
HOW PROGRAMMES USE STORAGE

To continue in the proper spirit of our top-down analysis we must not take things for
granted. We must analyse – and to do so we ask some questions : just what sort of
storage do the programmes want ? – how should it be presented ? – and when, and for
how long, is it required ? Given this information, we would hope to be able to design
storage systems for our operating systems which will provide the required facilities.

WHAT WE WANT.

In the early days of computing, those questions would probably not have been
understood. Everyone knew that a programme's storage was called the store (in
Britain) and memory (in the USA), and that it was an array[0 : 2n-1] o f word
(or perhaps an array[0 : 10n-1] of character, or some similar variant), and
there wasn't much more to say about it. There was also a rather remote permanent store
where one thought in terms of files, but this was thought of as a l i s t [1 : e n d] o f
something without much room at all for structure. (It was a list rather than an array
because on a magnetic tape you could get at it only serially; the appearance of discs didn't
change that notion a lot for some time, because though you could address sectors in
arbitrary order it was regarded as inefficient.)

For our current exercise, we urge you to banish from your mind any trace of these
ideas, because they are derived from knowledge about the implementation of the computer
system in hardware. We shall have to deal with that in due course, but now we are hoping
to find what the programmes require, not what the hardware provides, and the two are by
no means necessarily the same thingSUP12, SUP17.

How can we find out what programmes require ? One way is to inspect
programming experience to find out how it is done in practice. This is a valuable source
of information, but is inevitably biased by the programming systems currently in use, so
we would like some less tainted source to check our conclusions. We can get some idea
of programmes' requirements in the abstract from studies of programming in principle,
and from attempts to design specification techniques to be used in programme design.

Our aim is to determine what sorts of storage facility we require in the operating
systems, so we shall be interested in two sorts of information. First, quantitatively, we
would like to know something about how much storage programmes will require, and
when they will need it; second, qualitatively, we would like to know how they would like
it presented. It seems fairly clear from the outset that there is no single or simple answer
to either of those questions, and consequently no perfect design for our systems, but we
would still like to find out what we can about storage use so that we can determine what
level of help makes sense, and try to build that into our designs.

WHAT WE KNOW.

One thing we know from the start is that both programmes and data require storage,
because by definition we have nowhere else to put them. The programmes themselves
will not obviously cause much trouble, because they already have storage; each
programme must be in a file before we can use it. The only additional task there is to
make sure that the programme is in a position where it can be executed when the time
comes. The data are another matter entirely, and require further thought.

The characteristics of any programme's requirements for storage depend,
reasonably enough, on the programme. We know from experience that they can also
depend on the data; while some programmes will always operate within the same area of
memory, others will use more or less according to the demands of the moment.

We reach the same conclusion by considering what we know about programming
and programme design. A very early study of how to write down algorithms was
published before there was anything much like an operating system; that was the Algol
ReportSUP13. While it was written with programming in mind, Algol was originally design
as an ALGOrithmic Language, and was only later thought of as a programming language
in its own right. By considering the sorts of instruction we wanted to give when

describing an algorithm, the authors worked out a set of basic instruction forms, which
evolved into what we would now think of as a programming style. This was enormously
influential, and has been used, more or less unchanged in principle, ever since; Java fits
in very well. This presumably means either that they got it right, or that no one has come
up with anything better, and either way it should be a good guide. The main principle
which concerns us is that programmes are not simply featureless collections of
instructions, but come in modules of some sort, and these modules are executed with
some measure of independence.

Essentially the same conclusion turns up everywhere. For example, the language
ZSUP14, used for formal specification of systems – not only programmes, but in principle
almost anything – relies strongly on the same ideas of modular decomposition, and in the
case of programme design these are essentially the modules introduced in the Algol
report. Whether this is something inherent in large systems as a matter of principle, or
whether it is merely a reflection of the way we address large systems, it seems to work,
and is a reasonable starting point for our current discussion.

The different approaches also agree that, in execution, modules are not necessarily
used according to any simple pattern. Some persist for a long time, some are used only
fleetingly. Modules call each other (or even themselves), and the order in which the
modules are executed can be completely determined by the data given to the programme.
The amount of storage required by a module can also depend on the circumstances – and
it might or might not be released when the execution of the module ends.

The more theoretical treatments typically offer little in the way of suggestions on
what happens within the modules, but experience with programming shows that in
practice we use a great variety of data structures, typically composed by associating
simpler structures using some form of link. In this way, large and complex structures can
be formed, in which there might be as much valuable information in the pattern of the
links as in the data which are linked together. Further inspection shows that, as we
suggested, programmers have had to find ways round the system-supplied memory
management to implement the structures they required. In Fortran, you declared a very
long one-dimensional array and built the structures within it using array index values as
links; Pascal gives some help by providing a heap, within which structures can be built
according to your declarations using the n e w () function. Languages such as Algol68
and PL/I provided heap-like facilities, and specialist languages such as Lisp and Snobol
implemented very flexible memory management schemes right from the start. In almost all
cases, though, such systems were implemented within the language, with practically no
help from the system's memory management facilities.

Can we conclude anything useful from this account, other than that almost anything
can happen, and probably will ? We think that we can. Our discussions have given us a
picture of a programme in execution requiring temporary storage areas from time to time,
with sizes determined by the nature of the programme and data. We shall call these areas
segments. Once provided, the programme will have to be able to find the segments, so
some sort of identifying mechanism will be required. Here, the programme's position is
much the same as that of someone needing an identification mechanism to keep track of a
set of files, and similar arguments apply, with the difference that only a temporary
association is necessary and the "names" need only be intelligible to the programme. We
might therefore expect that the programme will be associated with some sort of table of its
segments, with some sort of names or addresses as contents.

Noticing once again that these observations are of widespread, if not universal,
application, we see that running programmes require services which segments of storage
from time to time, and that these requirements are not trivial. The universal need suggests
that the appropriate agent to provide these services is the operating system, where they
can be implemented once and for all and made available to all programmes.

Finally, it is worth pointing out that nothing we have discussed suggests that there's
any significant distinction between storage used by files and storage used by
programmes. The closest to any such suggestion was the observation that the storage
used for the programme must be accessible to the processor, but the comments on
structures apply just as well to data in files as to data in use by a programme – after all,

the data in the files must have been used by a programme and is going to be so used
again.

REFERENCES.

SUP12 : A. Kay, in a discussion : Sigplan Notices 32#9, 15-37 (September, 1997),
page 16.

SUP13 : P. Naur : "Report on the algorithmic language Algol 60", Comm.ACM 3 , 299
(1960)

SUP14 : B. Potter, J. Sinclair, D. Till : An introduction to formal specification and Z
(Prentice Hall, 1991).

SUP17 : H.W. Lawson : "Salvation from system complexity", IEEE Computer 31#2,
120-119 (sic) (February, 1998).

–––

