
CONTROLLING THE COMPUTER SYSTEM

The operating system is a device for obeying instructions. It controls a variety of
hardware and software resources which it can dispose as required when it receives
instructions, and we've seen that the instructions can come from several different
sources : from people, presented through the terminal; from files containing instructions;
and from programmes as they run. Here we enlarge on these sources, and how the
operating system can deal with them.

CONTROL FROM TERMINALS.

Instructions coming from the terminal are perhaps the simplest sort. They usually involve
one, or at most a few, programmes and steps of operation; and if anything goes wrong
the system can simply report the problem back to the terminal and rely on the person
running the job to sort it out.

Translating the input signals from keyboard, mouse, light pen, dataglove, or
whatever into instructions to be executed is the job of the user interface manager; we shall
discuss this component of the system in some detail later.

CONTROL FROM COMMAND FILES.

As well as such direct "hands on" control of the system, we also want to be able to collect
sequences of instructions and save them for execution later. This might be either because
we have found sequences of tasks which we often do, or because there are tasks which
must be carried out automatically or at inconvenient times. In either case, we want to write
a job-control programme which can be executed by the system as if we were entering the
instructions at a terminal. Such a programme might be called a job-control macro, shell
script, or command file. We shall call them "command files", because it seems to be the
most common name. It is perhaps self-evident on grounds of the desirability of
consistency (though in practice not always implemented) that the language used to write
the programme should be as close as possible to the ordinary job-control language used in
interactive work.

That is a fairly straightforward thing to arrange in a conventional system with a
traditional job-control language. It is far from clear how to provide the same facilities in a
system in which instructions are issued through a predominantly graphic interface. Even
if we restrict ourselves to text, there are many questions. Three main design requirements
give rise to a good proportion of these. They are the need for a flexible system, the need
for safety in case of error, and the need to cater for both the interfaces (programme and
operating system) associated with the input stream. The next three paragraphs present a
selection of the implications of these requirements.

We need flexible systems to cope with changing circumstances and changing
environments. A command file should be able to accept parameters, so that it can at least
be used with (say) different files at different times. The job-control language also needs
conditional constructs of some sort, so that the command file can be written to test for and
cope with different circumstances – such as missing files – in its environment. i f and
goto will do, but proper loops and subroutines are better. As such structures are not
obviously needed in ordinary interactive work, the job-control language must be
extended.

To write safe command files, we must be able to find out what's going on in the
system. We require good access to appropriate system tables – particularly file system
information. We also need good communication with the programmes we execute, so that
we can pass information to a programme, and also find out whether the programme
succeeded, or, if it failed, why.

Catering for both (command file and terminal) interfaces can be considerably
more demanding, depending on details of the way the system handles its terminals.
Generally, though, only in the simplest systems is it a matter of merely replacing input
from a terminal by input from a file : in fact, that apparently simple implementation
technique might be impossible if there is no system-wide terminal handling software. We
need means of directing instructions to either programme or system; and we need access
to the programme's output, so that we can take action if things are going wrong.

We shall say more about these questions when we discuss implementation issues
(in the chapter TERMINAL LOGS AND COMMAND FILES); for the moment, the
conclusion is that a good command file system is rather hard to get going – and probably
impossible without a repertoire of textual instructions. We shall say more about the job-
control languages themselves in the next chapter.

CONTROL FROM PROGRAMMES.

Whether or not system facilities should be accessible from programmes which aren't part
of the system has been a question of degree rather than kind at least since monitor systems
began to change into operating systems. Before the change, normal programmes were
seen as quite separate from the system; although subroutine libraries were often provided
to handle (particularly) input and output for people who didn't want to write their own
routines, these were independent of the system's own input and output routines (despite
the fact that they could well be essentially identical in their code !). With operating
systems, such freedom was no longer permitted. Instead, people were constrained to
perform all their input, output, or other sensitive operations through system procedures of
some sort, and protective measures (supervisor calls, etc.) were developed to protect

the system against unwarranted intrusion. Nevertheless, access is still possible, if only to
selected parts of the system. Is there any reason why we should prohibit such use ?

The ideal answer is perhaps "no, unless it could be dangerous for the system in
some way". In early operating systems, the facilities were often not available – either the
designers had decided that they would indeed be dangerous, or (more probably) hadn't
even noticed that there was a question, assuming that only operating systems needed to
use any special facilities, and that the system programmers could get whatever they
wanted anyway. Later systems took a more relaxed view, and provide means of acquiring
information about the state of the hardware, the operating system, the file system, and so
on, and of requesting various system services from programmes, ranging from changing
the protection codes of files to running other programmes. More recently, it has been
argued that developers should be encouraged to use the system's procedures in the
interests of compatibility. This leads on to the idea of the application programmer
interface, which we mentioned earlier; we shall discuss this further in the chapter
DEFINING A SYSTEM INTERFACE.

The facilities have usually been provided as a set of subroutine calls, commonly of
daunting complexity. While there is some excuse for the complexity if the service required
is intrinsically complex, and is not usually visible (perhaps changing memory
management procedures, for example), it is less defensible if all we want to do is
something for which there is a simple system instruction – say, removing a set of files.
In commenting on scripts above, we suggested that it was self-evident that they should be
expressed in the same language as that which one would use from the keyboard. Why
doesn't the same principle apply here ? Why can't we just write something like DO("rm
ss*") ? After all, all the machinery is there somewhere. In a few systems, we can do
just that (in Unix, we can indeed now write system("rm ss*"), but it's a fairly recent
addition); but in others, we must either go through a long rigmarole of calling a file
system procedure to expand ss*, then another, repeatedly, to remove the files – or we
must go through a different rigmarole to execute the rm programme with parameter string
ss*.

It's interesting that something quite like our suggestion was provided by the early
generation of 8-bit microcomputers, though by no means all provided anything
recognisable as a command file. In a common pattern of use, the terminal would accept
either Basic language instructions or system instructions, and system instructions could
appear in Basic programmes. The view among serious computists at the time was that this
was a hopelessly amateurish approach, but what could you expect from toys ? In the
INTRODUCTION, we asked whether such systems might have been taken more
seriously if our "service model" of operating systems had been adopted; we don't know
the answer, but it does seem likely that some lessons which could have been learnt from
these early systems had to be laboriously rediscovered later.

The first close approach to our DO() instruction which came to our notice was
implemented in the BBC microcomputer's Basic. It was called OSCLI (Operating System
Command Line Interface), and accepted a string variable, which could simply be an
instruction between quotation marks, or it could be tailor-made using the Basic string
operators. It worked.

–––

QUESTIONS.

What would have to be done to implement the DO() function ?

–––

