
TWO VIEWS OF MEMORY MANAGEMENT

The job of the memory manager as identified in the previous chapter is the traditional
operating system's task of managing resources. It is interesting, and reassuring, that this
function falls naturally out of our analysis. It has happened because we have now moved
a couple of steps of argument away from people's immediate requirements – people don't
usually ask explicitly for areas of memory.

A note to the specialists : We can reasonably assume
that, if you are reading this, then you are some sort

of computing specialist, and it might well be that you
are quite accustomed to writing programmes which,
explicitly or implicitly, ask for areas of memory. If
so, we suggest that you take the statement above as
a reminder that operating systems are not primarily

designed for you. There should certainly be provision
for you – that's why we've mentioned facilities like
the APIs from time to time – but the function of the
operating system is to provide services for people
who are not experts, and it is useful for all of us to

remind ourselves of this interesting fact from time to
time.

Nevertheless, we are still concerned to provide a service, but it's now a service to
other software. We can extend the resource-manager model by defining more precisely
what sort of memory management we need. That is, in brief, whatever sort of memory
management best supports the software which will use the memory. It is fair to say that
this factor has rarely been taken into account in designing memory managers; as we have
seen, a flat memory model is almost universally used, and most memory managers are
limited to providing chunks of flat memory on request, leaving it to the software to use
the memory as it sees fit.

However this is managed, though, this argument shows that there are two different
sets of considerations at work in memory management. One, commonly served sketchily,
is the requirements of the software for memory structured in some predetermined way; the
other, generally served much more effectively, is the underlying requirement for an area
of memory which can be structured. There are correspondingly two parts to the memory
manager's service :

• The software's requirements are met by giving each process as much memory as it
wants, organised according to the preferred memory model; this is the argument
from design. (In practice, the requirements are usually, inadequately,
unfortunately, but not necessarily, met by maintaining the "flat memory"
abstraction, and leaving the rest to a compiler.)

• The underlying requirement for memory space is handled by maintaining a pool of
available memory from which allocations are made so as to let several processes
share the "real" memory; this is the argument from efficiency.

Though there is some interaction between these two management activities, they are
largely independent. The first is the service which must be provided to any process
running in the system; the second is the concern of the operating system alone, for it is
obvious that if we are to maintain our aim of providing a functional system then processes
must be quite unaware of each other's existence.

The memory management itself must likewise happen at two levels. At the higher
level, the immediate requirements of processes must be satisfied by providing
appropriately organised memory areas; but this activity must be supported by a service
which manages the raw memory available to the system, and finds available areas when
required by the higher level. We regard the higher level as supporting the processes' view
of memory, and the lower as supporting the system's view. The two views are quite
different, as can be seen from this table :

The PROCESS sees – The SYSTEM sees –

memory model memory hardware

programme structure, data
structure

not interested

internal memory organisation hardware memory organisation

contents of programme and data not interested

sees only its own area of memory sees all of real memory, including
unused memory

requests : get, release, resize, etc. responds to get, release, resize,
etc.; also move

We discuss the two views separately in the next two chapters; details of how the memory
organisation is accomplished will turn up in the IMPLEMENTATION section.

–––

