
Requirements specification : page 1.

ABOUT GRAPHICAL USER INTERFACES

Here are some excerpts from an articleREQ6 about GUI. The article looks back over the
development of Star, an early GUI system. We've added some comments in this
typeface. Read the article, and the comments, critically; are all the assertions valid ? It's
also instructive to notice how well, or how badly, the GUIs you know match up with the
principles presented.

Requirements specification : page 2.

Desktop metaphor. Star, unlike all
conventional systems and many
window- and mouse-based ones,
uses an analogy with real offices to
make the system easy to learn. This
analogy is called "the Desktop
metaphor." To quote from an early
article about Star:

Every user's initial view of
Star is the Desktop, which
resembles the top of an
office desk, together with
surrounding furniture and
equipment. It represents a
working environment,
where current projects and
accessible resources reside.
On the screen are displayed
pictures of familiar office
objects, such as documents,
folders, file drawers, in-
baskets, and out-baskets.
These objects are displayed
as small pictures, or icons.

The Desktop is the principal
Star technique for realizing
the physical office metaphor.
The icons on it are visible,
concrete embodiments of the
corresponding physical
objects. Star users are
encouraged to think of the
objects on the Desktop in
physical terms. You can
move the icons around to
arrange your Desktop as you
wish. (Messy Desktops are
certainly possible, just as in
real life.) You can leave
documents on your Desktop
indefinitely, just as on a real
desk, or you can file them
away.

Having windows and a mouse does
not make a system an embodiment of
the Desktop metaphor. In a Desktop
metaphor system, users deal mainly
with data files, oblivious to the
existence of programs. They do not
"invoke a text editor," they "open a
document." The system knows the
type of each file and notifies the
relevant application program when
one is opened.

Most systems, including windowed
ones, use a Tools metaphor, in which
users deal mainly with applications as

tools. Users start one or more
application programs (such as a word
processor or spreadsheet), then
specify one or more data files to edit
with each. Such systems do not
explicitly associate applications with
data files. Users bear the burden of
doing that – and of remembering not
to try to edit a spreadsheet file with
the text editor or vice versa. User
convention distinguishes different
kinds of files, usually with filename
extensions (such as memo.txt). Star
relieves users of the need to keep
track of which data file goes with
which application.

SunView is an example of a window
system based upon the Tools
metaphor rather than the Desktop
metaphor. Its users see a collection of
application program windows, each
used to edit certain files. Smalltalk-
80, Cedar, and various Lisp
environments also use the Tools
metaphor rather than the Desktop
metaphor.

This is not to say that the Desktop
metaphor is superior to the Tools
metaphor. The Desktop metaphor
targets office automation and
publishing. It might not suit other
applications (such as software
development). However, we could
argue that orienting users toward
their data rather than toward
application programs and employing
analogies with the physical world are
useful techniques in any domain.

Requirements specification : page 3.

"Orienting users towards their data" fits in with our earlier comments
(PEOPLE AND COMPUTERS) on how people view their work. Notice that
the people considered in this discussion are not computists – and that neither
the Macintosh nor the Windows system was directed at computists. Would
some different style of interface be appropriate for, say, programmers ?

Requirements specification : page 4.

The disadvantage of assigning data
files to applications is that users
sometimes want to operate on a file
with a program other than its
"assigned" application. Such cases
must be handled in Star in an ad hoc
way, whereas systems like Unix
allow you to run almost any file
through a wide variety of programs.
Star's designers feel that, for its
audience, the advantages of allowing
users to forget about programs
outweighs this disadvantage.

Generic commands. One way to
simplify a computer system is to
reduce the number of commands.
Star achieves simplicity without
sacrificing functionality by having a
small set of generic commands apply
to all types of data: Move, Copy,
Open, Delete, Show Properties, and
Same (Copy Properties). Dedicated
function keys on Star's keyboard
invoke these commands. Each type
of data object interprets a generic
command in a way appropriate for it.

Such an approach avoids the
proliferation of object-specific
commands and/or command
modifiers found in most systems,
such as Delete Character, Delete
Word, Delete Line, Delete Paragraph,
and Delete File. Command modifiers
are necessary in systems in which
selection is only approximate.
Consider the many systems in which
the object of a command is specified
by a combination of the cursor
location and the command modifier.
For example, Delete Word means
"delete the word that the cursor is
on."

Modifiers are unnecessary in Star
because exact selection of the objects
of commands is easy. In many
systems, the large number of object-
specific commands is made even
more confusing by using single-word
synonyms instead of command
modifiers for similar operations on
different objects. For example,
depending upon whether the object of
the command is a file or text, the
command used might be Remove or
Delete, Duplicate or Copy, and Find
or Search, respectively.

Careful choice of the generic
commands can further reduce the
number of commands required. For
example, you might think it
necessary to have a generic command
Print for printing various things.
Having Print apply to all data objects
would avoid the trap that some
systems fall into of having separate
commands for printing documents,
spreadsheets, illustrations,
directories, etc., but it is nonetheless
unnecessary. In Star, users simply
Copy to a printer icon whatever they
want to print. Similarly, the Move
command is used to invoke Send
Mail by moving a document to the
out-basket.

Of course, not everything can be
done via generic commands. Some
operations are object-specific. For
example, a word might use italics,
but italics are meaningless for a
triangle. In Star, object-specific
operations are provided via selection-
dependent "soft" function keys and
via menus attached to application
windows.

Direct manipulation and graphical
user interface. Traditional computer
systems require users to remember
and type a great deal just to control
the system. This impedes learning
and retention, especially by casual
users. Star's designers favored an
approach emphasizing recognition
over recall, seeing and pointing over
remembering and typing. This
suggested using menus rather than
commands. However, the designers
wanted to go beyond a conventional
menu-based approach. They wanted
users to feel that they are
manipulating data directly, rather than
issuing commands to the system to
do it. Star's designers also wanted to
exploit the tremendous
communication possibilities of the
display. They wanted to move away
from strictly verbal communication.
Therefore, they based the system
heavily upon principles that are now
known as direct manipulation and
graphical control.

Star users control the system by
manipulating graphical elements on
the screen, elements that represent the
state of the system and data created

Requirements specification : page 5.

by users. The system does not
distinguish between input and output.
Anything displayed (output) by the
system can be pointed to and acted
upon by the user (input). When Star
displays a directory, it (unlike MS-
DOS and Unix) is not displaying a
list of the names of the files in the
directory, it is displaying the files
themselves so that the user can
manipulate them. Users of this type
of system have the feeling that they
are operating upon the data directly,
rather than through an agent – like
fetching a book from a library shelf
yourself rather than asking someone
to do it for you.

A related principle is that the state of
the system always shows in the
display. Nothing happens "behind
the user's back." You needn't fiddle
with the system to understand what's
going on; you can understand by
inspection.

 One of Star's designers wrote

When everything in a
computer system is visible
on the screen, the display
becomes reality. Objects and
actions can be understood
purely in terms of their
effects upon the display.
This vastly simplifies
understanding and reduces
learning time.

Requirements specification : page 6.

We are not entirely sure about the principle suggested here. In fact, you can't
show everything on the screen, and the state isn't always evident. Suppose
that, for some reason, the editor programme has disappeared; now what
happens when you select a file for editing ? If you know nothing about the
existence of the editor, how will you understand any imaginable error
message ? The danger of people believing that what they see on the screen
is real is that it encourages a belief that if you can't do it on the screen then it
can't be done – the desktop metaphor becomes a very limiting bound to your
imagination, not a helpful way of representing something with much richer
behaviour.

Requirements specification : page 7.

An example of this philosophy is the
fact that, unlike many window-based
computer systems (even some
developed at Xerox), Star has no
hidden menus – all available menus
are marked with menu buttons.

Icons and iconic file management.
Computer users often have difficulty
managing their files. Before Star
existed, a secretary at Xerox
complained that she couldn't keep
track of the files on her disk. An
inspection of her system revealed
files named memo, memo1,
memo071479, letter, etc. Naming
things to keep track of them is
bothersome enough for
programmers, but completely
unnatural for most people.

Star alleviates this problem partly by
representing data files with pictures
of office objects called icons. Every
application data file in the system has
an icon representing it. Each type of
file has a characteristic icon shape. If
a user is looking for a spreadsheet,
his or her eye can skip over
mailboxes, printers, text documents,
etc.

Furthermore, Star allows users to
organize files spatially rather than by
distinctive naming. Systems having
hierarchical directories, such as Unix
and MS-DOS, provide an abstract
sort of "spatial" file organization, but
Star's approach is concrete. Files can
be kept together by putting them into
a folder or simply by clumping them
together on the Desktop, which
models how people organize their
physical worlds. Since data files are
represented by icons, and files are
distinguished by location and
specified by selection rather than by
name, users can use names like
memo, memo1, letter, etc., without
losing track of their files as easily as
they would with most systems.

As bitmap-, window-, and mouse-
based systems have become more
common, the use of the term "icon"
has widened to refer to any
nontextual symbol on the display. In
standard English, "icon" is a term for
religious statues or pictures believed
to contain some of the powers of the
deities they represent. It would be

more consistent with its normal
meaning if "icon" were reserved for
objects having behavioral and
intrinsic properties. Most graphical
symbols and labels on computer
screens are therefore not icons. In
Star, only representations of files on
the Desktop and in folders,
mailboxes, and file drawers are called
icons.

Few modes. A system has modes if
user actions differ in effects or
availability in different situations.
Tesler has argued that modes in
interactive computer systems are
undesirable because they restrict the
functions available at any given point
and force users to keep track of the
system's state to know what effect
their actions will have. Though
modes can be helpful in guiding
users through unfamiliar procedures
or for handling exceptional activities,
they should be used sparingly and
carefully.

Requirements specification : page 8.

It's interesting to wonder why no one ever worried about modes in batch
systems, where they were very common, and potentially even more
damaging : if you got the mode wrong, there was no feedback, and the whole
operation would have been completed in the wrong mode before you had any
evidence of it. In practice, you said "Bother" (or words to that effect),
changed one or two cards in your card file, submitted the job for processing
again, and got on with something else. Provided that you were reasonably
careful to keep copies of things that might be destroyed (which you learnt
quickly), the impact was quite small, because you didn't have to repeat the
work – it was all recorded in the punched cards.

Requirements specification : page 9.

Star avoids modes in several ways.
One is the extensive use of generic
commands (see above), which
drastically reduces the number of
commands needed. This, in turn,
means that designers need not assign
double-duty (that is, different
meanings in different modes) to
physical controls.

A second way is by allowing
applications to operate
simultaneously. When using one
program (such as a document editor),
users are not in a mode that prevents
them from using the capabilities of
other programs (such as the desktop
manager).

A third way Star avoids modes is by
using a noun-verb command syntax.
Users select an operand (such as a
file, a word, or a table), then invoke
a command. In conventional
systems, arguments follow
commands, either on a command line
or in response to prompts. Whether a
system uses noun-verb or verb-noun
syntax has a lot to do with how
moded it is. In a noun-verb system
such as Star, selecting an object prior
to choosing a command does not put
the system into a mode. Users can
decide not to invoke the command
without having to "escape out" of
anything or can select a different
object to operate on.

Requirements specification : page 10.

We commented on this point in the PEOPLE TALKING TO COMPUTERS
chapter. We don't see why selecting a programme should put the system into a
mode either. You can still decide not to do it, and select something else.

Requirements specification : page 11.

Though Star avoids modes, it is not
completely modeless. For example,
the Move and Copy commands
require two arguments: the object to
be moved and the final destination.
Though less moded ways to design
Move and Copy exist, these
functions currently require the user to
select the object, press the Move or
Copy key, then indicate the
destination using the mouse. While
Star waits for the user to point to a
destination, it is in Move or Copy
mode, precluding other uses of the
mouse. These modes are relatively
harmless, however, because (1) the
shape of the cursor clearly indicates
the state of the system and (2) the
user enters and exits them in the
course of carrying out a single mental
plan, making it unlikely that the
system will be in the "wrong" mode
when the user begins his or her next
action.

Objects have properties. Properties
allow objects of the same type to vary
in appearance, layout, and behavior.
For example, files have a Name
property, characters have a Font
family property, and paragraphs have
a Justified property. Properties may
have different types of values: the
Name property of a file is a text
string; the Size property of a
character might be a number or a
choice from a menu; the Justified
property of a paragraph is either "on"
or "off." In Star, properties are
displayed and changed in graphical
forms called property sheets.

Property-based systems are rare.
Most computer systems, even today,
allow users to set parameters for the
duration of an interactive session or
for the duration of a command, but
not for particular data objects. For
example, headings in Wordstar
documents do not "remember"
whether they are centered or not;
whether a line is centered is
determined by how the program was
set when the line was typed.
Similarly, directories in Unix do not
"remember" whether files are to be
listed in alphabetical or temporal
order; users must respecify which
display order they want every time
they invoke the ls command .

Requirements specification : page 12.

"Property-based systems" have not always been quite as rare as is suggested.
We'll remark later that older systems often carried more information about files
than did others of more recent origin. It’s interesting that one of the reasons for
reducing the amount of information was to make the systems easier to use !

Requirements specification : page 13.

Progressive disclosure. It has been
said that "computers promise the
fountains of utopia, but only deliver a
flood of information." Indeed, many
computer systems overwhelm their
users with choices, commands to
remember, and poorly organized
output, much of it irrelevant to what
the user is trying to do. They make
no presumptions about what the user
wants. Thus, they are designed as if
all possible user actions were equally
likely and as if all information
generated by the system were of
equal interest to the user. Some
systems diminish the problem
somewhat by providing default
settings of parameters to simplify
tasks expected to be common.

Star goes further towards alleviating
this problem by applying a principle
called "progressive disclosure."
Progressive disclosure dictates that
detail be hidden from users until they
ask or need to see it. Thus, Star not
only provides default settings, it
hides settings that users are unlikely
to change until users indicate that
they want to change them. Implicit in
this design are assumptions about
which properties will be less
frequently altered.

One place progressive disclosure is
used is in property sheets. Some
objects have a large number of
properties, many of which are
relevant only when other properties
have certain values (see Figure 2).
For example, on the page layout
property sheet, there is no reason to
display all of the properties for
specifying running header content
and position unless the user actually
specifies that the document will have
running headers.

Another example of progressive
disclosure is the fact that property
displays in Star are temporary,
displayed on demand. In some
systems, the properties of the current
selection are displayed at all times,
through codes embedded in the text
or in an area of the screen reserved

Requirements specification : page 14.

Fi
gu

re
 2

. P
ro

gr
es

si
ve

 d
is

cl
os

ur
e.

 S
ta

r's
 p

ro
pe

rt
y

sh
ee

ts
, l

ik
e

th
e

re
st

 o
f

th
e

in
te

rf
ac

e,
 u

se
 a

 p
ri

nc
ip

le
 k

no
w

n
as

 p
ro

gr
es

si
ve

 d
is

cl
os

ur
e

to
 a

vo
id

 o
ve

rw
he

lm
in

g
us

er
s

w
ith

 in
fo

rm
at

io
n.

 U
su

al
ly

, u
se

rs
 d

on
't

ne
ed

 to
 s

ee
 a

n
ob

je
ct

's
 p

ro
pe

rt
ie

s:
 th

ey
 o

nl
y

ne
ed

 to
 s

ee
 a

nd
 p

er
ha

ps
 c

ha
ng

e
its

 a
ss

ig
ne

d
st

yl
e.

 U
se

rs
 s

ee
 a

n
ob

je
ct

's
 p

ro
pe

rt
ie

s
on

ly
 u

po
n

re
qu

es
t.

A
ls

o,
 e

ve
n

w
he

n
a

us
er

 s
et

s
a

pr
op

er
ty

 s
he

et
 to

 s
ho

w
 a

n
ob

je
ct

's
 p

ro
pe

rt
ie

s,
 a

s
sh

ow
n

he
re

, s
om

e
in

fo
rm

at
io

n
re

m
ai

ns

hi
dd

en
 u

nt
il

th
e

us
er

 a
sk

s
to

 s
ee

 it
. F

or
 e

xa
m

pl
e,

 th
er

e
is

 n
o

ne
ed

 to
 c

lu
tte

r
th

e
pr

op
er

ty
 s

he
et

 h
er

e
w

ith
 b

ox
es

 f
or

 e
nt

er
in

g
nu

m
be

rs
 f

or
 "

O
th

er
"

va
lu

es
 o

f
L

in
e

H
ei

gh
t,

Sp
ac

in
g

B
ef

or
e

Pa
ra

gr
ap

h,
 o

r
Sp

ac
in

g
A

ft
er

 P
ar

ag
ra

ph
 u

nt
il

th
e

us
er

 a
ct

ua
lly

 s
et

s
th

e
pr

op
er

ty
 to

 "
O

th
er

."

Requirements specification : page 15.

for that purpose, even though the user
usually doesn't care.

A highly refined manifestation of
progressive disclosure recently added to
ViewPoint is styles, which allows users
to regard document content (such as a
paragraph) as having a single style rule
instead of a large number of properties.
Thus, styles hide needless detail from
users.

Consistency. Because Star and all of its
applications were designed and
developed in-house, its designers had
more control over its user interface than
is usually the case with computer
systems. Because the designers paid
close attention to detail, they achieved a
very high degree of consistency. The left
mouse button always selects; the right
always extends the selection. Mouse-
sensitive areas always give feedback
when the left button goes down, but
never take effect until the button comes
up.

Emphasis on good graphic and screen
design. Windows, icons, and property
sheets are useless if users can't easily
distinguish them from the background or
each other, can't easily see which labels
correspond to which objects, or can't
cope with the visual clutter. To assure
that Star presents information in a
maximally perceivable and useful
fashion, Xerox hired graphic designers
to determine the appearance and
placement of screen objects.

These designers applied various written
and unwritten principles to the design of
the window headers and borders, the
Desktop background, the command
buttons, the pop-up menus, the property
sheets, and the Desktop icons. The most
important principles are

• The illusion of manipulable objects.
One goal, fundamental to the notion of
direct manipulation, is to create the
illusion of manipulable objects. It
should be clear that objects can be
selected and how to select them. It
should be obvious when they are
selected and that the next action will
apply to them. Whereas the usual task
of graphic designers is to present
information for passive viewing,
Star's designers had to figure out how
to present information for

manipulation as well. This shows
most clearly in the Desktop icons,
with their clear figure/ground
relationship: the icons stand by
themselves, with self-contained
labels. Windows reveal in their
borders the "handles" for scrolling,
paging, window-specific commands,
and pop-up menus .

• Visual order and user focus. One of the
most obvious contributions of good
graphic design is appropriate visual
order and focus on the screen. For
example, intensity and contrast, when
appropriately applied, draw the user's
attention to the most important
features of the display.

In some windowing systems, window
interiors have the same (dark) color as
the Desktop background. Window
content should have high intensity
relative to the Desktop, to draw
attention to what is important on the
screen. In Star, window content
background is white, both for high
contrast and to simulate paper.

Star keeps the amount of black on the
screen to a minimum to make the
selection stand out (see Figure 3).

In most windowing systems, window
headers and other areas of the screen
are black, making the selection hard to
find. This principle is so important
that Star's designers made sure that
the display hardware could fill the
nonaddressable border of the screen
with Desktop grey rather than leaving
it black as in most systems. Star also
uses icon images that turn from
mostly white to mostly black when
selected (see Figure 4) and allows at
most one selection on the screen at a
time.

• Revealed structure. Often, the more
powerful the program used, the
greater the distance between intention
and effect. If only effect is displayed
and not intention, the user's task of
learning the connection is much more
difficult. A good graphical interface
can make apparent to the user these
connections between intention and
effect, that is, "revealed structure."
For example, there are many ways to
determine the position and length of a
line of text on a page. It can be done

Requirements specification : page 16.

with page margins, paragraph
indentations, centering, tabs, blank
lines, or spaces. The WYSIWYG, or
"what you see is what you get," view
of all these would be identical. That
would be enough if all that mattered to
the user was the final form on paper.
But what will happen if characters are
inserted? If the line is moved to
another page, where will it land?
WYSIWYG views are sometimes not
enough.

Special views are one method of
revealing structure. In Star,
documents can show "Structure"
and/or "Non-Printing Characters" if
desired (see Figure 5). Another
convenient means for revealing
structure is to make it show up during
selection. For example, when a
rectangle is selected in a graphics
frame, eight control points highlight
it, any of which can attach to the
cursor during Move or Copy and can
land or. grid points for precise

Figure 3. Visual order and user focus. The large amount of contrast present on the screens of
many window systems (left screen) makes it difficult to focus on the relevant information. The
selection should be the user's main focus: it is the object of the next operation. The right screen
shows how Star/ViewPoint's screen design focuses attention on the selection.

Figure 4. Visual order and user focus. Four candidate sets of icons were designed and tested for
Star. A representative sample from each set is shown here. In Star, the icon selected by the user
is indicated by inverting its image. Candidate icon sets in which the images are mostly white
allow icons to stand out when selected. The set that best satisfies this criterion, the one on the
upper left, was chosen.

Requirements specification : page 17.

alignment. The control point
highlighting allows a user to
distinguish a rectangle from four
straight lines; both might produce the
same printed effect but would respond
differently to editing.

• Consistent and appropriate graphic
vocabulary. Property sheets (see
Figure 2) present a form-like display
for the user to specify detailed
property settings and arguments to
commands. They were designed with
a consistent graphic vocabulary. All of
the user's targets are in boxes;
unchangeable information such as a
property name is not. Mutually
exclusive values within choice
parameters appear with boxes
adjacent. Independent "on/off" or state
parameters appear with boxes
separated. The current settings are
shown inverted. Some of the menus
display graphic symbols rather than
text. Finally, there are text parameters
consisting of a box into which text or
numbers can be typed, copied, or
moved, and within which text editing
functions are available.

• Consistent and appropriate graphic
vocabulary. Property sheets (see

Figure 2) present a form-like display
for the user to specify detailed
property settings and arguments to
commands. They were designed with
a consistent graphic vocabulary. All of
the user's targets are in boxes;
unchangeable information such as a
property name is not. Mutually
exclusive values within choice
parameters appear with boxes
adjacent. Independent "on/off" or state
parameters appear with boxes
separated. The current settings are
shown inverted. Some of the menus
display graphic symbols rather than
text. Finally, there are text parameters
consisting of a box into which text or
numbers can be typed, copied, or

moved, and within which text editing
functions are available.

Figure 5. Revealed structure. At the top is the WYSIWYG view of mixed text and graphics.
The middle two panels show that structure is revealed when an object is selected. When a line
segment is selected, its control points are shown. When text is selected, the text string is
revealed. The bottom panel shows the effect of the Show Structure and Show Non-Printing
Characters commands, which is to reveal the location of embedded graphics and text frames
(dotted lines) and "new paragraph" and Space characters.

Figure 6. Match the medium. Many
graphic refinements were made during the
design process. For example, the turned
corner of the document icon was moved
to the top so that the three lines of label
would line up with the labels of other
icons. Also, icons were carefully sized
and positioned against the gray
background to create smoother lines.

Requirements specification : page 18.

• Match the medium. It is in this last
principle that the sensitivities of a
good graphic designer are most
apparent. The goal is to create a
consistent quality in the graphics that
is appropriate to the product and
makes the most of the given medium.
Star has a large black and white
display. The solutions the graphics
designers devised might have been
very different had the display had
grey-scale or color pixels.

A common problem with raster
displays is "jaggies": diagonal lines
appearing as staircases. With careful
design, jaggies can be avoided, for
example, by using only vertical
horizontal, and 45-degree angles.
Also important is controlling how the
edges of the figures interact with the
ground. Figure 6 shows how edges
are carefully matched to the
background texture so that they have a
consistent quality appearance.

Requirements specification : page 19.

REFERENCE.

REQ6 : J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith, C.H. Irby, M.
Beard, K. Mackey : "The Xerox Star : a retrospective", IEEE
Computer 22#9, 11 (September 1989).

–––

QUESTIONS.

From an examination answer : "After a week or two on the Macintoshes I
felt like an expert". Comment.

From an examination answer : "... the style is consistent ... always delete by
dragging to a trash can". From a word processor ? And what about ejecting a
disc by dragging it to trash ?

–––

