual but not impossible.)) There
is nothing in any allocation strategy which associates the position of an allocated segment
with its contents or expected lifetime, so we can assume that the probability of a segment
being released in any interval is the same for all segments, and that in consequence the
probability that some type A segment will be released is proportional to a, and likewise
for B and C. If we finally assume that the system has been running for some time and has
reached a stable state, then, on average (we will expect some fluctuations, but we're
concerned with the long-term behaviour) the rate of disappearance of segments must
equal the rate of appearance of new segments – so

a = c.

From the previous equations (substituting for c in the first), we immediately deduce
that

v = s/2.

That is Knuth's 50% rule.

There are several assumptions in that argument which can be questioned, not the
least being that it is sensible to speak of a steady state – but the rule really does seem to
work not too badly. It's interesting not only as a curiosity, but because it gives us some
idea of the performance to be expected from a segmented system. Consider, for example,
the table below. This is derived directly from the rule, and shows how the average size of
the vacant segments depends on the number of segments (s) of average size (σ) one
hundredth of the memory size allocated.

s Proportion of
space occupied

Number of holes Size of holes

10 0.1 5 18σ
20 0.2 10 8σ
30 0.3 15 4.7σ
40 0.4 20 3σ
50 0.5 25 2σ
60 0.6 30 1.3σ
70 0.7 35 < σ

Clearly, by the time the memory is 70% full, it will become fairly difficult to find a
vacancy big enough to satisfy a request of average size. You can then either start moving
segments about – which, as we have seen, is possible though rather slow – or you can
buy some more memory. The table also shows that, up to about 70% full, you can
reasonably expect to satisfy the average request for memory, and that really isn't too bad,
for we would normally expect to run a system with a good margin for emergencies.

BUDDY SYSTEMS.

TERMINOLOGICAL NOTE : We take no
responsibility for the nomenclature used in this

description. We don't like it very much, but there it
is. Perhaps you'll like it better than we do.

Buddy systems are among the earlier memory management techniques to be developed.
They can cater for requests for chunks of memory of various sizes, but they do not rely
on segments as we have described them; their chunk boundaries are fixed, but they do not
rely on pages.

Instead, memory in a buddy system is organised as a binary tree of potentially
assignable chunks. The whole memory is the initial chunk; at the next level, there are two
half-memory chunks; then each of these can be divided into two quarter-memory chunks;
and so on. The two chunks which result from each of these bisections are the buddies.
Using this strategy, if the memory is 2N units in size, there will be a chunk of size 2M

units for any M ≤ N . The allocation strategy is to use the smallest chunk which will
satisfy a request; but on release a chunk can only be coalesced with its buddy, even if
there is another vacant block at its other side.

Here's a sequence showing how this works with a (carefully designed) arbitrary
set of requests and releases. The process begins with an empty memory.

A request for memory is received. The request is for less than one quarter but more than
one eighth of memory, so memory is divided first into halves, and then the first half is
divided into quarters, and the first quarter allocated to satisfy the request.

1

1

Three further requests can be satisfied by half of memory (there is already a vacant half,
so that is used) and two eighths (so the remaining quarter is subdivided).

2

3

1 23

4

4

No more subdivision is now possible, even though a significant amount of free memory
is available, because there is no vacant fragment corresponding to a proper 2- n

subdivision. (Some buddy systems will use the fragments if possible, regarding them as
buddies of the parts of the areas already allocated. This is still in the spirit of the buddy
system.)

A small segment (black in the diagram below) is released, and a larger request is
received. Although there is sufficient contiguous space to accommodate the larger
segment, no allocation is made, because the two areas which make up the space are not
buddies, so may not be coalesced.

5

1

33

4 22

The largest occupied segment is now released; the outstanding request can now be
satisfied by bisecting the second half.

5

1

22

4 5

Another fragment is released, leaving well over half the memory free – but a quite modest
request for well below half of memory cannot be satisfied without violating the buddy
rules.

1

4

5

6 ????? 6

AVOIDING WASTE.

Waste of space (usually called "fragmentation") is unavoidable in any practical general-
purpose memory management system – just as it is in any operation which requires that
many things of odd sizes be packed into a given container. Mathematically, finding an
optimum solution is known to be difficult, so memory managers, which have to solve the
problem perhaps several times per second, don't try; they aim at a fairly good system.

PAGING : take care with the page size (when designing the hardware !) – there's a
tradeoff between internal fragmentation and the space occupied by the page map.
Once the page size has been determined there's very little that can be done to avoid
waste. A clever compiler can try to pack code and data into pages – but if you want
pure code segments, and shared code or data, that can impose severe constraints on
the compiler's freedom. We discuss the optimum page size further in the chapter
PAGE AND SEGMENT SIZES.

SEGMENTATION : choose a good allocation strategy (first fit, best fit, etc.). If
segments are allocated and released without any forethought, it's easy to end up
with quite a lot of useless crumbs. The phenomenon is sometimes called
"checkerboarding", from the appearance of a diagram in which memory is
represented as a sequence of strips with used segments shaded.

BUDDY SYSTEMS : these systems are designed to avoid crumbs, by always coalescing
fragments to avoid little bits left over. Buddy systems don't abolish waste – if
anything, they're worse than some others – but they do ensure that you don't end
up with an impossibly "checkerboarded" memory.

One can argue that memory is so cheap nowadays that the waste doesn't matter. We
are not convinced. We would urge that in engineering terms any waste is bad in principle,
and to be avoided if possible. We can reasonably use arguments from cost to choose
between methods that are available; presumably, therefore, even cheaper methods would
be even better ! We also remark that the arguments from cost must be used properly,
taking into account all the costs, not merely the trivially obvious. If your programme
takes up 10% more space than it need, there is that much space which is not available for
running other programmes, for expanding your own programme, and other purposes. In

a virtual memory system, every additional page used is an addition burden on the disc
channels, and might significantly reduce the speed of execution of the programme.
Economical use of memory might not be the vital necessity which it was when 64K
memories were thought large, but it is still true that careless use of memory can hurt, and
it is certainly appropriate that the memory management of the operating system should be
carefully designed.

LEAKAGE.

A large operating system might carry out many thousands of memory management
transactions every hour, and be expected to keep running for weeks or months on end.
Obviously enough, every one of those transactions had better be right, or unfortunate
consequences might ensue. One such consequence is memory leakage, by which we
mean an apparent slow decrease in the amount of memory available to the operating
system.

The cause is usually that some memory areas are being allocated, but never returned
to the system pool. There are several ways in which this can come about, and the blame
can lie with the programme which causes the leakage or with the operating system which
fails to identify the leakage and take action to remedy it.

Programmes can cause leakage (or, more precisely, act in a way which is
conducive to memory leakage) by allocating memory and then losing track of it. There
are several ways to accomplish this feat : pointers to memory areas can be overwritten by
pointer assignments, "dangling pointers" can be used out of scope, shared memory areas
can be badly administered, programmes might contrive to corrupt their addressing tables,
programmes might stop prematurely for one reason or another without tidying up their
memory allocations.

But the misbehaviour of programmes should not be an acceptable excuse for failure
of the operating system. It is the job of the operating system to keep the computer system
going, whatever the processes which it oversees might try to do – so a good operating
system will allow for the possibility that a process might behave stupidly and take
precautions to ensure that the stupidity cannot affect other processes. The fundamental
precaution is simple : never trust a programme. Use memory protection and supervisor
calls to ensure that a process cannot reach any sensitive tables or other structures; maintain
an independent record of all memory owned by the process; check that all the owned
memory is released when the process ends, naturally or not.

The root cause of memory leakage is always a badly designed operating system.
There's a lot of it about.

COMPARE :

Lane and MooneyINT3 : Chapter 10; Silberschatz and GalvinINT4 : Chapter 8.

REFERENCE.

EXE17 : R.R. Oldehoeft, S.J. Allan : "Adaptive exact-fit storage management",
Comm.ACM 2 8, 506 (1985).

EXE18 : D.E. Knuth : Fundamental Algorithms – part 1 of The Art of Computer
programming (Addison-Wesley, 1972), page 445.

–––

QUESTIONS.

We suggested that keeping a segment's length with the segment data was
better than keeping with the segment base address. Which is better if
segments can be resized, or shared, or moved, or any combination of those ?

What information must a system carry in order to avoid memory leakage ?
How would you implement leakage avoidance ?

–––

