
Requirements specification : page 1.

SOURCES OF INFORMATION

IMPORTANT PRINCIPLE

MESSAGES PURPORTING TO GIVE INFORMATION
MUST BE

COMPREHENSIBLE !

Like this ? (from CMS on the University Computer Centre's IBM4341, 14 August
1987. The IBM4341 was replaced with a Silicon Graphics machine in 1989.) (The first
two lines are reports from the Archiver programme, about which you can read more in the
ARCHIVING chapter.)

Catalogue entry for CROAK INPUT1 has been Altered
Catalogue entry for CROAK INPUT2 has been Altered
DMSITP143T PROTECTION EXCEPTION OCCURRED AT F65D7C IN SYSTEM ROUTINE
TYPLIN, RE-IPL CMS.
DMKDSP450W CP ENTERED; DISABLED WAIT PSW '00020000 50F7F4FA'

Well, perhaps not quite like that. There, some important information was completely
obscured in a rather unintelligible message. (It's true that the example is from 1987;
fortunately, things are much better now. Aren't they ? NoREQ17 .) It is usually true that
when something goes wrong there is enough information in the system somewhere to
determine fairly accurately what it is, so comprehensible error reports expressed in terms
of what the affected person can see of the system are usually possible in principle. In
practice, it can be hard to collect the information needed for the diagnosis, but that doesn't
mean you shouldn't try.

Error reports are only one sort of information which you should be able to get from
an operating system. There are at least two other sorts – facts about the system itself, and
news. Whether you should also be able to get help from the system is possibly not quite
so obvious, if only because many – perhaps most – of the things which go wrong are
not the system's responsibility. Our opinion is that the system should certainly provide a
general help service, because there is no other way to maintain consistent behaviour.

Here we comment on four sorts of information which the system should in principle
be able to offer to its clients. Our comments are indicative only, and we have attempted no
detailed analysis of what could or should be done. Think about your own experience with
computer systems : what sort of information would you have liked ? – could the system
have provided it ? – and, if so, how could it best have been presented ?

HOW DO I DO THIS ? – the HELP system.

THEORY : at any point in your terminal session, you
should be able to ask for help – and you should receive
whatever help is appropriate in the context.

There are several sorts of question :

• between instructions – WHAT CAN I DO NEXT ?

This is the easiest sort of question to answer, for the answer amounts to a simple
list of system instructions. Nevertheless, it's often not available. In a well equipped
system, the complete list of possibilities might be too long to display, but it's
usually only necessary to show the most popular set – experts probably don't need
to look anyway.

• HOW DO I USE X ? – where X is a piece of hardware or software.

This is also a factual question, and can be answered directly from a file; the two
necessary tricks are, first, to be able to find the right file (not too hard provided
that the questioner knows the right names for X), and, second, to get the right
material in the file – it isn't really adequate to provide the system manual : text for
displaying on a screen should be composed differently from text to be printed in a
book.

• in the middle of an instruction – WHAT CAN I DO NEXT ?

Again this is a factual question, but it's harder to answer; you need careful
organisation to identify the right response, as the required answer might depend on
just where you are in the instruction. It's possible, but rare.

• HOW DO I DO Y ? – where Y is some computing task.

To answer this question, you probably need an expert system, though in practice a
good keyword retrieval system performs fairly well. The difficulty is that Y, as
presented, might not be a system instruction at all – "How do I get rid of a file ?".

These are all essentially textual answers, and there's some assumption that we're dealing
with textual instructions. That's not because we're ignoring graphical techniques, but
because there seems to be little effective system help in machines which rely on graphical
interfaces. The original assumption was that you'd be able to see the full repertoire of
what could be done on the desktop at any time; that stops working once you get more than
eight or ten programmes, and doesn't include the system operations (change file names,
delete files, etc.) which are carried out by purely manual operations – which is
unfortunate, because they are the object of many questions. The Macintosh system, in its
later versions, offers "bubble help", giving information about whatever screen object is
currently under the screen pointer; this is an elegant approach to the provision of help, but
it still depends on the information having been provided, and is as yet rather unselective
(and often fairly trivial). Generally, the GUI convention that you have to be able to see
something on the screen to do anything with it makes the provision of a general help
system rather difficult.

Whatever sort of help system you have, one of the most serious challenges is to
make it apply uniformly. As with the user interface conventions, it's necessary to
establish standard ways of presenting and formatting help information, so that external
suppliers of software can fit their products into the system. Whether with graphics or text,
this is difficult; we guess that text is hard, but graphics is harder.

WHAT'S HAPPENING ? – the CURRENT STATE.

THEORY : You should always be able to find out what's
going on in the system.

We would prefer that our computing activities be constrained as little as possible, so if we
want to find out something which the operating system knows (why the running
programme couldn't find a file, whether the running programme is still running, whether
we have any mail, what the time is) we should be able to do it.

This was often by no means easy on older text-based systems, presumably because
they were built according to a single-programming computer metaphor. (Their designers
wouldn't know that, of course – they just made the terminal do what they expected
terminals to do.) A terminal was thought of as associated with one task, and one task
alone, so the suggested ability was obviously silly, and couldn't be done.

Which is, of course, not so. The terminal has always played two rôles in the system
(see USING TERMINALS), so the information was there if only anyone had thought
to look. Some systems provided some items of information, typically in response to
control keys; many Unix programmes would (and still will) allow you to pass an
instruction through to the operating system by preceding it with "!", but that was unusual.

Requirements specification : page 3.

It's probably not an accident that Unix has always provided facilities to run several
processes simultaneously.

With modern GUI screens, the situation is quite different. We are accustomed to
seeing screens with several different things happening in different places, so this sort of
information is comparatively easy to come by.

WHAT WENT WRONG ? – the DIAGNOSIS system.

THEORY : whenever a programme fails in any way, the
system should be able to help you to find out why, and to
put it right.

The very first step in so doing is for the system to be able to tell us that something has
gone wrong, and what it is. That's a significant statement, because it emphasises the point
that if something has gone wrong then in some sense or other the system has lost control
and there's no guarantee that it can find its way back to anything that can send us a
message. A not uncommon phenomenon in early systems - and a not unknown
phenomenon today - is the system which simply freezes for no apparent reason. A well
developed exception management system is important in avoiding such events.

Once we've caught the failure, then at the simplest level we'd like informative (and
comprehensible) error messages. It helps greatly if the messages includes some sort of
address in the programme (source file line number, or – less good – code address) to
say where the error was detected. (The CMS system did provide a HELP instruction
which would give some further information about forbidding error codes like
DMSITP143T and DMKDSP450W which appeared in the cautionary example at the
beginning of this section, so it wasn't quite as bad as it looked – but rather few people
knew about that provision, so in practice it wasn't much use.)

A quite separate problem is finding the correct words in which to report the error.
Whoever is using the programme which went wrong is more likely to want to know that
an item cost read from the inventory file is too large than that a floating point overflow
exception has occurred. Unfortunately, the only entity which knows about the item cost
and the inventory file is the running programme, over which the operating system has
little control. If the operating system designer wants to make sure that some error message
is produced, there might be no alternative to reporting the floating point overflow
exception.

We mentioned this difficulty in the chapter DEFINING A SYSTEM INTERFACE.
It's a problem which cannot be avoided in any layered system, where one part of the low
level software might be used by many different parts of the high level software. The only
approximation to a general solution which we know is to build error reports into software
at all levels, and to have some means to pass on at each level of procedure call (or
equivalent) some indication of whether the calling procedure will handle error reporting.
Then a procedure which can report errors and finds that the procedure which called it
cannot handle errors should make the report. In any case, of course, some indication of
the type of error found should be returned. It's a cumbersome solution to the problem,
but does work provided that the implied conventions are generally observed.

Other people are involved too, of course; so for programmers there should be
software to produce and interpret memory dumps, various tools which allow you to
observe a programme as it runs, and so on. One can debate whether or not these facilities
should be the responsibility of the operating system.

WHAT'S NEW ? – the NEWS system.

THEORY : everyone using the system should be kept
informed of changes in hardware, software,
administration, ……

This is obviously a very sensible principle, but it's extraordinarily difficult to manage. A
major difficulty is that if you send people messages through the computer system they
will ignore them, lose them, or forget them. Messages on paper don't necessarily fare
much better. Many systems provide facilities to display system messages during the
logging-in sequence; people regard them as irrelevancies, and become accustomed to
pressing the return key a few times automatically to skip past the message.

An alternative is to make available NEWS files for people to read, but then you find
that most just don't bother.

The news files are the better solution of the two; but they must always be reliable,
or they won't be trusted. You can send messages too, but they should direct people to the
news files for details. The news files should also always contain something new, so that
people don't get bored by reading the same messages time and time again. Unfortunately,
what's new for someone who uses the system daily isn't the same as what's new for
someone who only uses it once a month.

Requirements specification : page 5.

FINALLY –

All information systems should be integrated. That's HARD.

COMPARE :

Lane and MooneyINT3, Chapter 14.

REFERENCE.

REQ17 : R.W. Lucky : "Fatal error number 27", IEEE Spectrum 34#5 18 (May, 1997).

–––

QUESTIONS.

How could you design a HELP server ? The aim would be a system-wide
service, which would work uniformly for any component of the system
which required it.

Can you put the four "sorts of question" into order of usefulness ?

From an examination answer : "... in a textual interface, it's easy to see what
you've been doing, because the reports are still on the screen, and that's
useful in interpreting errors". (Unix has a "history" instructions which will
show you what you did even if the screen contents have gone.) Is that really
useful ? Could you provide such a facility for a WIMP interface ?

Perhaps it would encourage programmers to produce good error messages if
the system produced a bad one by default – so if the programmer does not
supply an error message, the system can report "a floating point overflow
exception has occurred, and your programmer was too careless to tell the
system what it meant". Would it work ? How could you implement it ?

–––

