
MEMORY MODELS

Meanwhile, back in the real world, we have decided that programmes require memory,
and it's the operating system's job to provide the memory as required. How is it
required ? From our investigations in the previous section, two conditions are clear : it is
required at unpredictable times, and in unpredictable quantities. Another desirable feature
noticed was that it should be possible to connect together different areas of memory to
form more extensive structures. To gain a little insight into just what might be useful, it is
interesting to investigate some existing memory models assumed by programming
languages.

We use the term "memory model" (which we mentioned earlier in
PROGRAMMES) in the sense of a mental model, which we have in mind (if we need
it) as we design software. There is clearly a link with the notion of the system metaphor
which we discussed earlier, but, as we shall see shortly, it has not usually been thought
useful to simulate a "foreign" memory model given a hardware memory.

Memory models came into existence with high-level programming languages.
Before they came along, people used assembly languages, or other means of
programming which for the most part used a memory model indistinguishable from the
computer's real memory. It's still a very useful organisation, and adequate for many
purposes. We shall call it the flat memory model. High-level (or, at least, higher-level)
languages began to appear in the 1950s, and a surprisingly diverse set of memory models
turned up. The inventors of Cobol and Fortran simply assumed a memory organised like
that, so their compilers compiled programmes accordingly, but Algol was based on a tree-
like structure with branches which existed only while they were being executed, and Lisp
relied on highly linked structures of arbitrary size.

There's nothing wrong with using a flat memory if that's what you need; but we
may quibble with the approach. The assumption that you have to use a flat memory model
because that's what's in the computer is practical enough, but if you know that some
other memory model would serve your needs better it would be more useful to seek
effective ways of supporting that model. In the long term, accepting the flat model is
stultifying, because it means that you never try anything that won't fit a flat memory, so
you never have any incentive to try to build other sorts of memorySUP17. We shall try to
keep our feet firmly on the ground, but also investigate what sort of memory will be best
suited to our aim of delivering good service to people trying to get work done.

An example. We've already noticed that recursion was not popular – indeed, for
many years, it was almost axiomatic that recursion was a difficult programming
technique, and horrendously expensive to implement. There were even articles
publishedEXE13 on how to eliminate recursion from your source programmes. The
argument was based on the proposition which can be roughly expressed as "flat memory,
therefore recursion is bad". The proposition is fair enough, but a view from the software
end makes it look different : "recursion is good, therefore flat memory is bad".
Unfortunately, the software view was rarely taken into account, and programmers had to
make do with the hardware they were given.

We are not alone in this view; here's a commentEXE14

from 1967 : "Recursion is widely regarded at present
as an interesting 'frill' in a programming system.

There is also considerable prejudice against it, which
is understandable since most machines are not
designed to handle recursive procedures, and

therefore do so inefficiently. But if the advantages of
this way of programming come to be appreciated,

machines will be designed to facilitate it.". Alan Kay,
30 years laterSUP12 (1997) : "The hardware

manufacturers have given us, almost in every case,
unbelievably bad designs and asked the software
people to make them look reasonable. And, I think

that is completely backwards. The software people
should be coming up with the most appropriate things

and then forcing the hardware people to optimize
those". What went wrong ?

WHAT PROGRAMMING LANGUAGES BELIEVE.

Here's an impression of the programmer's model of a Fortran programme. Each chunk is
a "programme unit"; A is the main programme, and the other chunks are subroutines or
functions ("subprogrammes").

A B C D E F G H

Subprogramme calls :

The scopes of names (other than subprogramme names, which were known
everywhere, and names of common blocks, which we shall ignore) were limited to the
programme units in which the names were used, but the subprogrammes were simply
regarded as bits of the programme which it was convenient to encapsulate separately. This
model has sometimes been likened to a geographic view of the computer; each programme
unit has its own territory, and getting in and out is comparatively difficult. With that
model, goto becomes a very appropriate – and descriptive – instruction to use.
Subprogramme entry was thought of as no more than an air journey to a different
country, with the minor peculiarity that you had a return ticket. Perhaps because of that
view, recursion wasn't usually even discussed; you don't think of using a small country
recursively. This utilitarian view of programme structure is illustrated by the possibility of
defining several different entry points (airports) for a subprogramme, and provision for
passing labels as parameters, so that the return from a subprogramme could, in effect, be
directed to a point distant from the subprogramme call.

Be-fair-to-Fortran section : The Fortran specification itself did not
directly prescribe any sort of memory in detail, and much of the
Fortran style was determined by assumptions made by the
compiler writers, and thereafter assumed to be a natural part of
Fortran by people who used it. The specification did explicitly say
that data in memory local to subroutines were not guaranteed to be
preserved when the subroutines were inactive; but most compilers
implemented static memory allocation, so that the contents of
memory persisted between subroutine calls, and many programmers
came to rely on this "feature". Recursion was also banned, by
custom if not by edict, whether for the reason mentioned above or
because no one knew how to do it efficiently. (In one
textbookEXE12, the factorial function is used as an example of
functions and subroutines – both of which compute the factorial by
iteration, which is fair enough, but the book doesn't mention
recursion even as a possibility !)

Be-fair-to-Cobol section : We've already mentioned that in Cobol,
alone among the early languages, there was provision for the
declaration of tree-structured records, implying some recognition
that the simple flat memory, and the arrays implemented in Fortran
and Algol, were not sufficient. Even so, the form of the declarations
makes it clear that it was the programmer's responsibility to look
after the details of mapping the components of the structure onto
the flat memory, and no help from the system was expected.

Algol was different. Its inventors assumed that memory could be acquired and
released by a programme as it was executed. In particular, as each procedure (strictly,
each block, but procedure will do for our purposes) was entered, a new piece of

memory, sometimes called the activation record, was acquired for the procedure’s local
storage requirements and certain housekeeping functions. Because of this model, Algol
implementations (if they worked at all) had no trouble with recursion, which was
forbidden in Cobol and Fortran. Because of the Algol semantics, the activation records
were always structured as a stack, so we shall call this the stack memory model. (We
shall use the common name "stack" for the structure, though it's not precise. It is
assumed that ordinary push and pop operations are available, but also that items on the
stack are accessible at all times and can be modified internally in situ.)

Here is an attempt to depict the Algol programmer's view of a programme similar to
that of the Fortran example. The same programme units appear, but they are now clearly
structured as a tree, expressed in the programme source code by containment – so the text
of procedure C is completely within the text of procedure B. There is no expected
relationship between the positions of the memory areas for the different programme units,
though in practice they might well be laid out in much the same way as with the
corresponding Fortran programme.

B

C D

E

F

G

H

A

To be more precise, we should identify that as the static structure of the programme.
When the programme is running, it also has a dynamic structure in which the sequence of
procedure entries is encoded; Fortran has no equivalent of this notion. Here is an
impression, incorporating lots of implementation assumptions which could be made
differently, of the dynamic structure at a point during execution at which the main
programme A has called B, which has called C, which has recursively called B :

B

C D

A

A memory

B(1) memory

C memory

B(2) memory

Static structure

Dynamic structure

The stack of activation records is shown as scattered about a bit to emphasise the
independence of the memory chunks used. It is implemented as a number of logically
separate memory areas each (except the lowest) linked to the item below it in the stack.
Notice the profusion of links; each activation record is linked to the record of the
procedure which called it, and to the code of the procedure it is executing, and to the point
within the code which has been reached during execution. Not all these need be
implemented as explicit pointers, but it is clear that there is some basis for our assertion
that facilities for linking memory blocks will be useful. This diagram illustrates another
difference between the Fortran and Algol models : data storage in Algol is within the
activation records, so is clearly temporary, while in Fortran data storage is thought of as
included within the memory areas of the programme units.

A point of particular interest for memory management is the appearance in the Algol
dynamic structure of an arbitrary number of memory chunks, which are assigned and
released as the execution proceeds. This was a very new idea indeed, and did nothing to
increase the popularity of Algol in the 1960s, but we shall see that it has become an
important structure in practice.

The Burroughs B6700 machine was designed (around 1970) to
execute Algol-like programmes. It had an execution architecture
which implemented activation records, and a "segmented" memory
organisation modelled very closely on the diagram above. Its
Fortran compiler had a special switch which you had to set if you
wanted your programme's memory to be allocated in a flat memory
space; if you didn't set the switch, Fortran programme units were
allocated just as though they were Algol procedures. (You could
even use them recursively.) It was alarming that, without the
switch, many Fortran programmes which would run on other
machines refused to work on the B6700, which detected their
attempts to address memory outside the allocated address space.
Burroughs had, perhaps naively, relied on the Fortran
specification : see the remark above. We don't remember whether
they managed to prevent recursion in switched mode.

Lisp was different too. In Lisp, recursion is not so much permitted as enforced. In
the semantics, it is assumed that, as in Algol, you can always get more memory when you
want it, but the memory isn't tied up in activation records; instead, a lot of it ends up
connected together in complex linked structures, so we shall call this the linked memory
model. Here's a picture of typical (small) list structures reproduced from an articleEXE15

by John McCarthy, the inventor of Lisp :

While it isn't very informative, it shows the arbitrary structures which can easily be built
up in a Lisp programme. The small memory chunks illustrated are typical of the structural
representation of Lisp; data storage (property lists) and auxiliary structures (such as
symbol tables) are also implemented as linked structures.

For a final example, consider LindaIMP13. Linda is not a programming language, but
a scheme which uses a common memory area to provide communication between
different programmes running simultaneously in a computer system; we shall discuss it
further in the chapter reasonably entitled LINDA. It is based on a "tuple memory", which
is simply an area in which we can store a number of data structures called tuples. The
tuples are not thought of as connected, but the memory can be searched for tuples of a
given pattern. We shall call this the heap memory model. Other names for this sort of
memory are associative memory and content-addressable memory, both of which
make the point that the aim is to identify the memory datum you want by some property of
what is stored there, not by its physical memory address. Here's an impression of a Linda
memory :

true

true

Big

Red

Yellow

Blue

Big

Big

Big

Small

Small 1212

12

-125

-125 133.066

927.665

-10.0

133.066

false

false

false

Blue

Yellow

The details of the different models are not very important for our purposes, but it is
interesting to compare the types of address used in the different models. The form of the
address is the most characteristic feature of a memory model – which is just what you
would expect for a top-down analysis, because it should be the requirements of the
software which determine the memory model, not the reverse.

For the flat model, memory is a single array, so all that is required to identify an object in
memory is the array index – which is, of course, the traditional memory address.

In a stack memory, an address has two components – one to identify the activation
record, usually related to its position on the stack, and one to give the position of
the item within the activation record. This two-component address is very helpful in
implementing features like recursion, as it is easy to construct two or more
activation records which differ only in their positions on the stack.

In Lisp, data are represented as atoms, and the only structure is a thing called an S-
expression. An S-expression has two components, a head and a tail (historically
called CAR and CDR, a fact we shall henceforth ignore). All addresses are
composed of list names and head and tail operators, which act just like a set of
instructions to travel to the addressed object starting from a base point in the list :
hd(hd(tl(tl(tl(hd(tl(hd(hd(tl(tl(list))))))))))).

A Linda address is just a partly defined tuple. An "address" (xxx, ?i, 25) will address
any triple in the common memory area which has the string xxx as its first
component, any integer as the second component, and the number 25 as the third. If
the pattern matches several triples, one is selected at random. With the memory
configuration shown in the diagram above, therefore, (?s, 12) will identify the
single tuple (Yellow, 12), (Big, ?i, 133.066) identifies two tuples, while
(?s, ?i, ?l) matches only (Small, –125, false).

We describe these models here not so much because of their own intrinsic interest, but
because it is important to realise that different models exist. Ideally, we would hope to be
able to use the memory model of our choice, and it is clearly the job of the operating
system to provide the required service.

In all the models, except the flat model, memory is treated as a resource which can
be acquired in chunks of arbitrary size. This is not a big surprise; it is precisely what we
foresaw in HOW PROGRAMMES USE STORAGE. It should be clear even from the
sketchy account which we have presented that our expectations are thoroughly borne out
in practice, and that our introduction of the notion of segments is no more than a reflection
of the way in which ordinary programmes naturally use memory. Segments are
particularly significant in that they are common to the different models. While it might be
unreasonable or impracticable to implement all the memory models in detail in a single
system, it is much more feasible to provide support for segments which the different
language processors can then exploit to implement their own memory models.

Of course, we have not presented an exhaustive review of all possible memory
models. We've chosen to describe these examples because they are all fairly simple, but

cover quite a wide range of structures. Generally, any programming language presents
some memory model to programmers who use it, so there will be memory models
appropriate to functional languages, object-oriented languages, logic programming
languages, spreadsheets, graphical programming systems, and so on – indeed, any
programme which you can use to build up structures, give names to objects, store and
retrieve data, or other such operation will provide means of associating objects, naming
them, or moving them about which amount to a memory model. Among all these
varieties, though, we know of no model which introduces anything alarmingly different
from those we have described.

We would be surprised to find anything radically new. It is in principle just what
we expected from our earlier discussion, and in practice it covers the range of
possibilities : you can identify an object by saying where it is (specifying an array index
or pointer), giving it a name (a structure, as in Pascal or C), or describing its nature
(associative memory, as in Linda). When programming, we use them all quite
naturally : to give something a name in a computer, you use a symbol table, in which you
may search for a name in an array using the description of its nature (the character
string), and find the position of the object from a parallel array. The methods we've
described are combinations of these elementary operations; if you can think of another
way, we'd like to know.

BUT THERE MUST BE A REAL ADDRESS ?

If that's what you're thinking, and if it means that, despite all this silly messing about
with weird ideas about what addresses are, they must all be translated into a conventional
index into a flat memory before they can be used, then you've missed the point. And
you're wrong.

The point is that, even if you're right, if some non-flat address is the natural one to
use in the programme which is being executed, then this translation into a conventional
index is probably a waste of time; if the address which the programme most easily
produces could be used directly, then we'd save time. It would therefore make sense to
investigate ways in which we could use different memory models for different
programmes.

And you're wrong because not all memories are linear arrays. A store called a
bubble memoryEXE8 was at one time seen as the successor to mechanically rotating discs;
data were encoded as streams of "magnetic bubbles" driven round a cyclic path, and
monitored as they passed a particular point in the path. The heap memory model could
easily be implemented with this device by simply watching the output until an acceptable
pattern appeared. And if you think that's ridiculous, you might like to know that ICL
didn't, and they made a lot of money out of their "Content Addressable File Store"EXE9

(CAFS), which did practically the same trick simultaneously in parallel on every track
of a hard disc drive; you could search a whole file for a pattern in one revolution of the
disc.

WHAT WE DON'T WANT.

The notion of a memory model is useful provided that it doesn't get mixed up with
anything else. We make this point explicitly, because experience shows that memory
models are easily confused with memory management techniques. We urge you to bear in
mind that a memory model is something you want to use when writing a programme – so
operations intended to be invisible to the programme cannot be memory models. In
particular, to anticipate two topics which will appear later :

• There is no such thing as a paged memory model; paging is a technique for
allocating memory in small chunks to make it easier to pack programmes into the
available memory space. It is carefully designed to make no difference to the
programme's view of memory.

• Similarly, there is no such thing as a virtual memory model. Virtual memory is a
technique for increasing the apparent memory size by permitting some disc space to

be used as if it were memory. This also is carefully designed to make no difference
to the programme's view of memory.

The real test of whether or not a new memory model is involved is to look at the means of
addressing; in both the cases mentioned, the memory management technique makes no
difference at all to the nature of the address used.

WHAT WE HAVE.

We have some hardware. Most hardware implementations of memory are still quite close
to the flat model, despite the example of the Burroughs (now Unisys) segmented
memory (and a later rather similar architecture implemented by ICL). As well as these
segmented memories, well adapted to the stack memory model, there are Lisp machines
which presumably do something appropriate. (Other implementations of "segmented
memory" are often slightly tarted-up flat memories : beware.)

It is worth paying some attention to segmented memory, because, even though
implementations of pure segmented memory are few, the ideas turn up in many other
contexts, as we observed in the previous discussion. The "real" memory of such an
implementation is a flat memory, because that's the only sort of memory we know how to
build sufficiently cheaply, but segmentation is imposed at a very low level by hardware.
A segment is defined by a segment descriptor, which is a hardware-recognised data
structure containing an address in the flat memory (the segment origin) and the segment
length. Other items might conveniently be added (for example, protection fields) but
they are not part of the segmented addressing scheme proper. This descriptor is in effect
the name of the segment; to identify a memory word, a displacement within the segment is
necessary, so the address is a pair (segment descriptor, displacement).

It is important to realise that a segment descriptor is not just a pointer; it is an entry
into a new and independent address space, quite separate from any other address space in
the system. The segment length is, in the abstract model, unnecessary, as no location in
one segment can ever interfere with any other segment. In practice, we don't know any
way to implement segments except as pointers and displacements, so the segment length
is essential to guarantee that segments' address spaces remain distinct. It is the presence
of the length in the descriptor which made it possible for the Burroughs system
previously described to check for array bounds errors at every array reference, with no
waste of time. Implementations of "segmentation" where the "segments" can overlap
arbitrarily are among the aforementioned "tarted-up flat memories". Observe, though, that
the objection is to the arbitrariness; properly nested segments have their uses.

There is a catch here. Earlier, we defined a segment
in terms of the semantics of the programme; now
we're using the same word to refer to a hardware

feature. There is no law of nature which constrains
software writers to identify one with the other – so a

hardware segment might or might not be used to
contain precisely one semantic segment. The
situation is not simplified in any way by the

imprecise definition of the semantic segment; the
notion of a chunk of memory of arbitrary size holding

code or data which naturally form a unit could be
applied to anything from a byte to a programme. We
shall try to ensure that the sense of the word is clear

when we use it, but be warned that it isn't a very
well defined term.

Notice that memory caches, virtual memory, and other such techniques don't affect
the principle : they are primarily ways of implementing bigger and faster memories, but,
while they sometimes introduce machinery which can be used to advantage to simulate
other varieties, they don't change the underlying model.

THE OPERATING SYSTEM'S JOB.

If the operating system has a place here at all, then it is to provide a memory service
which will make memory available as and when it is required, and look after low-level
administration. This fits in well with our description of the operating system's task as the
provision of services which everyone wants but no one wants to do. So far as the higher
level operations are concerned, the operating system must make the required memory
model work using the actual hardware available. There are two parts to this :
implementing the addressing mechanism, and providing support services.

Implementing the addressing mechanism is a matter of mapping one sort of address
onto another sort of address. For example, to implement an Algol-like language on a
machine with flat addressing, the two-component Algol addresses { <which activation
record>, <displacement within activation record> } must be converted into conventional
single-component addresses.

This conversion must be performed every time a memory address is evaluated. It is
therefore significantly expensive if carried out in software, so this service is in practice
rarely, if ever, provided by an operating system. Instead, any software requiring an
unusual memory model is expected to be responsible for its own sort of implementation
(provide an interpreter, as is common with Lisp; map it in the compiler, as in most
implementations of Pascal, etc.), thereby guaranteeing incompatibility with any other
software running on the machine. For these reasons, it is not practicable for the operating
system to do its proper job; the hardware memory to a great extent dictates the software
memory models which can be effectively used, and "foreign" models are rarely available.
(We might compare this restriction with the limited provision for file structure in most
implementations of file systems : the flat memory is in many ways analogous to the "flat
disc".)

Is it really impracticable ? That depends on the cost and
inconvenience of using an interpreter. The speed penalty is
generally estimated to be around a factor of ten, which sounds
severe, but it is not very long since people were delighted to use
processors with one tenth the speed of today's models. The
popularity of Java, designed to run on a simulated machine, shows
that people will accept reduced speed – and the fact that in most
routine computer use far more effort is spent on maintaining the
pretty user interface than on useful work does suggest that some of
the arguments for the retention of a flat memory model are
somewhat overstated.

It is true that there will always be cases where the full speed of the
processor can be used to advantage, but, if our analysis is accepted,
it would not be unreasonable to lean on the hardware
manufacturers to cause them to build machines with
microprogrammable memory models. It's certainly possible in
principle, and it would open the way to operating systems which
really could provide a memory model to fit a programme's
requirements. The memory model required would become one of
the code file's attributes, to be handled by the system in much the
same way as it handles, say, memory allocation. Of course, it might
well be that the hardware manufacturers are doing very nicely,
thank you, and don't really want to listen.

What is left for the operating system to do ? Quite enough. Even if only one
memory model is accessible, it has to be used, so support services are necessary. Basic
memory management, which provides memory from the system resource as requested by
other parts of the operating system, is standard in all but the tiniest systems. Whether or
not memory should be provided piecemeal to processes is a decision which must be taken
as part of the system design; early systems did not usually support such flexibility, and it
does increase the possibility of poor performance in the forms of thrashing and deadlock.
Because of the considerable advantages of flexible data structures and recursion and the

increasing size of memories, it is now common practice to make this service available to
programmes, so that they can acquire memory at any time. (In Unix, the function
al loc() and its relations.) This policy gives some support to software implementing
approximations to more elaborate memory models. It is obviously also necessary to
reclaim memory when it is no longer needed so that it can be reused for some other
purpose. More ambitious systems might also offer additional facilities such as shared
memory services, or automatic garbage collection. It is this collection of services which is
handled by the memory manager in most operating systems.

The mention of "shared memory" raises a point of
nomenclature. In common speech, we use the word

"share" in two different ways : two people sharing a
house have equal access to its facilities at all times
(subject to physical constraints which prevent two
material objects occupying the same space at once),

but two people sharing a pie each take separate
portions. Processes share memory in both these

senses, without the physical constraints. We think
that the sense of the word "share" is adequately

implied by the context whenever we have used it in
our discussion, but if you have difficulties in

interpretation ask yourself if you might have picked
the wrong meaning.

SPECIFYING THE MEMORY MANAGER'S APPLICATION PROGRAMMER
INTERFACE.

The memory manager is specified by describing the services which it must offer. We've
just listed a set of possible services, but we found them essentially by guesswork. Can
we be more systematic in our analysis ? If we can, then we should, because it gives us a
better chance of getting a useful memory service. Here are some criteria which we must
take into account.

First, the available memory must be allocated for use as required in such a way as to
satisfy the criterion of a functional system – so memory must only be accessible to
processes authorised to use it (to avoid interference between processes), it must be
made available as requested (so that processes will not be prematurely stopped for lack
of memory), and recovered when no longer needed (or the pool of available memory
will dwindle, and processes will unexpectedly run out of memory).

Second, we should determine what sorts of request for memory must be satisfied.
Memory may be requested by parts of the operating system (for example, to load new
programmes) and by ordinary processes (for example, for data storage); different
rules might be appropriate for requests from these two sources. It is convenient to express
the definition as a set of functions, each describing some operation as seen by the
programme requiring the service. This defines an interface between the memory manager
and its clients; now, provided that the memory manager implements the interface as
described, no one else need know how it works. Some examples follow. They should be
taken as illustrations only; a great deal of work is needed to produce a satisfactory precise
definition.

SOME NOTATION : In the examples, the description
get : size → area

identifies get as a function which accepts a size as argument, and
returns an area as its value.

In all cases, one would also expect that a result descriptor would be returned in some way
so that any noteworthy consequence of executing the function (such as an error) can be
communicated to the calling environment.

The constraints on memory management depend on the nature of the environment.
In particular, there is a difference in emphasis between operating systems primarily

designed to support a single process and those which provide multiprogramming
facilities, in which many activities can reside in memory at the same time. If many
processes must be accommodated, which is now the case in all common systems, the
system must keep track of all memory use to ensure that no request for memory is
unnecessarily refused, and that the processes do not interfere with each other. If only one
process is present, the main concern is to identify the boundaries within which it must
work, given which it can do what it wants. Systems of this sort used to be common, but
are now mainly found in small special-purpose computer applications.

A system designed to run single processes, at its simplest, provides just those
memory management functions which the process must have in order to use the space
efficiently. Typical functions are :

lowerlimit : → address (Find the first memory location available for use by the
running process.)

upperlimit : → address (Find the last memory location available for use by the
running process.)

resetlowerlimit : address → (Change the first available memory location.)
resetupperlimit : address → (Change the last available memory location.)

The first two functions (which might in practice be implemented simply as reserved
memory locations) provide the process with information it might need; the others permit
the process to adjust the apparent size of the available area, typically so that it can leave
material in memory but protect it from subsequent processes which would otherwise
overwrite it. This mechanism is often used when special routines for handling non-
standard input or output devices are required; they can be loaded into memory, then the
bounds can be reset so that they are safe from later memory allocations. An example is the
MS-DOS Keep Process function (sometimes still known by the name of an earlier
version, Terminate but Stay Resident, or TSR).

In the case of a multiprogramming system, we are concerned with sharing out the
memory between several processes which wish to use it. Here's a first guess at the
functions we might need for a flat model :

The operating system might require :

get : size → area (Acquire a chunk of memory of the specified size.)
release : area → (Return a chunk of memory to the system pool.)
resize : area × size → area (Extend or truncate an existing chunk.)

and for public use it might offer :

resize : size → (Extend or truncate the address space. In a strict flat
memory model, a running process knows only about a single simple
address space.)

For comparison, here is a guess at the sort of memory management functions one might
require in order to implement a stack model :

newstack : → stack (Set up a new stack.)
demolish : stack → (Destroy an unwanted stack.)
push : size × stack → stack (Acquire a chunk of memory of the specified

size, pushed onto the named stack.)
pop : stack → chunk × stack (Remove the chunk from the top of the

stack.)
index : stack × displacement → chunk (Give access to the chunk at a

specified position on the stack.)

For public use :

push, pop, and index, roughly as above but with the identity of the stack
restricted to the current stack.

Returning now to the flat model, why do we choose those functions ? Because, at
the lowest level, get and release cover all possible requirements. The only inherent
structure of the memory is that imposed by the addressing machinery, which is to say that
of an array of many functionally identical cells. All we can do is cut it up into slices. The
resize function is not strictly necessary, and can create certain problems in
implementation, but if it isn't available all processes begin by requesting the maximum
area which they might possibly require, just in case the worst happens, and you can argue
that you gain more from the function than you lose.

The public resize function allows a process to change only its own memory
requirements; this is obviously a necessary restriction, and one example of the way in
which an operating system presents a virtual machine to the processes which it runs.

This is not an exhaustive account of all desirable memory management functions –
for example, later in this chapter we introduce one function which we shall eventually find
very useful. That is some sort of share function which a process can use if it must share
an area of memory with some other process. The functions we have mentioned are those
which are purely to do with acquiring and releasing memory; others turn up in various
contexts where there are other considerations as well, and we shall deal with those, if
necessary, as they arise.

WHAT DIFFERENCE DOES IT MAKE ?

If you use a memory model which is appropriate to the work you're doing, it makes the
work easier. You might still be able to write your programmes using a suitable model, but
the software which prepares your programmes for execution then has to translate your
requirements into terms of the model provided by the system – which is, as we've seen,
inevitably that provided by the hardware. Consider what can happen when a programme
which (like most programmes) uses procedures is prepared for execution in a flat
memory. First you compile each of the pieces of the programme into a relocatable form;
then you collect your pieces, and any other pieces you might want to include from the
system or other software libraries; then you run some sort of linker to tie them together;
then perhaps there's a loader to take care of final adjustments.

Why do you need the linker ? To map the relocatable pieces into different places in
the flat memory. If you were using a system with a memory model more appropriate to
the structure of the language and the way it's used, such as a stack memory, you might be
able to do without it. If you use a very simple block-structured language in which parts of
the programme can't see the insides of other parts, all the parts are autonomous, and all
you need as a "linker" is a little table saying how to find each of the parts. The addresses
(if there are any) within each part can start at zero without any confusion. It isn't in fact
a lot harder to allow controlled access to the insides of the parts – the activation records –
if you need it (as you do if you want to use global variables) but the address of any
entity outside the local addressing range has to include both the name of the addressed
part and an address within it.

There is a way to avoid most of the complications of linking and loading : stop
worrying about separate procedures and compile the whole programme every time.
Everything is then under control of the compiler, it can allocate addresses as it goes, and
we end up with a single code file which can be loaded quite simply into memory and run.
It works; very many compilers are implemented that way. Of course, it does mean that
when anything goes wrong you have to recompile the whole lot, so that you save much of
the cost of linking and loading at the expense of much more compiling, which is the really
hard bit. The result is also less flexible; facilities such as subroutine libraries and
interlanguage binding are harder to implement – and so is switching to some other
manufacturer's compiler, which might or might not be relevant. You might not want these
valuable facilities, but without an appropriate memory model implemented in the system
you're that much less likely to have the choice.

Nevertheless, the world has so far given no sign of bending to our wishes, so we
must make the best of what we have. By far the most common machine architecture
presents us with a flat memory, and we'll assume that henceforth unless otherwise

specified. With the flat memory, we'll allow processes to own more than one chunk of
memory where it makes sense, but we won't try to control or assist the process in how it
uses the chunks; that's realistic in terms of today's operating systems.

SHARING MEMORY.

When drawing up our preliminary specification for processes, we didn't say much about
storage except that there had to be some, and we didn't say anything at all about memory
specifically, because we hadn't invented it yet. Now we have invented memory to cater
for the practicalities of the programme's requirements for storage, we should ask whether
it is useful for any other requirements. It turns out that for one purpose at least memory is
very convenient; this is the requirement for communication between processes. This is an
interesting development, because it runs contrary to many of our assumptions about
processes' use of storage. In particular, we usually assume that a processes' memory
must be carefully protected from access by any other process, in the interests of keeping
our functional system pure; now we want to seek out ways in which processes can share
memory in the interests of communication. The apparent conflict arises because memory
itself is not a fundamental idea; it's just a convenient invention, and here we are using it
for two quite different purposes.

Just as there are occasions when it is useful for processes to share files, so it is
sometimes valuable for processes to have simultaneous access to common areas of
memory. Sometimes sharing memory is just a convenient way to save memory space or
to reduce the load on the system, but for some purposes it is an essential basis for
communication between processes. In all cases, though, processes will wish to share
semantically significant chunks – which is to say, segments.

Processes which share memory might or might not be active at the same time.
Shared memory has become particularly important as a means of communication between
concurrently running processes, but some sort of general access to data areas provided by
the operating system has been common since monitor system days. Indeed, that sentence
is almost a pun (unintended, we assure you), because a popular way to implement the
shared memory was by an extension of the Fortran common area. Fortran common
was intended to be a means of providing a global memory accessible to all units of a
Fortran programme, and consisted simply of an area of memory which all programme
units could address. For convenience, this was usually set aside at some standard
memory location, typically the high address end; then, once the convention is established,
it only needs a commitment from the operating system not to use the high end of memory
and the common material left by one process becomes accessible to the next.

Whether or not this – or, for that matter, any sort of shared memory – is in all
respects a good idea is quite a different question, and we shall address it later. It is much
clearer that if we're going to share memory then just leaving a vacant space which any
process can use however it wants is not a good way to do it; even within Fortran,
common gave problems. That's why we suggested that a share function, administered
by the operating system, would be appropriate.

Sharing memory is convenient when different processes use the same code or data.
Code is the more common case, for many people might wish to use various public
programmes at the same time, and they all have to use the operating system code. It might
be essential when several processes cooperate to complete a task by working in parallel,
for it might be the only means by which information can be exchanged between the
processes at an adequate rate. We shall discuss the question further in the chapter
MEMORY MANAGEMENT : THE PROCESSES' VIEW.

COMPARE :

Silberschatz and GalvinINT4 : Section 8.6.

REFERENCES.

SUP17 : H.W. Lawson : "Salvation from system complexity", IEEE Computer 31#2,
120-119 (sic) (February, 1998).

EXE8 : R. Bernhard : "Bubbles take on disks", IEEE Spectrum 17#5, 30-33 (May,
1980) (quoted in Files and databases : an introduction (P.D.
Smith, G.M. Barnes (Addison-Wesley, 1987), page 33).

EXE9 : R.W. Mitchell : "Content addressable file store", Proceedings of the Online
Database Technology Conference, London (April, 1976) (quoted
in Files and databases : an introduction (P.D. Smith, G.M Barnes
(Addison-Wesley, 1987), page 34).

EXE12 : C.B. Kreitzberg, B. Shneiderman : Fortran programming a spiral approach
(Harcourt Brace Jovanovich, 1975), page 288.

EXE13 : M.A. Auslander, H.R. Strong : "Systematic recursion removal",
Comm.ACM 2 1, 127 (1978).

EXE14 : D.W. Barron : Recursive techniques in programming (Macdonald/Elsevier,
1968), Preface.

EXE15 : J. McCarthy : "Recursive functions of symbolic expressions and their
computation by machine", Comm.ACM 3 , 184 (1960), reprinted in
Programming Systems and Languages (ed. S. Rosen, McGraw-Hill,
1967).

IMP13 : S. Ahuja, N. Carriero, D. Gelernter : "Linda and friends", IEEE Computer
19#8, 26 (August 1986).

–––

QUESTIONS.

How could you implement various memory models on dissimilar hardware
memory devices ?

Why didn't we propose public get and release functions for the flat memory
manager ?

In a multiprogramming system which offers a flat memory model to
processes, is it possible, or sensible, to share memory between two processes
by simply overlapping their memory areas ? What is the minimum
requirement for sharing memory between three processes ?

Is there any sense in providing a share function in a system which runs only
one process at a time ? (HINT : yes.)

What sort of memory model is appropriate to an overlay system ? to
Prolog ? to a functional language ? to a spreadsheet ?

What sorts of memory model are implied by these features of high-level
languages : Pascal scope rules; Pascal pointers; recursion; array dimensions
determined during execution; strings ?

–––

