GRAPHICS AND TEXT — A COMPARISON

To present afull comparison of graphical and textual interfacesis far beyond the scope of
these notes; many people have spent along time thinking about the question and carrying
out measurements of various sorts to find out just how the different sorts of interface
work. We shall content ourselves with an example, which brings out some of the features
of interest.

The example is contrived to illustrate certain features (it began life as an
examination question, though it's evolved a bit), but it's realistic to the extent that the
instructions work and perform certain operations on different sorts of operating system.

Consider this structure of directories A and B, and thefile X

Directory A

Directory B

File X

That directory structure could exist in any of the Unix, Macintosh, and MS-DOS (and
therefore MS Windows) file systems, and in many more for that matter; they share a
very similar structure, which is very widely used because it seems to do pretty well what
we want. (We'll say more about this later, in the chapter FILESIN THE SYSTEM.)
Suppose that the working directory isinitialy Directory A; in a GUI system, Directory
A'swindow is open. Now we suppose that a sequence of instructions is executed; they
arelisted in their Unix form in the left-hand column of the table below. The other columns
show the meaning of the Unix instruction, the corresponding meaning in a GUI system,
one way to do it in a GUI system (‘usually a Macintosh way; there's usually something
quite similar in the Windows 3.? File Manager); and a comment. There are some further
comments (mainly on the comments) after the table.

What it What it The Comment :
meansin meansin instruction
Unix : GUI : in GUI :

cd B | Changethe | Changethe [Double-click | The system must determine the
working active ontheB identity of the desired new
directory | window iconinthe | working directory, and the fact
from from active that a change in working directory
whatever [whatever | (A) Isrequired.
'(t)iva)st o '(t Ao | NAOW. | T jgentify the directory in the GUI
B B system, the system must be able to

Interpret the position of the pointer
when the selection operation is
received, so it must keep some
sort of map of the screen.

To identify the instruction, the
operation (double-click, etc.)
must be interpreted in terms of the
context, particularly the system's
information about the selected
item..

cp XY | Makea Makea Theresno | The system must identify the

copy of copy of common origina item, determine that a

thefileX | thefileX | "pure" copy operation is requested, and

and call and call GUI get the new file name.

Ity. Ity. {Eggl%ds’eﬁ The origina item and request can be
isto select handled in much the same way as
the file for the previous instruction.
then select | The new name requires more,
some because it isn't already there, so
useful can't easily be made visible, and
operation must be entered at the keyboard.
from an (Neither Macintosh nor
appropriat Windows provides a simple copy
e menu. instruction, presumably because
Then you neither Apple nor Microsoft can
givethe think of aneat way to get the new
new file file name. Windows provides
namein copy asamenu item, and getsthe
some way new name through a dialogue box;
appropriat in the Macintosh system, thereis
etothe no explicit copy, and you haveto
operation make do by first duplicating the
you file then changing its name.)
selected.

mv X | Findthe Causethe | Makesure | Thesystem must identify the

file now fileX in that you instruction, the object to be

known the B can see moved, and the destination.

?ﬁ Xin window both the A For once, it's easier for the GUI,

e toappear | and B iven th hi veal
working inthe windows; given the machinery we've already
directory | window then select described. Provided that it can
andlistit | of B's the X icon | interpret the position of the pointer
instead arent inthe B and has access to the properties of

: P ' - the entities represented on the
asXin window £
- screen, thetask isfairly

the and drag it straightforward

directory into the A 9 '

"."(a window. | In Unix, though, the mv instruction

Unix isambiguous. In this example, the

conventi second nameisthat of adirectory,

onto and the interpretation given to the
denote left is correct; but if it had not been
the adirectory name, the filewould
parent have been renamed rather than
directory moved.

i3n())w In the Windows file manager, the

parent of an open directory is
shown (curiously enough, as

..), so adirect equivalent of the
text instruction is available.

mv Z .. | Find the Causethe | Can't be Score a point for the GUI : you
file now fileZin done — can't issue an instruction about
known the B there's no object Z unlessyou can find it,
asZin window Ziconin and you can't find it if it isn't
the toappear | theactive there.
working inthe window.
directory | window
andlistit| of B's
instead parent.
asZin
the
parent
directory

rm* | Deletedl Deetedl Select the The system requires the nature of

thefiles thefiles filesand the instruction, and the selection

(not (not drag their of operands.

directorie| windows | iconsto - e

s)inthe|)inthe | “Trash’. | Thedelaeindructionisfarly

working active casy —dragto " 17 on the

directory | window. Macintosh, delete key with MS-
DOS or Windows, menu

' aternative for all —but it doesn't
distinguish between files and
directories. Selection istherefore
necessary.

The selection is harder; selecting all
entriesin adirectory is reasonably
easy, but selecting only filesisn't.
In the general case, you would
probably have to pick them out
one by one. Group selections can
be built up item by item by
controlling the context of the
mouse operations; aclick on an
item while a specified key (shift
on Macintosh, control in
Windows) adds (or removes)
anitemto (or from) aselected
group.

(In the example, it's easy, because
it happens that there's only one
fileleft in B, but that's
accidental.)

COMMENTS.

The most important thing to say about this example is probably that the real question is
how the operating systems use their different interfaces to do what is just the samejobin
all cases. Aswe pointed out, the file systems themselves are essentially identical.

The big differenceisthat in atextual interface al the information needed must
usualy be provided explicitly in the instruction, while with the graphical interface thereis
much more cooperation between system and person. The system presents a lot of
information on the screen, and all you haveto do is select it. That makeslife alot easier
for you, but requires a much more elaborate system.

It would be a mistake, though, to suppose that only the graphical systems give help
in thisway. There are two instances in the example where the textual system works the
same trick. Thefirst isthe use of ".." to denote the parent directory; there's no direct
equivalent with the Macintosh system (though there's a "shortcut” key combination
which will find the parent window for you — you could argue that it's similar to the ..

convention in that you have to remember it), though the Windows File Manager does
give you aspecial menu item (called ".." with an evocative up-arrow) to which you can
drag your selected items. The second exampleisthe "wild" character "*", used to mean
"anything". That's avery simple example of avery powerful set of conventions with
which you can define function of text called regular expressions. The nice thing about text
isthat it's very precise, and you can do precise operations on it; you can't do that with
pictures.

