
COMPUTERS TALKING TO PEOPLE

It's interesting that with all this preoccupation with getting instructions into the operating
system, there is comparatively little obvious concern with getting information out. On
may systems it can be quite hard to be sure that the instruction we just gave really did
what we expected it to, or to find out just what state the system is in at the moment. We
don't know why it should be made so difficult, but here are some speculations.

• We assume that no one wants to know. Why should they ? People used to put
enormous jobs into batch systems and expect them to run without any feedback on
what was happening moment by moment.

(True enough, but batch and interactive disciplines are quite different. Batch is
simpler (if only because it isn't plagued by mail messages, and interruptions when
the system breaks down, and the temptation to try this quick fix to your problem
....), and the jobs are carefully planned. A good batch system will give you
enough information in its job log to follow the state of the system rather precisely,
though it might take a little time to work it out.)

• We assume that the system always does what it's told. And so we should –
it's only a machine, and we expect machines to follow orders without question.

(But, machine or not, it's a complex system, and it would be good to have at least
some acknowledgment that a task has been completed, or that it couldn't be done
because of some peculiarity of the system's condition. For example, if we tell the
system to remove a file, we'd like to be told if the file couldn't be found, because it
probably means we've mistyped the name. An even if we receive this sort of
commentary, unless we can get further information when we need it we're left to
infer the state of the system from what we think we've done, and it's not easy to
remember everything that's happened.)

• We don't think that we need a response. Lots of machines don't answer back
when they're given instructions – they just get on with the job. Cars don't
generally keep telling us what we've done – "Accelerator pressed, wheel turned
left, accelerator released, brake applied hard, hit something".

(But that's misunderstanding the point. Cars already give us quite a bit of
information about their internal states – petrol gauge, oil pressure warning,
speedometer, etc. – and we can observe quite a lot more by looking out of the
window. The traditional computer screen gives us nothing at all. Even a visible
cursor probably only means that the terminal is switched on.)

• We don't know what response to give. Perhaps this comes a little closer to the
point. What we really want to do is to maintain an awareness of the system's
state – what's happening now, how many files we have, what's in them, and
where they are, whether there is any mail waiting, the state of our account on the
system, and as many other things as we can think of. To keep track of everything is
difficult, and it certainly doesn't make sense to dump a complete picture of the
whole system to the screen every time someone does something.

What can be done to improve matters ? There are some obvious measures, which are
implemented in most systems. The most obvious is to provide means to request
information on aspects of the system state. That's (almost certainly) universally
available for the state of your file system, though even then it isn't always straightforward
to retrieve information which goes much beyond the simple lists of files and directories.
Just how much of this sort of information is available depends on the operating system's
designer (we take the view that operating systems have been designed, though we admit
that in many cases there is little enough evidence to support it), but to get it you have to
know what to ask for, and how to ask.

To keep track of the state of the system as a whole, other measures are desirable.
Here are three possibilities; there are certainly more, but these cover the ground.

SESSION LOG.

A session log is a permanent record of what happened during the computer session,
which might be a period at a terminal or a traditional batch job. It will include
information about which programmes were executed, and what they did. The level
of detail varies from system to system, but a good session log can be very
informative. These are very useful in diagnosing things that have gone wrong.

HELP.

One of the functions of a help system might be to make available information on its
parent operating system's current state. We shall have more to say on this topic in
the chapter SOURCES OF INFORMATION .

VISIBLE STATE.

An obstacle faced by designers of early systems, and particularly of the early
interactive systems, was the sheer difficulty of moving information about.
Everything had to travel along communications paths which were commonly
restricted to a few thousand, or even a few hundred, characters per second, and
which required considerable effort to administer. The first terminals followed the
Teletype conventions, and could only write forwards and down. This established a
pattern which was commonly followed in the interests of maintaining compatibility
with older equipment, even when character-addressable terminals became available.
With such restrictions, any sort of continuous display of the system's state was out
of the question. More enterprising systems used character-addressable terminals to
good effect, and achieved informative displays, but the enforced character matrix
made it hard to implement flexible displays which could give sufficient information.

Modern fast communications and high-definition pixel-addressable screens
have completely changed this part of the picture. It is now possible to move large
quantities of information around fast enough to be useful (though it's still
expensive if you're a long way away), and to use different areas of the screen
selectively. Because of these changes, we can now use part of the screen for
working and part to display system information, if we want to. It is common to
display significant parts of one's file system as a set of windows while one is
working on some other task, and the – also fairly recent – ability to move at will
between different activities makes it possible to break off from a task to find out
information which might not be currently displayed.

COMPARE :

Lane and MooneyINT3, Chapter 4.

–––

