HOW TO USE A TERMINAL

The archetypal computer terminal was a Teletype machine, which is not much different
from atraditional mechanical typewriter with electrical additions which can detect when
keys are pressed and transmit corresponding encoded signals aong a wire, and also
receive electrical signals from the wire and cause these to drive solenoids which operate
the corresponding keys. And that's all. Y ou could do anything you liked with it, provided
that it could be done with the standard characters and a few control operations such as
backspace, carriage return, and line feed. Y ou couldn't wind the paper back, and you
couldn't untype characters, so each typed line could only get blacker and blacker until you
moved to the next line below, at which point the line you had just left was out of reach for
ever.

Under these constraints, the scope for clever user interface design was rather
limited, but it wasn't zero. It was big enough for the development of three styles of
operation which are still around. These are sometimes called encoding and selection, used
mainly for giving specific instructions, and prompting, used to provide arbitrary
information. To get something done using encoding, you have to know how to do it — so
if you want to edit afile called X, you must know the correct instruction (say, edit X).
Getting something done using selection is a cooperative effort between you and the
system : the system presents you with alist of possibilities, from which you select one.
Prompting is also cooperative— the system asks a question, to which you give an
answer.

We mention these facts to make an important point : encoding, selection, and
prompting are still the only ways we have to use terminals. We have cleverer ways of
doing them now, but we still do them. The ways in which we can use terminals and the
physical forms of the terminals themselves are not completely independent, but they are
fairly close. Here are some examples showing how the different techniquesfit in.

TEXT —THE COMMAND LINE.

The command line interface is the traditional way to give instructionsto an operating
system. Y ou give the computer an instruction by typing a string of text. It is simple,
familiar, and cheap. It demands simple typing skills for efficient use, but most people
seem to be able to cope reasonably well. It is simple encoding : you have to know the
right way to form the instructions (say, edit X), and you simply enter them at the
keyboard. If the instruction is faulty in any way, you should receive an error message,
but just what that's like depends on the system. The big advantage of this method is that it
will work immediately for any instruction, provided that you get it right, so it can be very
effective for anyone experienced in using the system; also, there is no overhead for
congtructing displays, formatting, etc. The disadvantage is that if you forget the
instruction there's nothing intrinsically helpful about the interface — though in practice
thereis usually some sort of help system available.

MENUS.

In amenu interface, the possible choices are presented (possible, if inconvenient, with a
teletype, but practicable with a screen) and you pick one. The simple way to select your
choiceisto enter its number or other identifying symbol at the keyboard; that's possible
with any terminal. Once you can move a cursor around a screen with arrow keys from the
keyboard, you can select by placing the cursor at the appropriate position and
(typicaly) pressing <return>; and when you have a mouse which can move a pointer,
everything becomes easy.

But all these are essentially the same method. They all depend on cooperation
between system and person, in which the system presents a set of possibilities, from
which one can then be chosen. This method works well if the number of possibilitiesis
comparatively small (so that the menu will fit on a screen), and automatically includes a
reminder of the set of possibilities. On the other hand, it takes time for the system to draw
the menu and for you to make the selection; if you construct the system in the obvious
way it can waste alot of time for someone who knows which choices to make without
looking at the menus.

FORMS.

Menus work well if the answers are known in advance, but they are not very useful for
gathering general information. Thisiswhere prompting is of value : the system displays
a question, and you enter the answer from the keyboard. There is ill no more
satisfactory way to enter an arbitrary name (personal, file, or whatever), or anything
else for which it'simpossible to predefine a sensible list of possibilities. A formisjust a
collection of prompts, to which you respond in the obvious way.

Forms interfaces can be very effective, and they turn up today not only as "pure"
forms, but as the dialogue boxes well known in WIMP systems.

WIMP.

WIMP interfaces are the conventiona (Macintosh, Windows, X-windows, etc.)
graphical interfaces which depend on a mouse and a graphics screen. They are included
here for completeness, but are sufficiently demanding to justify special treatment; we shall
have much more to say about them in the next chapter.

QUESTIONS.

How could you speed up menu selection for someone who knows the
answers ? Consider the separate virtues of selection by mouse and selection
by keyboard entry.

