
PROGRAMMES

What's a programme ? If you don't know, you must have missed quite a few interesting
points in these notes, because we have not felt constrained to avoid mentioning
programmes even though we haven't defined them.

Now, though, we have a new viewpoint – a programme is how we describe the
behaviour we want in a process. In one way or another, which is not our concern, it is a
collection of instructions for some processor, and the correct processor must be used to
execute the instructions. Thus, a machine language programme requires the hardware
processor, a code file for a virtual machine requires a software "machine" (such as the
Java virtual machine), a command file requires a command line interpreter, and so on.
All these are programmes; the differences don't matter, provided that the programme can
be understood and executed.

Notice that the process structure is recursive; the
processor which runs a process for a Java script is the
Java Virtual Machine, but that is itself implemented

by a process which runs machine language on the
hardware processor. This isn't quite the same as the

conventional view of processes in an operating
system; that's because we haven't got there yet.
These processes are design abstractions, and we

begin to discuss implementation in the HOW TO DO
IT section.

Physically, a programme is a collection of instructions, and, like any other
collection of information, it is most commonly stored as a file. We already know about
files; the only remarkable fact about a programme file is that in some circumstances it can
be executed. Programmes can also be provided in ROM – most modern computers
contain a significant amount of ROM code, often used to start up the system or to
implement frequently used functions. Yet another source for a programme is a data
stream; the instructions you enter at a keyboard during a computer session can be
regarded as a programme of this sort.

Why do we care what a programme is ? A common attitude is that the operating
system's job so far as a programme is concerned is to set it running, and what it does
thereafter is its own business. We argue that this at best an oversimplification, and at
worst could lead to less than optimal service from the operating system. It is certainly true
that as long as we wish to build a general-purpose operating system there should be no
constraint on what the programmes do; but the operating system is already deeply
involved in coping with the requirements of running programmes, and – as we know
from the example of the batch systems – the more we know about the properties and
behaviour of these requirements, the more likely we are to be able to build systems which
efficiently supply the services needed.

More precisely, we want to know the right sorts of properties and behaviour. In one
sense, we already know all about the programme, because we have the code, and all the
behaviour follows from that (and from the data, but that doesn't change the argument).
In practice, that's no use, because we haven't time to work out the behaviour in time to
use it while the programme is running. What we need is realistic information about
patterns of behaviour which the programme is likely to exhibit as it runs. We might gain
some information of that sort by examining the sorts of demand for services which
programmes make.

WHAT DO PROGRAMMES WANT ?

Programmes make many sorts of demand on an operating system. In fact, that's a truism,
for a major reason for the existence of an operating system, and pretty well the sole
reason for the invention of operating systems, was to provide services to programmes.
Many of the demands are made by the programme on behalf of something else, such as a
file or a terminal display; we usually deal with such a demand under the heading of the

something else in question. Here, we are interested more in the demands made by the
programme on its own behalf, and we think that there are just two of these : the demand
for a processor to carry out the instructions, and the demand for storage space for use in
the computation. (Let us know if you find any more !)

The first is obvious; nothing will happen unless the instructions are read by a
processor of some sort. In principle, bearing in mind our earlier remarks about the
possible variety of processors, a collection of instructions could record the identity of its
processor, so that the system could select one of the correct type. It is more common,
though less general, to regard only the hardware as the real processor, and to treat
everything else in a different way, but in principle different sorts of processor could be
implemented. This monopoly is beginning to slip a little as operating systems broaden
their area of control from a single processor (or a few essentially identical processors)
to a distributed system in which there might be significantly different processor types. If
there are advantages to be gained by selecting a specific processor type for a programme,
or perhaps by moving it from one processor to another, we would like our operating
system to be able to exploit these possibilities. For the moment, though, such systems are
uncommon.

The second requirement of a programme is much more common and much better
understood; this is the use of storage space during the computation. Different sorts of
computation exhibit different sorts of demand for storage, partly because of the data
structures which they use and partly because of the programme structures imposed by the
algorithms chosen. The programming language used affects both these factors, and to a
great extent control the memory model used in the computation. This in turn gives a
strong indication of how a programme will use the available storage. If we can identify
common patterns of storage requirements, we can construct our operating system to cater
efficiently for these patterns, thereby contributing to the smooth running of the system as
a whole.

Observe that this new interest in the use of storage is not quite the same as that
which earlier caused us to investigate the notion of files. Then, we were interested simply
in providing some means of storing information, perhaps for considerable lengths of
time, and our aim was to ensure that this requirement was satisfied; now, we are more
interested in knowing how stored information is used by programmes, perhaps only for
short time periods, and our aim is to identify facilities which might assist programmes to
operate more efficiently. The two topics are obviously related, but the emphasis is
different.

–––

