
GUI : GRAPHICAL USER INTERFACE

"Graphical user interfaces" have evolved from nothing within the last ten years or so, to
the delight of many and the consternation of a few (who are not necessarily obstructive
traditionalists – they include people with disabilities which make it difficult for them to
see the full two-dimensional screen, or to manipulate a mouse, for whom the great leap
forward to GUIs was in practice a great leap backward). We are stuck with the
abbreviation GUI, which probably pleases no one : the traditionalists would prefer to
write it in full, while the graphics freaks would rather use an icon.

WHAT'S THE DIFFERENCE ?

It is very difficult precisely to identify the essential difference by looking at different
available GUI systems, because they differ from the older systems in several respects. In
the Macintosh system, a completely new interface is put on top of a rather traditional
operating system, and you can run MS-DOS or Unix through a GUI if you want. This
does emphasise that we are talking of the interface only, not the facilities provided by the
underlying software.

That in turn has encouraged a conscious separation of systems into basic operating
system and user interface, with a clearly defined internal interface between the two. This
has a number of advantages : for example, it is easier to adapt the user interface to
continuing changes in technology, and it is easier to provide different interfaces for
different languages, which has always been a particular problem where the languages use
a different character set (Russian), and might not read from left to right (Arabic,
Chinese).

THERE IS NO DIFFERENCE.

Of course, that isn't strictly true, though from the computer's point of view it's very
nearly true. We do not really intend to deceive you, but it's worth making the point that
the essential function of the interface hasn't changed. To continue the theme of languages,
a graphical interface is merely one in which we use a graphical language instead of its
verbal equivalent. The object of the exercise is to convert an idea in our heads into
information in the computer system, or vice versa. In either case, the same problem must
be solved : our way of understanding things isn't the same as the computer's (insofar as
it can be said to "understand" anything), so there is a significant translation task to be
undertaken. Consider this simple example.

Agent Action Example

Person Think of
something to do XYZ

Person Formalise the
instruction

Delete XYZ

Person Plan an action,
using the

vocabulary

"I must type
'DELETE XYZ'."

"I must move the
pointer to the XYZ

icon, press the
button, move to the
'Trash' icon, and

release the button."

Person Issue the
interaction

Type :

DELETE XYZ

XYZ

(button down) (button up)

System Receive the
interaction

Sequence of
keyboard interrupts

and ASCII code
characters.

Sequence of mouse
movement and button

interrupts.

System Analyse the input Table look-up for
DELETE; file table
reference for XYZ.

Sequence of
operations identifies
type of action; screen

map reference to
identify XYZ and

'trash'.

System Synthesise the
instruction

It means :

"Remove XYZ from file table;
Reclaim disc space."

System Do it. Do so.

Clearly, there are differences in detail between the two methods, but there's no difference
in principle. Notice particularly that at the computer end the difference is tiny. The
implications for the system are not so tiny, as it's a great deal harder to maintain the
screen map than to maintain the file table (and you have to maintain a file table anyway),
but once that's done the process is straightforward.

The real difference, and the important difference, is for the people. Unless you have
never used anything but a graphics interface, you will be well aware that the experience is
very different from that of using a purely textual interface, and that's why the GUI
systems have become popular.

WIMP INTERFACES.

It's convenient to discuss the effect of GUI by decomposing another acronym, WIMP,
into its components, to see how they (more or less) separately contribute to the results.

Windows share out the screen into areas associated with different items – usually,
though not invariably, activities in progress – within the computer. This gives you
an easy way to keep track of several things at once, and (in some sense) to shift
the terminal from one activity to another by selecting different windows. The
particular contribution of the windows is the parallel display. Icons and mice aren't
necessary, though you do need some sort of pointer to identify the active window.
You can construct an effective, though possibly limited (because of the 24×80
grid), window system with a character terminal provided that its characters are
addressable. (The old "glass teletypes", which only let you write serially to the last
line of the display, won't do.) There is debate on whether it's better to let
windows overlap, or to keep them all in full view (a tiled screen).

Icons, like windows, associate different areas of the screen with different items, but in
this case the items are objects rather than activities. Some signal sent when a pointer
is within such an area is interpreted as selecting the associated object. No keyboard
skills are required. This works reasonably well with only a few icons, but can
become exceedingly confusing if there are many – and, as icons cannot be ordered
in any useful sense, there is no general way of reducing the confusion. Other
serious criticisms are that they can be hidden under other icons, or off screen, and
that it's very hard to make effective new icons.

Icons are based on the principle that a picture is worth a thousand words.
Assuming that the principle is true, icons are therefore potentially great time-
savers – but only if the thousand words are the words you want. Apart from that,
their major attribute seems to be that designing new icons gives GUI programmers
something to do when on a real text-based system they would be wasting their time
working out stupid acronyms. We will allow that it might be just that we haven't yet
met a system where icons are used effectively.

Menus are lists of items, usually, though not necessarily, presented in words, from
which one item is to be selected. The principle behind the use of menus is that, at
any point in the execution of a programme at which one must make a choice
between different ways to proceed, the programme certainly knows what
possibilities are available, while the person using it might not. That being so, it is
more sensible for the programme to display the list and request a choice than for the
person to rely on (possibly inadequately informed) memory.

Pointers are symbols which appear on the computer screen. A pointer is not a part of the
information displayed by any of the running programmes; instead, it is displayed by
the operating system, and identifies a currently significant position on the screen.
Pointers commonly go with Mice, or equivalent devices. Generally, a mouse is
anything except the standard keyboard that people can use to move a pointer
around. A mouse is conventionally equipped with one or more buttons, which can
be used to send signals to the computer. No one knows what the "best" number of
buttons is. It is fairly difficult to separate mice from pointers, as they're very much
a single system – you don't know where to move the mouse if you can't see the
pointer. (That's another case where the input and output parts of the terminal must
be closely coordinated.)

(Some claim that the M stands for Mice – or that the P
stands for Pull-down menus, or Pop-up menus,

depending on their background. Others add an S,
standing for Selection.)

HOW TO USE WIMP.

Given that machinery, there are lots of ways in which its components could be combined
together to make a coherent system, but there does seem to be consensus on how to do it.
The screen is divided into a number of windows, each of which is associated with some
activity in the computer. Several windows may be associated with one programme; it's up
to the programme to make sense of what happens. At any time, some window is active,
which means that any keyboard transaction, and any mouse transaction with the pointer
lying within the active window, is directed to the programme owning the active window.
Other programmes which are running can change their windows without affecting the
active window. Merely moving the pointer to lie within another window has no effect on
the computer's "real" work, but something has to keep track of the pointer's position. A
special signal – invariably (?) a click on a mouse button – is used to switch the active
window to the window in which the pointer is lying.

The most important point about that description has nothing to do with any of its
details; it is that managing the correct functioning of these facilities is all the responsibility
of the software which drives the terminal. This brings us back to the user interface
management system which we introduced in the chapter USING TERMINALS. Provided
that a certain, small, number of defined signals can be exchanged with the other
programmes using the interface, we can implement this component in any way we like. If
someone presents us with a superholographic three-dimensional display, or contrariwise
we are reduced to using a set of not-too-clever character terminals, one for each process,
we can manage somehow. In other words, we can construct a user interface manager
which looks after the screen, and provides a service to programmes which wish to use the
screen. Indeed, it is more accurate to say that we must provide such a manager, because
only in this way can we guarantee that different programmes will use their parts of the
screen consistently and without interfering with others.

WHAT THE USER INTERFACE MANAGER SHOULD DO.

Like any server, it must provide facilities which help people to do the things they want to
do, and also provide safeguards for the system and other people as required. For a single-
user machine, the safeguards might be less important; we might like to protect the system
itself from harm (or we might take the view that if you programmed it, you deserve the
consequences), while on a shared system we might be much more careful. Generally,
though, we define a set of reasonable interface transactions which we believe should be
available to a programme, and define signals between programme and interface which
correspond to these transactions. Typically, we'd provide procedures accessible to the

programmes which would look after the details of managing these signals. After that, it's
up to us to implement the interface in any way we like.

What are the "reasonable interface transactions" ? They must permit programmes,
and the operating system, to display material on the screen, and receive input from the
terminal input devices. If we only want to run teletype-like displays, that's probably
sufficient; if we want to use graphics, then we'll also need ways of specifying window
sizes, and coordinates within windows, and of displaying things at prescribed positions
and of reading the position of the pointer. That's about the minimum we need, though
there are many other possibilities. For example : what about the window position ? We
can either let the programme specify it, or leave it to the interface manager to find a place.
Another possibility is provision for input from, and output to, disc files, as we suggested
for command files and terminal logs. So far as we know, there is no GUI management
system (or graphical UIMS) which makes such provision – but if our arguments are
correct, it's only by implementing such a coordinated manager that we will derive the full
potential benefit from the GUI scripting languages now appearing. It will be interesting to
see what develops. Finally, as a general principle, if we want to make sure that the
interface is managed properly, then as much as possible of the work should be done by
the interface manager – particularly administrative details, like keeping track of changes
to obscured portions of windows and displaying them again when the obscuring object is
removed.

The interface must also look after some less obvious tasks, which don't normally
concern people writing programmes. It must keep track of the currently active window so
that it can send keyboard input to the right activity, and it must keep track of the pointer
position so that a mouse button signal can be handled appropriately. To do so, it must
receive the signals from the mouse, or other pointer control device, and interpret these
appropriately. A traditional mouse or a { trackerball or trackball, depending on where you
are } produces a stream of signals each denoting an incremental movement forward,
backward, left, or right; joysticks produce a signal which can be interpreted as a direction,
and sometimes a speed, of motion; touchpads produce signals which give the current
position of contact on the pad. It is obviously not difficult to convert any of these into a
common form, which can then be used to adjust the pointer position.

Here we see the terminal as a selection device, as the destination of the signal might
be the current active programme, or the operating system. (Recall the dual function of
the terminal.) In a multiprogramming system, an operating system transaction might
direct a signal to a different programme. We can think of the whole system as an evolved
form of the primitive system we proposed earlier; the diagram below illustrates the point.

User
interface
manager

Keyboard

Screen

Mouse Pr
og

ra
m

m
es

It might be helpful to summarise all this activity by regarding each window on the
screen as a different peripheral device, owned by a single programme; operating systems
have been handling such systems for a long time. Then the job of the GUI is to implement
all those on a single terminal. Provided that the GUI can provide and accept essentially the
sort of signals which would have been used with the set of separate devices, then the
system will work. This emphasises the separate nature of the GUI.

It isn't the operating system's job to worry about what is in the windows. It's the
programme's business to decide what's on the screen, then, once decided, it's the
operating system's business to get it there. Similarly, while we want consistency in the

interpretation of input to a programme, only the programme knows how to do it, so the
operating system is restricted to passing on low level information – "That was a double-
click" rather than "That was a select operation". While there really is no hard-and-fast
line, the principle is that the operating system should provide general facilities, while the
programmes look after specific requirements.

–––

QUESTIONS.

Just how does a GUI make operating system operations easier and faster ? –
or harder and slower ? (Ask yourself w h y it works, not just what happens.)

–––

