
Requirements specification : page 1.

SECURITY WITHIN THE SYSTEM

At this level of security, as with the protection methods, there are techniques based on all
three participants in the common system operations – subject, object, and machinery –
and cryptographic techniques can be of assistance.

CAPABILITIES.

Passwords work reasonably well as protection devices, but experience shows that they're
not very reliable if you need strict security. We would like something which preserves the
good features of passwords, but is more controlled. Capabilities are designed to meet this
requirement.

We would like to preserve the password's link with the subject, so that we can
easily pass on privileges to other people or processes; but they must somehow be made
impossible to steal or to forge. For greater versatility, we would like subjects to be able to
copy or reduce capabilities, and pass them to other subjects. This means that the original
owner of an object must receive some sort of complete capability embodying all rights
over the object when the object comes into being; clearly, only the system must be able to
construct a capability. No other operations are permitted.

To satisfy these requirements, capabilities must be implemented in such a way that
you can't manipulate them by ordinary means – which means that they have to be
represented in hardware, or at least kept outside your addressing space – or they must be
such that any attempt to tamper with them is detectable, perhaps by cryptographic
techniques. We describe some implementation methods in the next chapter.

To use capabilities for tasks which require them, you do something amounting to
presenting the capability as you would otherwise present a password. With some
implementations, it's done automatically for you, while in others you might pass the
capability as a parameter. As well as that, though, certain other operations are required for
general administration. Here's a list, with notes. There are more details in the next
chapter; not all the operations are required with some implementations of capabilities, and
some of them are quite trivial to implement. Nevertheless, they have to be there, and the
list gives you a set of conditions which must be satisfied if you dream up a new
implementation for capabilities.

New capability : Every time you make something – a file, a programme, etc. – you
will be given a capability with all rights over the object. You will have to produce
the capability when you want to use the object, and you might want to pass it on to
other people.

Copy : If you do want to pass on the capability, or to store it in a safe place in case you
inadvertently lose the original (recall that even you can't use the object without a
capability), you are likely to want a copy.

Transfer : This is the operation with which you pass a capability to someone else.

Reduction : When you give someone else a capability for one of your objects, you
might not want to pass on all rights. For example, you might want to give read-only
access to a file you've made. The reduction operator is used to change the rights for
this purpose; it accepts a capability and a set of permissions, and produces a
capability which includes the permissions which were allowed by the original
capability. Notice that only reduction is ever provided; if you could increase the
rights, then the protection mechanism wouldn't work any more.

Validate and Test : There's nothing secret about the meaning of a capability, so it's
quite reasonable that you should be able to inspect a capability to find out what it
allows you to do.

Withdraw : What do you do if you give someone a capability for an object, and then
find that the person isn't trustworthy ? You then want to withdraw that capability.

As an example of an application of capabilities, consider this requirement. The
software package SP performs a simple clerical operation on local files, for which it must
read and write files in the local directory. Each subject using SP must be individually
invoiced for each session, so it is decided to keep a secure log file containing start and
stop times, and the identification of the subject concerned, for each use of SP.
Unfortunately, SP is not well designed for this purpose; the software is supplied as a
code file which cannot be changed, and which contains no provision for accounting
procedures. The constraints which must be enforced are these :

People must not have direct access to
SP

- or they could run it without a log entry.

People must not have access to the log
file

- or they could fiddle their accounts.

People must have access to something - or they can't get any work done.

Therefore there must be a programme
(say) SPGUARD to act as
intermediary.

People must have access to SPGUARD - so that they can run SP indirectly.

SPGUARD must survive throughout
the execution of SP

so that it can record both start and stop times
in the log

SPGUARD must be able to determine
when SP stops running

ditto

If we assume an operating system resembling Unix, where several processes may
run simultaneously, with the ability to wait until their children have died, then the
sequence of events might be something like this :

1 : Person runs SPGUARD.
2 : SPGUARD makes a starting log entry.
3 : SPGUARD starts SP.
4 : SPGUARD gives Person a read and write capability for SP, permitting

interaction.
5 : Person uses SP.
6 : Person finishes, and stops SP.
7 : SPGUARD, notified that SP has stopped, makes a finishing log entry.
8 : SPGUARD stops.

The access matrix is something like the diagram below. ("User" means that the
subject – a programme – has the same rights as the subject executing it. This is the
normal assumption, and we only need special provision in cases where some different
protection rules are required.)

Requirements specification : page 3.

Subject

Person SPGUAR
D

SP

Object SPGUARD Execute - User

SP No Execute -

Accounting
files

No Write User

Person's files All User User

ACCESS CONTROL LISTS.

Just as capabilities are associated with subjects, we can construct security measures based
on objects. The simplest such mechanism is the protection code, defined by an object's
owner, and kept by the system with the object. This in some way gives information
which the system can use to check each attempt to gain access to the object; access is
denied unless the subject attempting access satisfies the condition. A simple example is
the Unix file protection method, where each file is tagged with a set of protection codes
which the system inspects whenever a subject tries to gain access to a file.

Like passwords, the simpler implementations of protection codes are acceptable for
protection, but less than satisfactory for security. They cannot be stolen as passwords
can, but they are not sufficiently specific to define conditions for access with sufficient
precision. Access control lists remedy this defect. They work in much the same way as
the protection codes, but instead of relying on standard, and fairly crude, tests of identity,
the tests used can be made far more specific.

Being more specific, the requirements must be listed explicitly, and this is more
complicated. In principle, the access control list for an object is a collection of entries of
the form { subject, test[1 : modes] }, each identifying a set of tests, one for each
access mode, which must be satisfied if the subject is to be granted access in that mode.
In practice, it is often sufficient to restrict the tests to simple records of whether or not
access is permitted, and further abbreviation is possible by organising the subjects into
groups.

To use access control lists, you must be able to add entries to the list for any
object which you own. You must also be able to alter or delete entries as is appropriate.
Details will depend on the system used, but the process need be no more elaborate than
editing an ordinary file.

PROTECTION RINGS.

Capabilities developed from passwords, and access control lists from protection codes.
Similarly, protection rings developed from supervisor calls. The effect of the supervisor
call mechanism is to divide software into two sorts : an ordinary sort, which has limited
access to the machine's functions, and a privileged sort, which can do what it wants. The
privileged software can use unprivileged instructions as well as privileged, but
unprivileged software cannot use privileged instructions.

In a protection ring system, this two-level class distinction system is expanded into
a multilevel hierarchy. Imagine the system as a set of concentric circles, with the highest
security in the middle. Everything in the system belongs to a protection ring. Every
attempt by a subject to gain access to an object is checked. Operations by subjects on
objects in outer rings are permitted; attempted operations on objects in inner rings are
trapped and must be authenticated.

Just as with supervisor calls, protection rings must be implemented by hardware to
make any sense at all. They work well in organisations where hierarchies are important.

MIXING METHODS.

The methods are not mutually exclusive, and many secure systems provide more than
one. The mixture of capabilities and access control lists is fairly popular, because the two
methods complement each other very effectively.

Capabilities excel in their ability to pass permission from one subject to another.
Some way to do so is essential if (for example) a protected file must be used by a
system utility to perform some task for a subject authorised to use the file. The subject can
pass (a suitably reduced version of) the required capability to the system utility.
Similarly, it is sensible in a large organisation to permit a subject to pass on an appropriate
selection of privileges to an underling for certain purposes. Operations of this sort could
certainly be managed by access control lists, but for such temporary purposes the
overheads of the owners of the various objects requesting changes in their capability lists
twice in each case would be considerable.

Access control lists can be made much more specific, and can be controlled by the
object's owner at any time; changes are implemented instantly. Access control lists may
be used to restrict access to certain members of groups even if all members of the groups
have been given capabilities, or to impose short-term restrictions in special cases (such
as a general restriction to read-only access while the owner require write access). This
sort of specificity is very difficult to guarantee with capabilities, because by their very
nature they pass out of the control of the owner of the object, and could be passed from a
trusted agent to others which might be less trustworthy.

The use of mixed methods was the final recommendation from a studyREQ19 of
possible ways to provide security systems for Java. The security techniques considered
were capabilities, and two other software methods not discussed here, with each
technique providing valuable features not present in the others. In an anticlimax, the
authors - after recommending the combined system - end with a note that "understanding
how to create such a hybrid system is a main area for future research".

COMPARE :

Lane and MooneyINT3, Chapter 16; Silberschatz and GalvinINT4, Chapter 13.

REFERENCE.

REQ19 : D.S. Wallach, D. Balfanz, D. Dean, E.W. Felten : "Extensible security
architectures for Java", Op. Sys. Rev. 31#5, 116-128 (December,
1997).

–––

QUESTIONS.

What would you need to implement a system in which a person could
belong to several "groups" ? What about the security problems ?

–––

