
DOING TWO – OR MORE – THINGS AT ONCE

Once it became clear that the road to greater efficiency led through multiprogramming, all
that remained was to find out how to do it. There are really two questions which must be
answered :

• How can we fit two (or more) programmes into memory at the same time ?
• How can we keep track of where all the programmes are up to in their
execution ?

We shall defer the answer to the first question to the next chapter.

INTERRUPTS.

A partial answer to the second question was provided by the invention of interrupts. An
interrupt is a hardware operation which we don't propose to discuss in great detail – if
you want to know more about interrupts, refer to texts on computer hardware techniques.
Briefly, though, a processor's interrupt machinery provides a way to switch the processor
immediately from its current task to something else in response to an electrical signal; it is
commonly used to make the processor give attention to some event which isn't under its
control. Suppose a programme is running. An interrupt saves the address currently in the
processor's instruction address register (programme counter) somewhere, and replaces
it by some other address which is directly or indirectly under programme control. If the
code executed at the new address makes appropriate provision to store the state of the
processor, including the saved old address, then the original programme can later be
resumed as if nothing has happened. If the interrupt branch address is in the code of a
second programme, the result is to switch from one programme to another; we have
achieved multiprogramming of a sort.

It's a useful sort, too, but unfortunately it isn't quite the sort we want. It's useful,
because it does give us the ability in principle to jump from one programme to another,
but it falls short of perfection in that it isn't much use if the programme you want to run,
like most ordinary programmes, doesn't have an interrupt attached to it in some way. In
effect, the multiprogramming doesn't go far enough : in order to achieve the target of
always having a programme ready to use an idle resource, we must run several jobs
simultaneously. That's why we described interrupts as a partial answer to the question of
how to keep track of all the running programmes. There are ways and means of achieving
the desired end, and we'll come to these later, but these interlocking problems suggest that
we are going to need a new approach if we are to advance much further.

If we do have the right sort of interrupts, though, they are very useful to control
switching between activities, and it's worth describing an example which started many
years ago but which is still useful as an operating system component.

SPOOL.

From where do the interrupts come ? The usual source of interrupts is peripheral devices,
so the obvious application of the method described is to driving some peripheral device
with the interrupt-handling programme while carrying on some memory-intensive
computation in the "original" programme. The arrangement is sometimes described as a
computational job running in the foreground, with a programme handling a peripheral
device in the background; be warned, though, that the terms "foreground" and
"background" relate entirely to people's perception of the relative importance of the jobs,
and are not synonyms for interrupted and interrupting, respectively.

Just to show that this confusion isn't new, here's a snippet from the
pastHIS3 :

"foreground processing 1. In a multi-access
system, processing which is making use of on-line
facilities. 2. High priority processing which takes

precedence (as a result of interrupts) over background
processing. 3. Low priority processing over which

background processing takes precedence.

"As definitions 2 and 3 are directly contradictory and
definition 1 has a related but different meaning, this

phrase should be used with caution."

Some diagrams might help to illustrate the idea. Here's a representation of the
operation of a system without interrupts. At any moment, either the processor is active
(represented by the black trace) while the input-output system is inactive (white
trace), or vice versa. The meaning of "inactive" is not defined, but whatever it is it
doesn't contribute to the task being performed. The inactive processor might be
continually polling the input-output device to see whether it has finished, or it might be
directly involved in driving the device.

Processing

Input-output

It might sometimes be possible for the processor to do some work in the inactive period,
but details depend on the level of attention needed by the device.

Once interrupts are possible, there is a mechanism with which the device can get
attention from the processor at any time, so much less caution is needed. Now the
processor can be occupied on useful work – if there's any to do, which depends on the
nature of the programme. These two diagrams illustrate the possibilities.

Processing

Input-output

Overlapping : processing predominates

Processing

Input-output

Overlapping : input-output predominates

An early, and very successful, application of this idea was in the SPOOL system,
originally introduced by (we think) IBM. This was a way of achieving the benefits of
off-lining (see the chapter EFFICIENCY : ...) without investing in several computers.
The useful work was carried on by a main programme, and two interrupt-driven service

programmes ran permanently in the computer to copy input card decks to the disc, and
output disc files to the printer. This was called S imultaneous Peripheral Operation On
Line – but not many people remember that, and "spool" is now more commonly used as
a verb or adjective.

It is worth pointing out that the spool principle requires very little, if any,
intervention by the system software. So long as there is a way of starting the service
programmes at the beginning of the operation and setting the required interrupt branch
addresses, and of changing the main programme when necessary without interfering with
the service code, the system can run, and can keep on running. The system code isn't
involved in the transfers of control between the programmes; the interrupt causes the
branch by hardware, and the interrupt routines look after saving and restoring the contents
of such registers as must be preserved.

The main constraints on the system come, once again, through the definition of
conventions, particularly in the matter of memory addresses. If the service programmes
are there all the time, then the main programmes must be linked and loaded to use only
what's left of memory, and it is obviously sensible to build the correct addresses into the
system software, at least as default values. Programmers will also need some way to call
on the services of the service programmes; an easy way to provide this facility is to make
the various services provided look like subroutines, so that the programmers can call them
like any other subroutine. We're still calling these system conventions, but we can see the
beginnings of what we'd now call an Application Programmer Interface (API).

The main defects of the spool, and similar, systems are that the device-handling
programmes are vulnerable to overwriting by misbehaving main programmes, and we can
do little about that without hardware help in the memory management area, which brings
us back to the first of our two questions at the beginning of the chapter. Despite that, they
provided good service for quite a long time, and systems of this type are still generally
used for jobs like printing.

REFERENCE.

HIS3 : A. Chandor, J. Graham, R. Williamson : A dictionary of computers (Penguin,
1970), page 167.

–––

QUESTIONS.

We claim there is "no simple extension of Spooling". Can you design one ?
If not, why not ?

–––

