
JOB-CONTROL LANGUAGES

WHAT ARE THEY ?

A language is a means of conveying information to somebody or something; it doesn't
have to be text or speech, or even necessarily be parsable into words and sentences. Many
deaf people can communicate very effectively by signing; at a very much lower level of
sophistication, we all communicate by body language.

In computer terms, many programming languages, including traditional job-control
languages, are expressed in textual forms which depend strongly on our experience of
using language in everyday life : they are formalised versions of written English
(usually, for historical reasons, but any language would do). As well as that, though,
we communicate with computers through menus, WIMP interfaces, touch screens, pen
interfaces, and so on. These are effective languages too; there is clearly a lot more to be
said about computer languages than is accounted for by the Chomsky hierarchy.
(Chomsky is a linguist, but concerned essentially with the development of conventional
language.) These other languages can be seen as more akin to manual sign languages
than to written and spoken English.

Here, we shall try to cover all the main sorts of Job-Control Language (or JCL),
so we'll certainly fail. That includes textual and WIMP languages, and both interactive
control of the system and control through command files. Try looking for gaps in our
arguments, such as they are, and fill them in from your own experience. There's no prize,
but if you find anything interesting, we'd be happy to hear about it.

WHERE DID THEY COME FROM ?

They were originally monitor control cards. These were used to tell a simple monitor
system what to do next; they were inserted at appropriate points in the deck of cards
which made up the job, and allowed you to give instructions such as COMPILE, RUN,
RENAME … – but typically in more cryptic form. As monitors maintained no notion of
a continuing job, there was very little in the way of conditional control.

As batch jobs became more elaborate and more demanding, the JCL had to grow.
Classical control structures were found to be useful (loops, conditions, subroutines);
and some sort of job variables were needed if only to carry information through the job.

With interactive systems, the JCL contracted again. The system no longer needed to
carry the information, as there was always somebody there to do it; similarly, any
necessary decisions could be taken as they arose, so elaborate programmes which catered
for all contingencies were no longer required. The instructions with which you control a
text-driven interactive computer system are much like the old monitor control cards,
though they're often much better adapted to use from a terminal; more formal JCL
programmes are still used for command files and for controlling batch jobs.

WHAT ARE THEY LIKE ?

ASSEMBLY-LANGUAGE type : Here's an excerpt from a manualREQ2 :

The example shows the typically cryptic instructions, often requiring data to be put into
special positions in the record. The JCL programme was (almost ?) always executed
interpretively, with no correlation between different parts of the job; syntax errors within
instructions were therefore found (once the interpreter reached the offending statements),
but consistency between instructions could not be checked. These were characteristic of
monitor systems, but their influence persisted for a long time.

Notes :

The "master cartridge" is whatever cartridge was loaded on the default disc drive.

"Working storage" (WS in note 2) and "UA" (standing for "user area") are areas
on the disc. There were only two, apart from space reserved for the system - the
user area stretched from the first disc sector to the end of the allocated disc space,
and working storage was the rest. The user area was always kept compact, so when
you deleted a file all the files beyond the point were copied backwards. Executable
programmes were built by the system linker in working storage, and could be run
from there without formally declaring them to the file system.

A LOCAL is a sort of system subroutine which runs in a special overlay area - it
doesn't mean "local", but "LOad on CALl".

An ILS is an interrupt-level subroutine.

"exectued" is a misprint.

HIGH-LEVEL type : For contrast, here's an extract from a different manual of about the
same vintage, describing an equivalent instruction. This one (Burroughs WFL REQ3)
shows Algol-like structure and free form text; as an additional curiosity, it was compiled,
not interpreted :

Example :

RUN X;
RUN A/B [T]; STACK = 500;
RUN A/B (1, I, FALSE, 3.14, 3"123", "HI THERE")

[T1]; FILE C := G; BDNAME=X;
FILE F(BLOCKSIZE = 30, KIND = PETAPE),

G(KIND = DISK);
FILE H = ABC/D DISK;

RUN A/B THIS IS A COMMENT; VALUE = I;

Run Statement :

RUN
EXECUTE

filename
parameters

comment

task identifier

; task attribute assignment

[]

Notes :

In the first instruction :
X is a file name, here used to identify a programme.

In the second instruction :
A/B is the programme file name.
T identifies a task variable, associated with the execution of A/B. This is

essentially a process control block, which will turn up again in the
EXECUTION section.

The STACK attribute of the task is defined; it governs the stack size for the
task.

In the third instruction :
A/B is the programme file name, followed by a collection of parameters.

(The syntax description isn't very systematic; the parameter
parentheses are defined in the further syntax diagram for parameters.)

T1 identifies a task variable, associated with the execution of A/B.
C, F, G, and H are the internal names of files used by A/B. C is identified with

a global file called G, and certain attributes of the others are defined.

In the fourth instruction :
A/B is the programme file name, followed by a very Algol-like comment.

(The compiler knows it's a comment because it can't be anything
else.)

The task's VALUE attribute is set; this can be retrieved from inside the task's
programme, so provides a channel of communication between operating
system and programme.

GRAPHICAL languages : instructions are given by moving a cursor of some sort around
a screen with areas predefined to have some significance. Menus and WIMP interfaces are
commonly used. (Menu interfaces can be used with character terminals too.)

COMPARISON.

The assembly-language sort of JCL has (we think) died. It was very easy for the
system software to interpret; as everything was in a specific place, no parsing was
necessary. (Could one suppose that, in their reliance on position, these languages
anticipated the graphical languages ?) This ease of interpretation was very important
when the language had to be handled by a resident monitor system, and space was at a
premium. It was very hard to enter from a terminal – but comparatively easy from a card
punch, which you could programme to tabulate to specific column positions.

Languages of the high-level type, with or without advanced features such as
conditional statements and iteration, are still with us (though still not often up to WFL
standard), and works well. They are in competition with graphical interfaces. You need
a lot more software to drive a graphical interface effectively, but unless you're willing to
waste a lot of processor time (which perhaps you are), they can be quite slow.
(Comment from a colleague on first seeing a Macintosh : "It's a great achievement to
make a 68000 run so slowly !" - but it's a long time since Macintoshes used 68000
processors.) So far, the only realistic way to write a script for interactive or batch use is
to use a textual language, though things are changing; see our comments on "Applescript"
later on in SESSION LOGS AND COMMAND FILES.

WHAT SHOULD THEY BE LIKE ?

- which is to say, what facilities do we need in a job-control language in order to be able
to use it effectively ?

Obviously enough, that depends on what we mean by "effectively", but for once
there's an easy answer : we should be able to use the language directly, through a
terminal, to make the system do anything we're entitled to do with it, and in a command
file to programme any sequence of actions which we might want to take if we were
watching the job proceed in person. That specification for the command file includes a lot
more than simply issuing one instruction after another. In any but the most routine jobs, if
we're sitting at a terminal running a computer session, what we do is determined by what
happens. If something goes wrong, we might decide to stop the sequence of operations,
or we might try an alternative approach, or we might first look at the state of the system or
the output produced by the faulty component to find out what went wrong, and then take
further action according to our findings.

If we are to come anywhere near to reproducing that sort of behaviour from a
command file, therefore, our JCL must include not only instructions with which we can
execute programmes, but also instructions (which we won't use directly) to inspect the
states of the programmes and of various aspects of the system, and take decisions, and
choose what to do next according to the results of the decisions. Here is a list of examples
of some of the implications.

Programme control : To control the execution of the command file, we shall require
the usual control structures we find in high-level programming languages –
conditional execution, iteration, composition of instructions, etc.

Communication with programmes : We require access to the current state of a
process, and to its recent output, and we must be able to set parameters for
processes. It is particularly important to be able to determine why a process
stopped.

Communication with the system : We must be able to determine normally
accessible facts about the state of the system – are certain files present, what time it
is, etc.

The JCL designer should provide syntactic devices with which these operations can be
carried out. To do so, the system and process attributes must be available, so these
requirements have implications for the way in which system information is managed, and
these implications must be addressed as the system design is further refined.

In practice, if you can precisely define what you want, it's usually quite
straightforward to make it available – but if you miss out this sort of analysis, then you
never find out what you want, and it can be hard to add it later when the system is already
designed and constructed. We think the "usually" in that sentence is fair; it means in three
of the four cases covered by our set of types of JCL. We've already mentioned the case
that isn't covered, which is the preparation of command files using a WIMP language.
Well, how would you do it ?

HOW WELL DO THEY WORK ?

Unix is the classic example of a traditional system; it's also, according to several usability
studies, one of the least comprehensible of its type, mainly because the usual Unix shell
makes widespread use of abbreviated instructions which don't obviously mean anything
informative or helpful. Other textual systems of the same general type can be made much
easier to use. In one experimentREQ4, people were asked to perform a simple computing
task using a terminal which (they were told) was attached to an intelligent operating
system which would try to understand whatever sort of instruction they entered. In fact,
the "intelligent system" was a conventional system helped by an expert, who would
translate any comprehensible instruction into its equivalent operating system instruction,
and engage in dialogue with the experimental subject through the terminal if an
incomprehensible instruction were received. (For reasons which are not clear to us, this
is called a "Wizard of Oz" experiment. "Wizard" we understand, but why "Oz" ? We
know about the story, but it doesn't seem to have any connection.)

Test
terminal

Expert's
terminal

Computer

Wall

All transactions were logged, and the log later analysed to find out how people naturally
formulated their instructions. Then the operating system interface was changed to cope
with these more natural instructions, and the experiment repeated. In the first iteration,
about 7% of the instructions which people tried were immediately acceptable to the
operating system; at the end of the study, the changed operating system could accept
about 76% of the "natural" instructions.

And that's not bad at all. So far as we know, though, while research on this and
related topics has continuedREQ21 , no manufacturer ever took up the challenge, and most of
the traditional job-control languages remained obscure. One might wonder what would
have happened if the textual style of input had remained fashionable through the
development and popularisation of microcomputers. Certainly experiments of the sort
we've described suggest that much better textual interfaces are possible, and if the amount
of effort expended on graphical interfaces had been put into the improvement of textual
interfaces, who knows what might have turned up ?

BATCH SYSTEMS.

The old-fashioned batch systems are still useful, even though interactive work is much
more common. Plenty of routine jobs (summaries, reports, housekeeping) can be done
very efficiently without intervention; some specialised jobs make great demands on the
system resources (large number crunchers), and can't coexist with ordinary interactive
work. In general, the more work you can do in the middle of the night, the more you can
get out of your computer system; many systems encourage people (lower charges) to
run jobs at night whenever possible. But it can be overdone REQ5 :

IBM4341 BATCH QUEUES CLOGGED

Owing to the large number of jobs being sent to the IBM4341 overnight
batch
queue, turnaround time has lengthened to about four days. There is
little
that can be done about this.

Russell Fulton

The omission of such a batch or command file facility from the Macintosh system was a
significant nuisance : as a simple example, a common sequence of actions which one of
us used frequently after making a final copy of a file (such as this section of these
notes) is to move it from a working directory into another directory, and also to copy it
through a network connection to a directory on a different machine for off-line archiving.
Sometimes one forgets the off-line step, so archives become inconsistent; to be able to
make a command file to do it all systematically and easily would be very helpful. Now
Applescript is available, circumstances have changed, so the same procedure is no longer
necessary, but that's the sort of job which it should do well.

YET ANOTHER LANGUAGE - THE ONE WE DON'T MENTION.

What we have written so far in this chapter is what you might call the party line; there are
two sorts of language which we use when communicating with a computer through a
terminal, one graphical depending on the cooperation of the operating system, and
selection from different possibilities diaplayed on the screen, and the other textual,
essentially independent of the screen display and expressed in a "command language"
which should be clear and precise and so on.

But there is another sort of language, widely used with graphical interface systems,
which fits neither of those patterns, and which can be very powerful. It goes under the
name of shortcuts, command key codes, and other such incomprehensible titles; it is a
way of issuing instructions through the keyboard which bypasses the graphical interface,
and is often a lot faster - once you know what to do.

This is not at all a respectable language. It has no syntactic structure, isn't
"intuitively obvious", uses cryptic symbols, and is not easy to discover. These are all
very bad things, and we wouldn't mention the language at all if it didn't make a very
important point about terminal use : that is, that for all our agonising about designing
languages of one sort or another, people - some people, anyway - are quite happy to get
along with what amounts to a vocabulary of primaeval grunts. And they get along very
well.

Why, then, do we worry so about our carefully designed respectable languages ?
We'll give two answers to that question, both of them good. First, an orderly and
systematic framework is valuable when you're learning to use a computer system. If you
have a set of reliable rules to follow, a set of conventions which generally work, and a
reasonably comprehensible vocabulary which you can use to refer to help files or manuals
when you get stuck, then you can start to work independently much sooner than would be
possible if all you had was a collection of grunts. Second, as with ordinary programming
languages, we do need ways to write down what we want done, whether for command
files or for records or for preparing instructions for other people to follow, and a language
which is consistent and reasonably comprehensible is a big help. And we might also add
that when you forget your arbitrary shortcut keys, it's good to have a reliable alternative
on which you can fall back.

Turn the question round, then. Why do people implement the shortcuts ? Again,
there are (at least) two good answers. First, if you do know them they can speed up
your work considerably, if only by relieving you of the burden of spending time moving
the mouse around. Second, some of them at least are indispensable for people with forms
of disability which mean that they physically can't use a mouse. Keys are comparatively
easy to use, either directly or by using some sort of alternative selection device, and the

key equivalents make the system accessible to many who otherwise wouldn't be able to
use it at all.

Finally, we note that the idea is not new. The menu interfaces which preceded the
modern graphical systems often allowed you to select an item by entering a letter or
number at the keyboard, and if you knew the sequence of menus which you were going
to meet (as you did if you often carried out the same task), you could remember the
correct key sequence and simply type it in as a unit. Unfortunately, hardly any systems
designers had noticed that, so however quick you were the system would go on
laboriously displaying all the menus in the chain and reading one letter from your input
string each time. So you didn't save any time at all.

COMPARE :

Lane and MooneyINT3, Chapter 4.

REFERENCES.

REQ1 : J. Nielsen : "Traditional dialogue design applied to modern user interfaces",
Comm.ACM 33#10, 109 (October 1990).

REQ2 : IBM 1130 Disk Monitor System, Version 2, Programmer's and Operator's
Guide, IBM Corporation, 10th Edition, 1972, pages 5-9.

REQ3 : Burroughs B6700 Work Flow Management User's Guide, Burroughs
Corporation, 1973, pages 2-13 (redrawn for clarity).

REQ4 : M.D. Good, J.A. Whiteside, D.R. Wixon, S.J. Jones : "Building a user-
derived interface", Communications of the ACM 2 7, 1032 (1984)

REQ5 : R. Fulton : Auckland University Computer Centre news, 21 March 1986.

REQ21 : B.Z. Manaris, J.W. Pritchard, W.D. Dominick : "Developing a natural-language
interface for the Unix operating system", Sigchi Bulletin 26#2, 34-40 (
April, 1994).

–––

