
Computer Science 415.340

Operating systems

INTRODUCTION

WHAT IS "OPERATING SYSTEMS" ?

The organisation of this course is different from that which you will commonly find in
textbooks on the subject, so we think it appropriate to begin by telling you why. The
basic reason is our dissatisfaction with the traditional course structure, which we did not
find sufficiently flexible to cope in a natural way with developments in operating
systems practice. Over the past fifteen or so years, the variety of operating systems in
common use has expanded enormously, and the rate of expansion shows no sign of
diminishing. From a universal pattern of interactive work through typewriter-like
terminals to a more or less remote "mainframe" (a large and expensive computer,
usually with operating staff), with support from a batch processing system of some sort,
we have moved to a much more diverse way of working, with stand-alone
microcomputers from desktop to palm size, widespread networking, graphics, and other
less obvious changes, all of which call into question the traditional view.

Not only have things changed; they have changed very quickly, and show every
sign of continuing to do so. We are not convinced that in this fluid world a description
of one or two current operating systems is the best way to introduce the subject. Instead,
we believe that it is much more important to seek out the principles behind the
implementations, and to discuss what these are, and how they interact in a large and
complex operating system. That is what we have tried to do.

Some years ago, therefore, we began to look for a different approach which we
hoped would be able to accommodate continuing change in a natural way. Our aim was
to find a model for an operating system which would be accurate, flexible, likely to
persist beyond the lifespan of any individual operating system, and a suitable foundation
for our stage 3 operating systems lecture course. Here's a summary of our deliberations.

THE "MANAGER" MODEL.

This is the traditional model of an operating system. The system is defined as

That which manages the available resources,

usually with emphasis on hardware management. While management is certainly part of
the operating system's function, we found this definition too narrow. Real operating
systems are concerned with user interfaces and control languages and file system (not
just disc space) organisation and accounting and many other activities. While one can
always fit such tasks into some sort of management, there is often an element of
contrivance in the description which results.

The manager model does not cope very well with the diversity of operating system
configurations. Once we have developed a system appropriate for a mainframe-based
interactive service, we have to start again when developing a microcomputer system. Of
course, the job can be done – but the example shows that some significant factor in
operating systems is missing from the model. This is particularly obvious now, when
many microprocessors are comparable in processing ability to the mainframes which
they replaced, but we still require different sorts of operating system for the two cases.

Introduction : page 2.

We could conclude that the "manager" model is useful, but is still lacking
something. With the benefit of hindsight, we might now suggest that the "something" is
a goal – you can't manage something unless you have some criterion by which to
evaluate the management, and apart from rather arbitrary ideas of efficiency no such
criterion was evident. Considerations of efficiency alone don't resolve our problem with
the time-sharing and microprocessor systems.

You will gather that we don't think much of this model, but it's important to make
one point in its defence : the model is realistic from the point of view of the operating
system itself. The operating system is that which controls what happens in the computer;
ideally, nothing happens in the computer except by permission of the operating system.
Our point is not that the model is wrong, but that it isn't particularly helpful.

Here's a picture of the manager model. Its main characteristic is the subservience
of everything to the operating system.

Operating system

Memory Processor Disc Terminals etc.

THE ONION MODEL.

This model was never really what you might call a mainstay of our course, but we
mention it here because the ideas which it embodies are valuable, and they certainly
appeared in the course. The system definition does not change significantly – the system
is still a resource manager – but notions of internal structure are added to the resource
manager principle. The system is seen as a layered construct resembling the layers of an
onion, with the hardware at the centre, incorporating ideas of information hiding which
are still with us. This is a venerable model; the figure (next page) was presented in the
textbook of Madnick and DonovanINT5, dated 1974. The interdependencies between the
topics are explicitly noticed in this approach.

These models were used in the early treatments because they are the traditional
models. They were once exactly right. They are still not wrong; the principles they
embody are still valid, and appear particularly clearly in systems such as those based on
client-server models. Our reservations are not that the older models have become
invalid, but that they are limited, and do not provide the support we want for our course
organisation.

Introduction : page 3.

Bare machine

Dispatcher,
semaphores

Memory manager

Make, destroy
processes, messages

Device manager

File system

Level 1

Level 2

Level 3

Level 4

Level 5

THE "DUSTBIN" MODEL.

Our next model, which lasted for some time, was developed from the observation above
that the operating system was required to handle a large number of necessary, but more
or less unrelated, activities. This leads to the dustbin definition of an operating system :

That which does all the things that no one else wants to
do.

This is a nice snappy definition. It isn't particularly precise, but it expresses the ragbag
nature of the subject, and explains why it's like that – the system must cover all the bits
we must have in order to run the programmes effectively, and which are neither
operations handled by hardware nor things which people should be expected to do (and
can be relied upon to do) for themselves. The very significant advantage of the dustbin
model is that it's true – that is exactly how the operating systems developed.

It also implies a new dimension to the system; it includes the idea that the
computer system is there to run programmes written by people, who don't really come
into the manager model except perhaps as rather inconvenient entities to be managed
somehow. In adding this dimension, we recognise that some of the functions of the
complete system will be discharged by programmes supplied by people, but that it's
unreasonable (not to mention unsaleable) to expect the people to look after all the tiny
details of the hardware. This approach leads us to a rather different view of the
operating system :

Introduction : page 4.

Functions People

Hardware

Operating

system

The corners of the triangle represent the active entities in the computer system – each is
a component which can in some sense do things. We shall call these the primary entities
of the system, which sounds impressively academic. The real work, though, is done by
cooperation of all three primary entities, and we represent these activities by the area
within the triangle. This is the domain of the operating system. In accordance with our
definition, it includes all the activities which none of the primary entities is keen, or
able, to do, but which have to be handled somehow if we are to get any work done.

As a simple example, consider the action of someone running a programme from a
keyboard. Something, somewhere, has to deal with the signals which come from the
keyboard, find the programme, get it into memory, point the processor at it, and so on.
None of these can reasonably be expected of any of the primary entities acting alone; so
they are all operating system tasks.

The new description gives us a better idea of what is in the system, but still offers
no motivation. In effect, it's a map of the terrain, but we are still left on our own to find
our way around it. And that's pretty well what you'd expect given the working
definition. A definition by exception – one which says what the thing defined isn't –
leaves much to be desired as a starting point for an orderly and coherent treatment of a
subject.

THE "SERVICE" MODEL.

Well, then, clearly our next step must be to say what the thing defined is – to find some
positive definition of what we want the operating system to do. (Notice, by the way,
that that statement is meant rather precisely : computing is not a natural science, and
operating systems, despite appearances, don't grow wild. If we want a thing called an
operating system, it really is up to us to define it.) We think that the key to this
definition is to move the emphasis away from the hardware to the other corners of the
triangle. That we at present use certain sorts of electronic device to get the work done is
immaterial; the important thing is that we can define certain useful jobs which we wish
to have performed for us somehow. That puts the emphasis strongly on the jobs, rather
than the machinery – and, therefore, on the people, who are ultimately the source of the
jobs, and what they want to do.

That's what we want to do; our task in this course is to study how it can be done.
Why, then, are operating systems "really" there ? Not – except incidentally – to drive the
machine efficiently, nor to allocate resources, nor to cope with multiple processes. They
are there precisely to do "everything anyone might ever want"; the new snappy
definition of an operating system is, in fact :

That which provides computer services to people.

Introduction : page 5.

And that must work – for the only reason we would wish to change or extend a
computer system is in some way to provide some sort of service for someone. This is
the goal which we wanted, and we can use it to impose order on our development. In
terms of our triangular diagram, we shall begin from the People corner and work into
the triangle, being guided in direction by whatever we need to provide the required
services.

You are doubtless now reviewing possible extensions to a system for exceptions to
our rule; but we would argue that, provided that we cast our net sufficiently broadly, the
definition will work. The closest approximation to an exception which we have found is
in operating systems for real-time control use, where the people's interests can be
remote, and we are happy to accept that our phrase is a definition of operating systems
used by people, rather than by machines. Apart from that, though, we think that it holds,
and it's certainly a good enough foundation to support a first course on operating
systems.

HOW IT WORKS OUT.

Now we're ready to explore the consequences of our definition, and the resulting
structure of our operating systems course. The most significant feature follows quite
directly from the definition; now we have defined a goal, we can treat the whole subject
as an exercise in system design, and proceed by some form of top-down analysis. Our
problems of diversity are solved, as details of hardware and environment will be
incorporated naturally into the system design as we need to know them, so the
relationships between the time-sharing and microcomputer cases of our example should
be clarified. Likewise, as new technological developments come along, they will fit in
naturally as additional answers to questions which we ask somewhere in the analysis.

The details of the development are nonetheless not trivial to determine. It took
some years of thought, and about four revisions of the order of presentation of the topics
(not all of which reached the students) to develop the structure we now see as
desirable, and which is embodied in these notes. The result is described in the diagram
on the next page. It's a beautiful diagram – so beautiful that it's hardly important that it
doesn't always work. It works reasonably well for a book, where you can easily refer to
other parts when you so desire, but it's less satisfactory for a lecture course. The reason
for this disorganisation is that the top-down serial treatment implied by the diagram is
good logic but bad practice; all the development happened in parallel, and the people
who worked out how to make the systems work knew about all the other developments
as they went along. Real life is messy, though, and we propose to stick with our model
until we find a better one. (It does get better as we keep on worrying about it and
understand the structure more clearly ourselves. We're learning too, which is as it should
be – that's what a university is about.) It should be clear how the parts of the course fit
together. As the course proceeds, you might find it helpful to review these ideas from
time to time to see where the various topics fit into the pattern.

There is one element in that diagram which does not follow directly from our
model – the section on operating system history. We have included that for two reasons.

• First, it introduces most of the topics which turn up in the ensuing analysis, and
shows how the current attitude to operating systems differs from that which
guided the design (such as it was) of earlier systems.

• Second, it gives us some confidence that the students who take the course have
some idea of what we're talking about. A significant problem from our point of
view with modern microcomputers is that they hide much of the operating system
from view. When our s tudents moved from older and less elaborate

Introduction : page 6.

microcomputers to Macintosh machines, we noticed a very pronounced slump in
the general level of understanding of what operating systems are about. Now Unix
has reappeared in stage 2, we hope for an improvement, but it still seems to be a
good idea to include this material in the stage 3 course. One could argue that the
material will become clear anyway as we work through the analysis; in practice,
though, most people don't work that way. Top-down analysis is all very well in
theory, but most people feel happier with it if they can see something of the
outcome before the analysis starts. To use an analogy, if you are designing a
house, it's easier to begin with some experience of working houses than to stick to
pure abstract analysis of some definition such as "A machine for living in" (Le
Corbusier, we think).

How it all started, and why operating

History

Basic Requirements

Practice

systems are how they are today.

Designing the system : where to start, what
the aim is, facilities we need.

What must be done How to do it

What we need in the system to
satisfy the requirements.

Identifying the low-level
requirements.

Making the bottom level
work in practice.

Making it all work.

Implementation Management

Tools and techniques. Running the system.

Requirements specification

Finally, it was nice to find – after we'd pretty well settled the course – this opinion from
a guruINT1 :

... a course on operating systems should trace the
evolution of operating systems from early batch

monitors and timesharing systems to the systems in
current use.

Introduction : page 7.

LEVELS.

As well as the notion of level which defines the top in top-down, there is the sort of
level we speak of in terms like "low-level language". Low, in this sense, means
something like "close to the hardware", though the precise meaning depends on the
context. For example, a sequence of ideas of increasing level in the context of the input
interface might be interrupt, mouse movement or key depression, event or character,
word or icon, system instruction. In the diagram above, these ideas turn up in no very
obvious order (interrupts in the management, key depressions and events in the
implementation, instructions in the requirements specification, etc.) The two sorts of
level are, in fact, quite distinct; operating systems is not a linear subject.

The second sort of level is important in deciding what you're talking about. You
don't normally expect material on interrupts in a discussion of the system control
language, nor vice versa. We have tried to put links in the text where we think they're
appropriate, but you'll probably have to do some hunting if you want to find all the
connected pieces. The same idea is important in gauging the meaning of an examination
question; there is (usually) enough indication in a question to identify the intended
level, and it's worth making sure – if you get it wrong, you might answer the wrong
question !

WHAT'S IN THIS COLLECTION.

The notes which follow have evolved from a set originally written to accompany the
operating systems course in days when we presented the course in the traditional way,
using a textbook which covered the topics of the course very unevenly, so that we had to
provide additional material. (Other available textbooks had other defects, and the one
we had was quite good on the bits it covered.) Since then, the course has changed to
include new topics and to eliminate old ones as the course content evolved to reflect the
development of computing practice, and it changed again when we switched to a new
textbook. Most of all, though, it changed when we started presenting the course in the
new order. Indeed, it changed several times, as we juggled with the order of topics
searching for one we considered acceptable.

That grew to a fairly substantial body of notes, intended primarily as a way of
presenting topics in the top-down order, but not as a textbook in its own right. We
included comments and additional material wherever it seemed convenient, either to
expand on the conventional textbook material or to emphasise the structure, but we
expected that students would refer to a textbook for further detail and factual
information. The collection of material reflected the historical development of the
course : some parts were there because we wanted to make a point which wasn't in the
textbook of the time, some were there as new developments, some represented topics we
didn't have time to cover in any detail in the lectures, and some were our own private
barrows which we like to push. The only consistency was in the insistence throughout
on the top-down treatment; if the collection had a message, that was it.

Until 1995. Quite early in 1995, a few weeks before the 340 course lectures began,
we learnt that our textbook had gone out of print. Panic struck. Should we choose a new
book ? We'd chosen the old one (by Lane and MooneyINT3) because it fitted the course
significantly better than any other we'd found, and we had been fairly discouraged by
the rest. Our objection wasn't that they were specially bad books, but they were all
written to much the same pattern, which wasn't what we wanted. We got in touch with
one of the authors of our old text; he gave us to understand that it would rise again quite
soon, which gave us a reason to avoid selecting a new text; it wouldn't help anybody to
try to switch to a different book for just one year. Apart from that, even if we ordered a

Introduction : page 8.

new book immediately (which we didn't want to do – we'd certainly prefer to select one
rather carefully), it would take some time to arrive.

So, quite suddenly, the notes grew into something much more like a textbook. It
wasn't a new idea, but the absence of Lane and Mooney spurred us on to produce a
rather quick rush job that would get us through 1995. It did, not too badly, but – being a
quick rush job – fell short of perfection.

Then a few other factors complicated the picture. First we found that Lane and
Mooney was rather unlikely to appear again. We also, encouraged by the experience,
started discussions with a publisher on the possibility of converting the (now fairly
extensive) notes into a textbook. And, in 1996, Alan Creak was away on sabbatical
leave so wasn't involved in the course. Because of that, nothing much happened to the
notes in 1996, but the experience of 1995 had suggested that they were not really
sufficient yet to support the course on their own, so a new textbook was indicated. The
book by Silberschatz and GalvinINT4 was chosen, and we've stuck with it ever since.

And that brings us just about up to date. The 1998 notes are significantly advanced
beyond the 1995 version; the textbook we'd like (L&M) is out of print; and the
textbook we recommend (S&G) is of good quality, but not precisely what we want.

We don't think that is necessarily a bad thing. Operating systems has never been a
clean and tidy subject in which there is one unambiguous and universally accepted true
doctrine; there have always been differing views of what systems should be and how
they should be designed and constructed. That being so, it is not unreasonable that you
should meet a selection of views in the course. These notes present the top-down view
which we have briefly described, but we include references to the recommended text
where appropriate – and we've left in the old references to Lane and Mooney for good
measure.

We'd like you to read them all, but accept that this is likely to be impracticable.
We recommend, therefore, that you read the notes, and look up as much of the
references in S&G as you can. Consider the different treatments given in the two cases,
and you should find that you learn something from each of them. Some of the topics are
not too well represented in S&G, and for those you might like to look at L&M.

MISSING BITS.

No collection of notes on operating systems could ever be complete, but we are aware of
a few particular omissions. For example, there should certainly be more about
distributed systems, system accounting, and system operations.

There is another omission which is inevitable. In the university context, we are
bound to present "operating systems" as an academic subject – but if it stays that way it
is useless. An operating system is first and foremost a practical artefact constructed to
get computing work done. Every time you use a computer for anything more ambitious
than machine code or as a doorstop, you use an operating system. The bit we can't do is
to make that real to you. We hope that contemplating the questions we have asked might
help, but the most effective way to learn about operating systems is to keep asking
yourself as you use a computer, "What is the operating system doing now ?". What
happens when I press a key on the keyboard ? Why does that character appear just there
on the screen ? How does the cursor follow the mouse movement ? Where did that
electronic mail come from, and how did it get here ? What information does the system
need to do that job, and where does it come from ? It doesn't really matter if you don't
end up with the "right" answers to these questions, but do try to end up with a possible

Introduction : page 9.

answer, and one which you could in principle implement. You will learn more that way
than in any other.

ABOUT REFERENCES.

We give references to our sources where we can; follow them if you would like more
information. Our references come in two sorts : those headed "COMPARE", which
point to the two textbooks we mentioned earlier, and those headed "REFERENCES",
which point to other sources, usually from the technical literature. Be aware that the
textbook references are certainly not exhaustive; they identify some relevant parts of the
textbook, but it's up to you to use the textbook effectively.

ABOUT QUESTIONS.

As well as informative material and references, the notes include occasional questions –
but no answers. This is quite deliberate. The questions might have zero, one, or many
answers; they are not intended primarily as exercises to be completed, but as stimuli
which we hope will set you off along paths which are interesting but which we haven't
space to fit into the text.

REFERENCES.

INT1 : M.V. Wilkes : "Software and the programmer", Comm.ACM 35#5, 23 (May,
1991).

INT2 : K. Skytte : "Engineering a small system", IEEE Spectrum 31#3, 63 (March,
1994).

INT3 : M.G. Lane, J.D. Mooney : A practical approach to operating systems (Boyd and
Fraser, 1988).

INT4 : A. Silberschatz, P.B. Galvin : Operating system concepts (Addison-Wesley,
fourth edition, 1994).

INT5 : S.E. Madnick, J.J. Donovan : Operating systems (McGraw-Hill, 1974).

–––

QUESTION.

The checklist on the next page comes from a fairly recent publicationINT2. How
does it fit our approach to operating systems ? Have we left anything out ? (We
know that the fine detail doesn't match – but you could usefully consider how
you would rewrite the fine detail for an operating system.) (You might like to
review this question from time to time through the course.)

Introduction : page 10.

Systems-engineering checklist

Here is a checklist of the steps essential to applying systems-
engineering principles to the design of smaller commercial products:

Requirements phase
• Consult potential customers to ascertain their actual needs.
• Have a multidisciplinary project team take that statement of needs

and use it to develop a detailed specification describing the
product's functional requirements.

System-design phase
• Develop a system architecture that supports specified product

requirements.
• Develop system-design specifications that document the system's

architecture, system-level performance specifications, and the
functional requirements of each subsystem and component.

• If necessary, use simulations and other analytical techniques to
verify that top-level design concepts support all specified
product requirements.

• Define the system's life-cycle cost model.

Detail design phase
• Design the hardware and software as described in the system-

design specifications.
• Schedule several detail-design reviews to make quite sure that the

hardware and software meet the specifications.
• Build and test each component to verify that the design objectives

have been met.
• Develop plans for integrating the components and subsystems into

the entire system, and for testing the system.
• Compare the actual costs of designing the hardware and software

with the cost estimates to verify that cost objectives are being
met.

System integration phase
• Integrate the components and subsystems into a prototype system

and verify its functionality.

Design verification and optimization phase
• Verify that all performance specifications are met over all specified

operating conditions.
• Optimize the system's design by minimizing any differences found

between expected and measured performance.

System validation phase
• Evaluate the final product's configuration to ensure that it complies

with the original functional-requirements specification.

–––

