
GRAPHICS AND TEXT – A COMPARISON

To present a full comparison of graphical and textual interfaces is far beyond the scope of
these notes; many people have spent a long time thinking about the question and carrying
out measurements of various sorts to find out just how the different sorts of interface
work. We shall content ourselves with an example, which brings out some of the features
of interest.

The example is contrived to illustrate certain features (it began life as an
examination question, though it's evolved a bit), but it's realistic to the extent that the
instructions work and perform certain operations on different sorts of operating system.

Consider this structure of directories A and B, and the file X

Directory A

Directory B

File X

That directory structure could exist in any of the Unix, Macintosh, and MS-DOS (and
therefore MS Windows) file systems, and in many more for that matter; they share a
very similar structure, which is very widely used because it seems to do pretty well what
we want. (We'll say more about this later, in the chapter FILES IN THE SYSTEM.)
Suppose that the working directory is initially Directory A; in a GUI system, Directory
A's window is open. Now we suppose that a sequence of instructions is executed; they
are listed in their Unix form in the left-hand column of the table below. The other columns
show the meaning of the Unix instruction, the corresponding meaning in a GUI system,
one way to do it in a GUI system (usually a Macintosh way; there's usually something
quite similar in the Windows 3.? File Manager); and a comment. There are some further
comments (mainly on the comments) after the table.

What it
means in
Unix :

What it
means in
GUI :

The
instruction
in GUI :

Comment :

cd B Change the
working
directory
from
whatever
it was
(A) to
B.

Change the
active
window
from
whatever
it was
(A) to
B.

Double-click
on the B
icon in the
active
(A)
window.

The system must determine the
identity of the desired new
working directory, and the fact
that a change in working directory
is required.

To identify the directory in the GUI
system, the system must be able to
interpret the position of the pointer
when the selection operation is
received, so it must keep some
sort of map of the screen.

To identify the instruction, the
operation (double-click, etc.)
must be interpreted in terms of the
context, particularly the system's
information about the selected
item..

cp X Y Make a
copy of
the file X
and call
it Y.

Make a
copy of
the file X
and call
it Y.

There's no
common
"pure"
GUI
method;
the closest
is to select
the file,
then select
some
useful
operation
from an
appropriat
e menu.
Then you
give the
new file
name in
some way
appropriat
e to the
operation
you
selected.

The system must identify the
original item, determine that a
copy operation is requested, and
get the new file name.

The original item and request can be
handled in much the same way as
for the previous instruction.

The new name requires more,
because it isn't already there, so
can't easily be made visible, and
must be entered at the keyboard.
(Neither Macintosh nor
Windows provides a simple copy
instruction, presumably because
neither Apple nor Microsoft can
think of a neat way to get the new
file name. Windows provides
copy as a menu item, and gets the
new name through a dialogue box;
in the Macintosh system, there is
no explicit copy, and you have to
make do by first duplicating the
file then changing its name.)

mv X
. .

Find the
file now
known
as X in
the
working
directory
and list it
instead
as X in
the
directory
".." (a
Unix
conventi
on to
denote
the
parent
directory
, now
B) .

Cause the
file X in
the B
window
to appear
in the
window
of B's
parent.

Make sure
that you
can see
both the A
and B
windows;
then select
the X icon
in the B
window
and drag it
into the A
window.

The system must identify the
instruction, the object to be
moved, and the destination.

For once, it's easier for the GUI,
given the machinery we've already
described. Provided that it can
interpret the position of the pointer
and has access to the properties of
the entities represented on the
screen, the task is fairly
straightforward.

In Unix, though, the mv instruction
is ambiguous. In this example, the
second name is that of a directory,
and the interpretation given to the
left is correct; but if it had not been
a directory name, the file would
have been renamed rather than
moved.

In the Windows file manager, the
parent of an open directory is
shown (curiously enough, as
..), so a direct equivalent of the
text instruction is available.

mv Z .. Find the
file now
known
as Z in
the
working
directory
and list it
instead
as Z in
the
parent
directory
.

Cause the
file Z in
the B
window
to appear
in the
window
of B's
parent.

Can't be
done –
there's no
Z icon in
the active
window.

Score a point for the GUI : you
can't issue an instruction about
object Z unless you can find it,
and you can't find it if it isn't
there.

rm * Delete all
the files
(not
directorie
s) in the
working
directory
.

Delete all
the files
(not
windows
) in the
active
window.

Select the
files and
drag their
icons to
"Trash".

The system requires the nature of
the instruction, and the selection
of operands.

The delete instruction is fairly
easy – drag to "Trash" on the
Macintosh, delete key with MS-
DOS or Windows, menu
alternative for all – but it doesn't
distinguish between files and
directories. Selection is therefore
necessary.

The selection is harder; selecting all
entries in a directory is reasonably
easy, but selecting only files isn't.
In the general case, you would
probably have to pick them out
one by one. Group selections can
be built up item by item by
controlling the context of the
mouse operations; a click on an
item while a specified key (shift
on Macintosh, control in
Windows) adds (or removes)
an item to (or from) a selected
group.

(In the example, it's easy, because
it happens that there's only one
file left in B, but that's
accidental.)

COMMENTS.

The most important thing to say about this example is probably that the real question is
how the operating systems use their different interfaces to do what is just the same job in
all cases. As we pointed out, the file systems themselves are essentially identical.

The big difference is that in a textual interface all the information needed must
usually be provided explicitly in the instruction, while with the graphical interface there is
much more cooperation between system and person. The system presents a lot of
information on the screen, and all you have to do is select it. That makes life a lot easier
for you, but requires a much more elaborate system.

It would be a mistake, though, to suppose that only the graphical systems give help
in this way. There are two instances in the example where the textual system works the
same trick. The first is the use of ".." to denote the parent directory; there's no direct
equivalent with the Macintosh system (though there's a "shortcut" key combination
which will find the parent window for you – you could argue that it's similar to the ..

convention in that you have to remember it), though the Windows File Manager does
give you a special menu item (called ".." with an evocative up-arrow) to which you can
drag your selected items. The second example is the "wild" character "*", used to mean
"anything". That's a very simple example of a very powerful set of conventions with
which you can define function of text called regular expressions. The nice thing about text
is that it's very precise, and you can do precise operations on it; you can't do that with
pictures.

–––

