
USING TERMINALS

A conventional computer terminal (which we take to include screen and keyboard, and
any appendages like mice or light pens or whatever) is at least two things : an input
device and an output device, which we shall for convenience call keyboard and screen. In
normal usage, at least until quite recently, these were quite independent, and were handled
by the computer as two separate devices. The only link between them was the echo – the
computer's normally automatic retransmission to the screen of every character it receives
from the associated keyboard. We shall see that newer ways of using a terminal require
closer coordination between the input and output sides, so that the separation is becoming
less clear; but we shall assume it for a while because it helps to clarify some issues.

As well as that rather low-level definition, though, a terminal is several other things.
In particular, it is the primary communications channel between people using the
computer system and the system itself : that distinguishes it from any other device
attached to the computer. Other devices are driven by the computer, but the computer
must in some respects be driven by instructions from the terminal. Indeed, the terminal
has two functions : it is both somebody's interface with a running programme, and an
interface with the operating system. Ideally, it should be switchable between these
functions at the whim of the person using it – so that, for example, the system can be
instructed to stop a programme which is for some reason out of control.

What do we want the terminal to do in these two rôles ? The requirements seem
rather simple. Surely we just want the signals from the input devices to be communicated
without change to the programme, and the programme's output to be communicated
without change to the screen. Don't we ?

No, we don't. Not always. Even with (especially with ?) character terminals,
people want systems to provide for programmable function keys, and not many
Macintosh programmes need to know about every bit which passes from the mouse to the
computer. The tricky task is to define just what we do want. In fact, the "definition" in the
previous paragraph is couched in language at much too low a level. Ideally, we would
like an interface which simply and effectively conveys whatever it is that we want
conveyed between ourselves and the computer – we want a terminal which knows what
we mean.

That gets us out of the low level straight away, for the things we really want to get
into the computer through the terminal are things that come from our brains, which we
shall call ideas. Some of these are matters of straightforward information (numbers,
names, etc.), but others are things we want the computer to do (programmes), things
we want the screen to do (move or resize windows), or matters of æsthetics (the
layout of a document). We are very accustomed to encoding all such material in text of
one sort or another, but one of the factors which led to the development of graphical
interfaces was the belief that such methods made it much easier to convey some ideas.
This is particularly obvious in matters directly connected with terminals, but it spreads
more widely too.

We must also worry about the two functions described in the first paragraph. How
(if at all) do we provide for access to the operating system while a programme is
running (for example, to stop the programme if it's out of control) ? Unfortunately,
most older systems give you this :

System

Programme
Echo

Screen

Keyboard

(The little rectangles within the software boxes represent the terminal communications
parts; we'll say much more about them in the IMPLEMENTATION section.) When your

programme is running, the keyboard won't talk to the system at all, except by courtesy of
the programme, which is usually not extended. We'd like some signal to switch the
destination of input between programme and operating system – and it would also be
good to have some means of separating output from your programme from that from the
system. Most people who have used interactive systems of the old style know how
annoying it is to find a system message appearing in the middle of your nicely formatted
output. What we'd like, in fact, is something like this :

System

Programme

Echo

Screen

Keyboard

We'd like the keyboard to communicate impartially under our control with system and
programme, with each returning its output to the screen, and the input echo also appearing
on the screen, the whole organised into an appropriate logical sequence. (That comment
is added because if your programme takes any length of time to perform calculations
between its output operations, it can be easy to enter the next input before the logically
preceding output appears. If the echo is displayed immediately, that can give curious
results.) There is no great difficulty in making your system work like this, provided that
you decide that you want to before writing the software – but it hardly ever happened.

If we push the idea to its limit, we define a function of a terminal which has always
been possible, but – until recently – has rarely been exploited : that of controlling
several programmes simultaneously. "The" programme mentioned above might be
several; with graphical interfaces like the Macintosh's desktop or the Windows system,
we can switch from programme to programme at will, and from activity to activity within
a programme. That's just what we want – but one might wonder why we never realised it
before.

Even without multiple simultaneous programmes, though, the simple picture we
have given is far from adequate. Just to give one example of such shortcomings, consider
the requirements imposed on the interface by the requirement which we have already
mentioned for command files. At first thought, implementing command files appears to be
quite simple; all we need is slightly more complicated communications software within the
programmes which can read either from the terminal or from a designated disc file. A
simple system based on this idea does indeed work quite well so long as the command
files are required to work only with the system input – but once you start to run
programmes, matters become more complicated. How does the programme's
communication software know that it has to use a command file ? – and, if it does know,
how does it know which file, and where to start in the file ? Because of these difficulties,
many early command file systems were (and an uncomfortable number of systems still
are) organised something like this :

System

Programme

Disc

Screen

Keyboard

The focus of the problems is the requirement for coordinated action of the separate
communications procedures in different programmes, and as the requirements imposed on
the input and output interfaces become more demanding the problems multiply.

The solution is to separate the software controlling the input and output into a
distinct part of the operating system. This new component communicates with the various
devices – terminal, disc, and others as required – and with the rest of the software. The
new scheme combines the desirable features of the simple interface, which we saw
earlier, with the capacity to incorporate other devices and features, such as terminal logs :

System

Programme

Echo

Disc

Screen

Keyboard

Systems of this sort really did work, and were very comfortable to use. We remember
with nostalgia a DEC Tops-10 system running on a DEC10 computer, with command file
facilities provided by software called MIC. That came quite close to our recommended
system above, the main deviation being that the language used by MIC was not quite the
same as that used through the terminal. But it was very close ...

We shall not elaborate the details any further at the moment, but the point – once
again – is that without careful specification and design from the beginning, it is difficult
to produce an operating system which does what you want it to. In this case, we have
taken the first steps in the evolution of what is now known as a user interface
management system (UIMS), and we shall have more to say about it later in the chapter
TERMINALS AS DEVICES.

Even without going to such lengths, we clearly want some sort of software layer
between the running programme and the terminal which does more than just transmit
signals. For a character terminal, it might just look for particular character sequences and
do something special when they occur – so the function key's escape sequence can be
replace by a defined text string, or an escape character might switch control to the
operating system. Perhaps that's where the idea of shortcuts originated. (Earlier systems
were more likely to provide a small selection of control characters, each of which
performed a specific operating system function, rather than a general switch; if you want
the more general result, you have to be more sophisticated in representing what's
happening in the system.) There are even some circumstances in which the interface
software needs to watch both input and output transactions : consider how the password
is blanked in the Unix login sequence, and how the significance of a mouse click is
interpreted when using a graphical interface.

This software layer can be organised in several ways. The organisation we choose
is determined by the facilities we wish to provide, and we shall come back to it later when
discussing how the system handles terminals regarded as devices.

–––

QUESTIONS.

Do we need to distinguish between the operating system and a running
programme when discussing what terminals do ? Is the distinction real ?

–––

