
WHY MEMORY ?

The reason for our questioning the need for more than one sort of storage is that it didn't
appear in our analysis; we wanted somewhere to store data over the long term, when it
wasn't in use by a programme, and noticed that if it was required for computation then the
processor would have to be able to get at it. The obvious solution is to find some way to
give the processor access to the existing storage. Why do we need anything else ?

The answer is purely to do with the implementation, and the nature of the devices
we have at our disposal : the file stores we usually use now are far too slow to be used
directly as working storage when executing programmes. That's why we have to invent
short-term storage, which we call memory, which we can use to hold data while it is in
use by a programme. If we really want to emphasise the distinction, we shall call it
primary memory or primary storage, referring to storage using discs or other external
media as secondary <whatever>. Because of this connection with use by the programme,
we assume that primary memory is randomly addressable, in that any memory unit can be
addressed individually and equally easily.

Extending the same argument, we shall have to put the programme code into
memory as well as the data when the programme is running. Can we use the same
memory, or should we have two ? If you want to make absolutely sure that your code
isn't going to be altered in any way while it runs, two memories wouldn't be a bad idea –
then you could make one of them such that the processor was unable to write into it, and
guarantee your code's safety. In practice we don't do that, perhaps because in the earliest
days of computing it was very common to write programmes which did change their own
code, and this possibility was regarded as one of the powerful features of electronic
computers. We've rather changed our minds since then, but we don't know of anyone
who's revisited the question of providing separate code and data memories.

We really are obliged to invent memory, as is
demonstrated by an old but instructive argument.
Consider an old electromechanical calculator. To

perform a calculation, we have to put in some data at
a keyboard, enter an instruction, usually at a
different part of the keyboard, wait until the

calculation is finished, and copy down the result.
Entering the instruction, a single key depression, is
the fastest of these components, and even that takes

a significant fraction of a second. Suppose for
argument's sake that each of the four components
takes one second. If we use electronic means, the

same operations have to be carried out – data must
be moved into the processor, the instruction must be
found, the computation must be performed, and the

result stored – and each of these can be completed in
the order of a microsecond or less. But to get the

millionfold increase in speed, all operations must be
accelerated; if only three of the four are accelerated,

the increase in speed is only fourfold.

A common pattern of work will therefore be to begin by moving the encoded programme
from the file store to memory. We can then start the programme, and while it runs we
shall commonly have to do move data between memory and file store as the programme
requires.

This might come as no surprise to you. It is, after all, how almost everybody has
used computers ever since file stores first became available – and, in a sense, even before
that, for computers had fast memory even before they had file stores. We have spelt it out
in detail to emphasise that this pattern of computation is only an accident – or, from
another point of view, an implementation detail forced upon us by the need to get the
computing done reasonably quickly. If we could get the same results acceptably quickly

by working only on the file store, we would, because it would cut out a great deal of
complex fiddling about which we are at present unable to avoid just to move material back
and forth between file store and memory. If it were simply copying, it might be no more
than time-consuming, but for complex structures it can amount to recoding in a different
notation, requiring more or less complicated processing for both reading and writing, and
consequently introducing more possibility of error. (We commented, censoriously, on
this practice in PROPERTIES OF FILES, arguing that a proper design would make
provision for the universal requirement to store structures, and we saw in analysing
requirements for storage – HOW PROGRAMMES USE STORAGE – that structures
were required, but generally useful means of storing structures in files are not available.)
From this point of view, memory is not merely inconvenient – it's a nuisance, and
should be eliminated.

We think it's important to make the point because we are approaching a time when
fast memory will be cheap enough to build a file store of respectable size. (One could
argue that the time is already here; with eight megabytes of internal memory a
commonplace, even small computers have more space in memory than many large early
machines had in their file stores. Why do we still feel constrained ?) We shall say more
about this view when discussing how to implement files in the chapter DISC FILE
SYSTEMS – and a somewhat more subtle consequence of the use of both files and
memory will appear in our discussion of VIRTUAL MEMORY.

–––

