
STREAMS

Streams crept into our discussion of files in the preceding chapter. We want to say a little
more about them, because they turn out to be quite important in operating systems.

A stream is a temporal sequence of data items. We stress that it is a temporal
sequence, because the word "sequence" is often used to denote an ordered set such as
could be stored in an array and be retrieved therefrom in random order.

In fact, a large part of the operating system can be thought of as a set of stream
operators. Its purpose is to organise the task of turning input into output, and it typically
does so by applying reordering operators which change the order of items (anything
from jobs to the execution of machine instructions) in the input stream, storage operators
which save parts of a stream in a buffer for some time (think of spooling, and the
various sorts of cache), and processing operators – commonly programmes – which
change the material itself.

This view is the key to the relationship between files and streams. A programme is a
stream operator, so it requires a stream of input and produces a stream of output;
therefore, the functions of read and write instructions are to accept and generate stream
elements. If the data begin or end up in files, then the file management system must
handle the necessary conversions between stream and file :

STREAMS

FILE STORE

PROGRAMME

file ↔ stream

read,
write, ...

It's interesting that much the same conversions happen on a smaller scale within the
processor. This is illustrated clearly by the diagram below, which depicts the operation of
a processor using memory-mapped devices and its relations with memory and the
devices :

Devices

Static memory

PROCESSOR

Memory addressing

fetch,
store

DATA BUS

The items in a stream may be of any sort. Input from a keyboard is usually received
as a stream of characters; in serial transmission, the characters are themselves encoded as

streams of bits. Input from a (Macintosh) mouse comes as two streams – one of down
and up signals from the button, and one of elementary north-south and east-west moves
from the ball. At the other end of the scale, we met streams of jobs, tasks, processes, and
files in the account of batch operating systems in the BATCH SYSTEM in Section 1.

In practice, all of these are represented by streams of data not very many bits wide,
because of the organisation of computer hardware. Everything must therefore be encoded
in long sequences of elementary items. That's nothing new – this text is for the most part
a sequence of elementary items (characters) which represent bigger items (words,
sentences, paragraphs, ...) – but all such systems require some conventions which
control the way in which the larger items are represented.

Indeed, if you choose to think of it in that way, almost everything that happens in a
computer system can be regarded as a stream of some sort – or, often, two streams, one
of data and one of administration. When using any sort of data structure, there is a stream
of data (in or out) and a stream of selection instructions or calculations to identify the
position in the structure; and we could fill out both the diagrams above by adding control
streams, in the first case controlling the operations of the file store and the stream devices,
and in the second case typically selecting the devices and selecting the memory location to
be used.

Tempting though it is, we shall not pursue this idea of great generality any further.
For our purpose at the moment, we can more usefully restrict our attention to fairly
ordinary streams of data – and there is still an abundance of streams once we look for
them. It's interesting to observe that, though data in computer systems might spend a lot
of their time just lying about in stores of one sort or another, everything that happens does
so in streams. The result of a calculation is a new value, which must usually be taken
away and put somewhere; to make the calculation happen, operands of some sort (from
the code, if from nowhere else) had to be fetched. Nothing happens without data moving
about – and a processor is just a hardware operator which merges a code stream and a
data stream to produce a new data stream (and a sequence of new processor states, if
you want to be picky). In many parts of computing, only the initial and final states of the
system are of interest, but an operating system's job is to manage the transition between
input and output, so we have to take the streams seriously.

WHERE DO THE STREAMS COME FROM ?

The obvious sources are those connected with the traditional idea of a file – that is,
anything including an input or output device. Examples are devices which deal with
permanent files on various media (paper tape, cards, magnetic tape, discs of many sorts,
and any others you can think of) and terminals. Other ephemeral streams have become
more common comparatively recently : microphones, loudspeakers, video devices,
communications lines are examples.

A less obvious, but nevertheless important, source of a stream is another
programme. Perhaps the best known example of this sort of stream is the Unix pipe,
which is explicitly designed to channel the output stream of one programme into the input
stream of another. This has been a feature of Unix from its inception, the idea being that
useful operations could be constructed by temporarily connecting many simple utility
programmes (called filters) to form a "pipeline". The same sort of sequential
composition of operations is also useful in programmes. The idea that streams are
significant for software has fairly recently become more prominent with the growth of
interest in object-oriented and functional languages – for example, there is a direct
correspondence between the Unix filters and C++ manipulators .

WHY DON'T WE TALK ABOUT THEM ?

If that's so, though, isn't it rather surprising that we hear so little about streams ? You
might expect that a structure which is vitally involved in every useful programme would
be a little more prominent in the average computist's consciousness. The most important
reason for this coyness is seen in the final sentence of the previous paragraph : we don't
think of streams if we're concentrating on initial and final states. The traditional view of
computing, just a little simplified, is that we start with file A, then some magic happens,

and we find that we now have file B, which is related to file A in some predefined way.
This is precisely what we mean by our requirement to "produce results as instructed". In
our discussion, we have started from that position, and have been led by a series of
plausible, though not always explicitly stated, arguments to the notion of streams as an
essential component of the system. Streams are structures which we need in order to
achieve the desired end; they are at a lower level than files, and from most points of view
can be regarded as details of implementation. A programmer can suppose (here's another
bit of the system mental model) that a programme really operates on files, the
programming language will be designed in terms of operations on files, and the operating
system must support this abstraction – which it does by implementing streams.

That discussion depends on the assumption that the nature of computing is to
manage a transition of the system from one static state to another. That is no more than an
assumption, and it is becoming less and less tenable as time passes. Perhaps the clearest
example of this development is in the area of multimediaSUP7, where computers are
expected to display continuously changing patterns of sound and vision (pictures,
speech, animation, music, etc.); here, there is no stationary "final state", and the
coordination of streams of data of various sorts is the essence of the "results as required".
The implications of these developments for operating systems are still being worked out,
but it seems not unlikely that, in at least some areas of programming, explicit stream
handling will become important.

REFERENCES.

SUP7 : R. Staehli, J. Walpole : "Constrained latency storage access", IEEE Computer
26#3, 44 (March, 1993).

–––

QUESTIONS.

To build complicated static data structures in linear computer address spaces
we use devices like pointers, record lengths, record end markers, and so on.
What sort of devices are available to represent complex temporal structures
(characters, lines, files, jobs, etc.) in streams ?

Consider the B6700 MCP organisation shown in the diagram in the BATCH
SYSTEMS chapter. Input to the system was a stream of cards. How could you
manage the stream to identify jobs and tasks, and to make it possible to run
these in any order ? (NOTE : this is the system which permitted random
access to spooled card files.)

The input streams for a Macintosh system are generated by a keyboard and a
mouse. How wide are these streams, in bits ? (Consider the signals they
carry, and how many bits it takes to encode them.)

The output stream for a Macintosh system comes from a screen which is
perhaps 500x500 pixels in size. Is the stream 250,000 bits wide ? How is this
display kept supplied by internal hardware channels which are a few tens of
bits wide ?

Consider our statement that "in computer systems ... everything that
happens does so in streams". We believe that the statement (possibly
prefixed by "almost", just to be safe) can be justified. Can you justify it ? – or
discredit it ? (If it's wrong, please tell us.)

–––

