
USABILITY : GETTING THE MOST OUT OF THE PEOPLE.

In an earlier chapter entitled EFFICIENCY : GETTING THE MOST OUT OF THE
MACHINE, we introduced the pursuit of efficiency, and asserted that it had governed the
first half of the development of operating systems. Batch systems are the culmination of
that process; over the years, they evolved into impressively effective and efficient ways of
running computers, and they are still used for many purposes. But their reign over the
whole computing world was of rather short duration. As we saw earlier, changing costs
saw the cost of computing – and, eventually, most other – people exceed the cost of
computing hardware, and the focus for decreasing costs had to move to increasing
people's efficiency instead of machines'. This is the principle which has governed
developments during the second half of operating system history.

This new sort of development is no longer a simple overlapping of operations, with
automation of tasks which people could only manage too slowly. This worked wonders
for the batch systems, but the result was systems which did very much the same sort of
work as those early slow systems from which they grew, and were expected to carry on
doing much the same. In the new systems, computers begin to take on different sorts of
work, which would earlier have been regarded as a waste of their time. To emphasise the
significance of the change, consider that in the 1970s postgraduate students at Auckland
university were not permitted to use the university's computer for what we would now
call word processing; computing time was much too expensive to waste on mere clerical
work. (We would now call it very primitive word processing, but the formatting
programmes which presented typewritten text nicely – notably NROFF on Unix
systems – looked pretty good at the time.)

Beneath this change, the principle remains the same : we are still trying to identify
the least efficient part of the operation, and do something about it. The differences are,
first, that the least efficient part has moved out of the computer, and might be the
secretary's (or postgraduate student's, who are very cheap indeed) retyping reports and
theses, and, second, that we can now use the comparatively cheap computer to try to do
something about it.

The progression, particularly as it affected the people who used the system, is
symbolically depicted in the diagram below; we discuss the more technical aspects of the
changes later.

Batch

Timesharing

Minicomputers

Microcomputers

Networks

Expertise
available Ease of use Loneliness

Batch systems ran in computer centres, which to some extent also became social centres.
You had to carry your cards there, and collect your printed output, so you'd get to know
other people using the system, and the computer centre staff. If you wanted help, lots was
available. When interactive services became available through timesharing systems,
interaction between people declined sharply; now you could use a terminal in your own
department, or even your own room, so you didn't meet other people or experts. You
could instead talk to people through the terminals, and the beginnings of electronic mail
grew up, but mainly between people at a single site, all sharing the same processor.
Systems did become rather easier to use, but mainly as a result of removing difficulties
than by actively seeking to help people.

With minicomputers, contact with the rest of the world diminished even further. If
you didn't have your own expert (or, more commonly, amateur expert, which was
sometimes good enough), you didn't do it. Electronic mail stopped. The trend towards

more easily used software continued, though still with little concession to the non-
technical. That came with microcomputers, when terms such as "user-friendly" became
common, and no more honest than they are today. At least, though, there was an attempt
to make interfaces comprehensible to real people who hadn't spent years learning about
programming. Nothing particularly new has happened since, though the machines
themselves have become smaller, more powerful, and more various. We have heard of
lap-top computers, palm-top computers, personal digital assistants, and other silly names;
some of them have operating systems which deviate significantly from the traditional
pattern, but from the usability point of view the same trends have continued.

Networks are the most recent significant development. These have brought back
electronic mail (quite some time ago now, though the internet in its present form is less
than ten years old – in 1988, it wasn't straightforward to exchange electronic mail
between England and New Zealand), and many new and more elaborate variants of that
and similar communications techniques with the World-Wide Web only the latest of a
series of novel techniques. When these sort themselves out, we shall have a range of
methods for communicating data of many kinds between machines, and ways of running
many machines together as integrated systems. What we don't know yet is how we can
best use the systems.

As with all other developments in computing, there are many prophets ready to tell
you that "the information superhighway" (anything that needs a name like that really
must be pretty rubbishy !) will solve all our problems. We don't believe it – it's never
been true before. We confidently expect that the fully developed network systems will
solve some of our problems, and create some new ones. Some of us will end up a little
better off, perhaps financially, perhaps in access to information or other people, perhaps
in other ways. There will almost certainly be new opportunities for crime, which the
criminals will find first, then the law-enforcement agencies, then – a long time later – the
legal profession. Eventually, it might even seep through to politicians, but don't bank on
it.

In short, international networks are tools, and we'll use them as just as wisely and
well as we use other tools.

INTERACTIVE SYSTEMS.

The first dent in the batch systems' monopoly was the appearance of interactive systems,
in which jobs punched onto cards were replaced by jobs submitted from terminals. While
terminals themselves were not new, they had previously been used either as operators'
consoles or for programmes' input and output in the same way as other devices. The new
feature was the use of terminals for both input and output and direct communication with
the operating system. From the point of view of efficient use of the central processor, this
is a step backwards; it is never possible to achieve acceptable response to a terminal while
at the same time using most of the processor time profitably. The aim of an interactive
system is to make more efficient use of the people who are working with the computer.
Whether or not it is as successful as is sometimes claimed is a matter of debate, but the
significant feature is in the shift of viewpoint.

MICROCOMPUTERS.

The development of minicomputers around 1970 to 1980 made little difference to
operating systems practice. Those which had anything corresponding to an operating
system followed very much in the footsteps of the large machine systems, typically
demonstrating their authors' inability to learn from their predecessors' mistakes. The only
major difference was the direct assumption that terminals would be the major form of
communication with the computer.

The advent of microcomputers from about 1980 onwards began in the same way,
and once again the same mistakes were evident. Nostalgia reigned. The system software
was largely at the level of the old monitor systems – and in many ways still is – but the
pattern changed in two ways.

First, the microcomputers became so cheap, and the available software so good, that
they could provide affordable services to almost anyone who wanted them, and they

began to rival the large machines. It became feasible to think of satisfying an
organisation's computing requirements using a lot of microcomputers, perhaps linked
together by the rapidly developing networking techniques, or simply by people walking
about carrying floppy discs. In itself, that didn't make much difference to the system
software, but it made it worth while investing a lot of development effort in the
microcomputer area.

The other change was in the way the system software interacted with the person
using the machine. Because the microcomputers were so cheap and so widespread, it was
no longer sensible to assume that anyone using the machine would be a trained computist,
and would understand messages couched in technical computer gibberish. (It never had
been very sensible, but was universally done anyway.) If the new breed of "naive user"
were to be dissuaded from throwing away the computer in well justified disgust – or, at a
more petty but frequently more persuasive level, suing the manufacturer for something or
other – communication between system and computer would have to be conducted in
something a good deal closer to a human language. The idea that computers should be –
or even could be – easy to use was new, but sowed the seeds of developments that have
led to systems like the Macintosh, and other adventurous sorts of interface.

We are still concerned with "getting the most out of the people" – but the people
have changed. The interactive systems were built to optimise the performance of
professional computists; the newer systems are at least designed with the intention of
increasing the computing performance of the population at large.

ANOTHER INTERFACE.

But wait a minute ! The professionals are still here, and they still haven't regained some
of the ground they lost when operating systems arrived. One of the useful features of a
monitor system which disappeared when operating systems started to become paranoid
about their possessions was easy access to the system facilities. While it is true that the
restrictions were imposed because some of the undisciplined access to the system could be
dangerous, the result of the changes was to prevent pretty well all access to the system,
dangerous or not. In effect, a programme became something very close to a sealed box,
which could communicate with the outside world only through the recognised input and
output channels which connected it with devices.

This wasn't very satisfactory, and led to silly constraints. Frequently it was
impossible to write a programme which would perform actions which you could perform
from the keyboard as a matter of course – so, for example, you might be able to check the
type of a file by a keyboard instruction, but be quite unable to encode the same operation
into a programme. As the programmes are intended to help you to use the computer, that
isn't at all constructive; and as you could often write a "command file" – essentially a
programme of system instructions executed by the operating system – which will perform
the instructions which you can't do from the ordinary programme, the restrictions are
obviously silly.

At that level, the restrictions are irksome, but survivable. It certainly led people
(including at least one of us) to go to considerable lengths to split up operations
between programmes and command files, writing several smaller programmes to be
executed – from the command file – in between the system operations. With later
developments, most notably with the introduction of graphics terminals, it was essential in
the interests of consistency that programmers should be able to use large number of
system facilities easily but securely, and it became important to find an acceptable way to
satisfy this requirement.

One way out of this difficulty is to expand the supervisor call mechanism. By this
means, access to system operations can be provided in a safe and controlled way. Another
is to provide what amounts to a subroutine library, with the various system functions
reached as procedure calls. This leads to the idea of the application programme interface
(usually API), and most systems nowadays provide extensive interfaces of one sort or
another through which programmers can gain access to useful provided functions. APIs
will turn up again from time to time in our discussions, but they weren't always there.

–––

