
Requirements specification : page 1.

LOOKING AFTER PEOPLE

This is perhaps a rather curious name for a chapter, considering that we have all the time
been pushing the idea that the system is there to solely to serve the people who use it. So
far, though, we've concentrated on what the machinery should be like to make it
reasonably congenial for people to use; now we want to say something about the
information about people which the system must have in order to work in the desired
way.

WHY DOES AN OPERATING SYSTEM NEED TO WORRY ABOUT PEOPLE ?

Except for the obvious interface requirements which we've already discussed, it
doesn't – unless it has to cope with more than one people, so microcomputer systems
need very little of this organisation.

With two or more people, the system has to start looking after each person's
privileges, property, security, money, and other factors essential for productive
computing over possibly long periods of time. Other system characteristics are less
essential, but helpful in establishing an environment which supports a personal style of
work – so it might be helpful to establish automatic access to certain file directories, and
to set up particular screen formats, terminal characteristics, and so on. Many systems
therefore provide means to define such properties with parameters which the system can
remember from session to session.

HOW ARE PEOPLE HANDLED ?

From the system's point of view, people are just one more thing to be looked after, much
like devices or files or processes – so you'd expect something like an array of people
descriptors. This is not a standardised part of operating system practice; the information is
usually there somewhere, but might be scattered thinly through the system. We shall call
this (possibly notional) collection of information about people the user database.

The structure of the user database might be flat, with all people having much the
same status, or hierarchic, with some people having certain rights over others. In other
systems, people might be associated into (not necessarily hierarchic) groups. In
practice, the basic structure is almost always flat, with any more complex relationships
implemented by links between records as required. In a large system, there is also likely
to be some supporting structure to help with finding the right record given the user name;
a straight search through several thousand records can take an inconveniently long time
even on a fast machine.

WHAT INFORMATION IS NEEDED ?

The system must carry whatever information it needs to do these various jobs. We can
think of this as information about what people have (possessions, such as files,
electronic mail, privileges in the system) and what people do (communicate with the
system, use resources, execute programmes).

This information about people comes in two varieties. Some information lasts from
session to session, and must therefore be stored permanently somewhere in the system.
This is the material of the user database. Further information is required for someone
actively using the system; this is temporary, and can be thought of either as information
about the person running the computer session or about the session itself. We'll discuss it
here anyway.

THE USER DATABASE.

Here are some examples of items commonly found in a system's user database. This is
not intended as an exhaustive list, and not all are found in every system, though each has
appeared in some system which we have known; this is a set of examples, to show the

sort of information that might be useful. These data might or might not be kept together,
but should be integrated.

As with other system tables which we shall encounter later, the items in the table all
have fixed sizes; the intention is to provide a widely accessible record of data related to
some entity, and the preservation of a standard structure is important to guarantee that the
system will continue to work; it is an example of system consistency. Items of
unpredictable size or of unpredictable number are represented by pointers, and stored
elsewhere.

IDENTITY usercode Your primary name in the operating system –
otherwise called login name, userid, ID,
etc.

personal details Name, address, telephone number, etc.
Useful for the manual side of the
administration.

password(s) Secret(s) between you and the system, which
prove that you are who you claim to be.

who pays the bills For the accounting system. One customer
may have several accounts.

hierarchy links Identifies your superior, your underlings, etc.
Useful for hierarchic security systems.

classification Secretary, director, spy … – where you fit
into the organisation. Useful for setting
privileges.

PRIVILEGES capabilities Permissions to use certain parts of the
system, other people's files, etc.

limits on spending "Funny money" – limits your total use of the
system, typically renewed at regular
intervals.

limits on resource use An alternative to funny money : explicit
limits on your use of individual resources.

group membership A means of defining groups, usually to give
special security privileges.

Requirements specification : page 3.

POSSESSIONS state of current
account(s)

Real money. Used by the accounting
systems, and to deny access if overspent.

pointer to files How to find your files in the system.
(Usually the name of your base
directory.)

letterbox A receptacle for electronic mail or other
communications.

HISTORY session records How many sessions you have used, how
much time spent, etc. – to keep track of
your work.

when last logged in Mainly useful as a quick check that no one
else is using your account.

PARAMETERS search path An ordered list of directories to search when
looking for named files.

login sequence Things to do every time you log in to the
system – usually as a login file.

terminal definitions How you want the screen presented,
definitions of special keys, etc.

The system has to ensure that any necessary security measures are enforced.
Different parts of the system need various forms of access to different parts of the
information : the owner, other people, administrators, the whole system, the login
programme, etc. all need some sort of access.

DURING A SESSION.

Here are some examples of information which pertains to a session, and which the system
must maintain in order to exercise proper management. Some of these items are initially
set from the userdata information, but the values may in some cases be changed during
the session.

Current position Which terminal is associated with your usercode – so that mail,
messages, etc. can be directed to you.

File system positions Typically your base directory and a current working directory.

Charges for the
session

Funny or real money.

Current parameters Meanings for control or function keys, screen layouts.

History Instructions recently issued, previous system states – used to
repeat or modify instructions, or roll back computations to
checkpoints.

Much of this information concerns your personal preferences for interactive work, so in
older systems the collection of session information was typically smaller.

LOGGING IN.

To see how some of these data are used, here's a description of a fairly typical logging-in
sequence for a shared computer system.

1. Find the usercode in the user registration file.

Someone has tried to log in, and has presented a usercode. Use the access structure
to search the userdata file for the corresponding record. If it isn't there, don't tell
anybody yet – if you do, it's much easier for criminals to identify good usercodes.
Go through a dummy password sequence anyway.

2. Check the password.

If it was a good usercode, check that the person knows the correct password. If
not, or if the usercode was wrong, report the error. (Don't say what the error
was – just that the sequence was wrong somewhere.) Otherwise, carry on.

3. Can this person use this terminal now ?

Check the access rights and account balance from the userdata. Some systems are
quite fussy – you may be able to use only certain terminals, or only certain hours
during the day. Others are much more permissive. If access is denied at this point,
say why; you know it's the right person now (you hope).

4. Set up the session control information from records.

Find the basic parameters which determine some normal starting point for the
session. These are properties which are defined for each usercode, but only those
which don't significantly change the behaviour of the system – such as the base of
the person's file directory, resource usage limits. We need the basic data, but we
shall want to perform several further operations, so we don't want to install any sort
of elaboration on the basic system behaviour yet. In some systems, this sort of
information is held in an explicit structure, sometimes called a session control
block.

5. Set initial values for this session.

Set initial values for the parameters of this session. These might include the
resources used in the session (initially zero), a channel number which identifies
the terminal or workstation (in a shared system), the current working directory
(initially the base directory).

6. Look for messages from other people.

Look for any messages which might be waiting for this usercode. This is now
usually electronic mail, but some systems might still send messages of other sorts
about system conditions, changes, or events.

7. Record the login in the history.

Record the login in the system log, and the usercode's history record, if any.

8. Set the appropriate session parameters.

Change the configuration to suit the person's preferences, if any. We can afford to
do this now, as all the important and sensitive tasks are complete. In this step screen
layouts, search profiles, and other personal preferences may be set up, and perhaps
programmes executed to perform desired initial operations.

9. Report successful login.

Report successful login by some appropriate message and await instructions from
the terminal.

Obviously enough, not all systems will perform just these tasks in just this sequence, but
this list should make the point that the structure of a computer session is not trivially
simple, and must be set up with some care.

Requirements specification : page 5.

COMPARE :

Lane and MooneyINT3, Chapter 17, section 6.

–––

QUESTIONS.

What are the implications of distributed systems for the problems of
managing people ?

–––

