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Abstract

Barak et al. formalized the notion of obfuscation, and
showed that there exist (contrived) classes of functions that
cannot be obfuscated. In contrast, Canetti and Wee showed
how to obfuscate point functions, under various complexity
assumptions. Thus, it would seem possible that most pro-
grams of interest can be obfuscated even though in principle
general purpose obfuscators do not exist.

We show that this is unlikely to be the case. In particular,
we consider the notion of obfuscation w.r.t. auxiliary input,
which corresponds to the setting where the adversary, which
is given the obfuscated circuit, may have some additional a
priori information. This is essentially the case of interest
in any usage of obfuscation we can imagine. We prove that
there exist many natural classes of functions that cannot be
obfuscated w.r.t. auxiliary input, both when the auxiliary in-
put is dependent of the function being obfuscated and even
when the auxiliary input is independent of the function be-
ing obfuscated.

We also give a positive result. In particular, we show
that any obfuscator for the class of point functions is also
an obfuscator w.r.t. independent auxiliary input.

1 Introduction

The problem of program obfuscation, which practition-
ers have been engaged in for many years, has recently re-
ceived attention in the theoretical community as well. This
was initiated by the work of Barak et al. [BGI+01], who
formulated the problem of circuit (program) obfuscation.
Loosely speaking, the goal of circuit obfuscation is to make
a circuit “unintelligible” while preserving its functionality.
This was formalized via the “virtual black box” property,
which asserts that any predicate that can be computed (in
polynomial time) from the obfuscated circuit can also be
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computed from the input-output behavior of the circuit (i.e.,
given black-box access to the circuit).

[BGI+01] showed the existence of (contrived) classes of
functions that are not obfuscatable. In contrast, the works
of Canetti and Wee [C97, W05] show, under various com-
plexity assumptions, how to obfuscate the particular class of
point functions, which consists of all boolean functions of
the form Ix(y) = 1 if and only if x = y (one may think of x
as a password and the obfuscation of Ix as a public program
that checks whether y is a valid password or not). Thus, it
would seem completely possible that most functions of in-
terest can be obfuscated even though in principle general
purpose obfuscators do not exist.

In this work we show that this is unlikely to be the case.
We consider the definition of obfuscation w.r.t. auxiliary in-
put. Namely, we modify the “virtual black box” property,
to require that any bit that can be computed from the ob-
fuscated circuit and (polynomial size) auxiliary input z, can
also be computed from z and black-box access to the circuit.
We first argue that any useful positive result about the pos-
sibility of obfuscation must satisfy this extended definition
(see Sections 1.1 and 1.2 for examples). We then show that
there are many natural circuit classes that are not obfuscat-
able w.r.t. auxiliary input. Notice that, as obfuscation w.r.t.
auxiliary input is harder to satisfy than obfuscation without
auxiliary input, the result of [BGI+01] already implies the
existence of circuits that cannot be obfuscated w.r.t. auxil-
iary input. Our emphasis is to show that this is actually true
for wide and natural classes of circuits.

The idea of requiring security to hold even when an aux-
iliary input is available to the adversary is not new, and
has been present since the early work on auxiliary-input
zero-knowledge protocols [GO94]. In the context of zero-
knowledge, the requirement is that for every x ∈ L and
for every auxiliary input z, whatever can be learned by a
polynomial time verifier that is given (x, z) and interacts
with a prover on input x, can also be learned by a poly-
nomial time simulator that is given only (x, z). Intuitively,
one may think of z as the history observed by the verifier
in previous executions. Without this requirement, it is im-
possible to show secure (even sequential) composition of
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zero-knowledge protocols. Thus, by now, the terms zero-
knowledge [GMR88] and auxiliary-input zero-knowledge
[GO94] have become one and the same.

In the context of obfuscation, we incorporate auxiliary-
input in a very similar manner into the definition. We
require that for every auxiliary input z whatever can be
learned by a polynomial time non-uniform adversary that
is given z and an obfuscated circuit, can be learned by a
polynomial time non-uniform simulator that is given z and
input/output access to the circuit. We distinguish between
two types of obfuscation w.r.t. auxiliary input: obfuscation
w.r.t. dependent auxiliary input and obfuscation w.r.t. inde-
pendent auxiliary input.1

1.1 Dependent Auxiliary Input

Let C = {Cn}n∈N be a class of circuits. We say that O is
an obfuscator w.r.t. dependent auxiliary input of the class C
if for every function C ∈ C the virtual black-box property
holds even when the adversary (and the simulator) are given
an additional auxiliary input z (this should hold for any z,
including one that possibly depends on C).2

Example of Obfuscation w.r.t. Dependent Input: A pri-
mary usage of obfuscation, pointed out in [BGI+01], is to
delegate cryptographic ability. Consider the task of decryp-
tion where DSK(c) stands for the decryption algorithm with
secret key SK applied to the ciphertext c. Say Alice wants
to delegate to her assistant Bob the ability to decrypt all
documents which pertain to travel matters. This is easily
achieved using an obfuscatorO as follows. Define the func-
tion D1SK(c) � “compute m = DSK(c); output m if and
only if m starts with ‘subject:travel’,” and give Bob the ob-
fuscated program O(D1SK). Say that next month, Alice
wants to delegate to Bob the ability to decrypt all documents
which pertain to recruiting matters. This is achieved in the
same manner: let D2SK(c) � “compute m = DSK(c);
output m if and only if m starts with ‘subject:recruiting’,”
and give Bob the obfuscated program O(D2SK).

Thus, Bob is given obfuscations of two functions
O(D1SK) and O(D2SK). We should obviously require
that whichever predicate can be learned (in polynomial
time) from O(D1SK) and O(D2SK), can also be learned
(in polynomial time) from input/output access to D1SK and
dependent auxiliary input O(D2SK).

1.2 Independent Auxiliary Input

The issue of auxiliary input may seem superfluous in
those applications of obfuscation designed carefully so that

1This distinction was not done in the context of zero-knowledge.
2This definition follows the lines of the definition of auxiliary-input

zero-knowledge, which also allows the auxiliary input z to depend on the
statement x being proven.

no dependent input is available. Still, we argue that auxil-
iary inputs which are independent of the obfuscated circuit
are likely to always exist, and should be considered as well.

To capture the independence of the auxiliary input from
the obfuscated circuit C, we fix the auxiliary input z given
to the adversary before C is chosen from the class C. For-
mally, we require that for all auxiliary inputs z given to the
adversary, the black-box property should hold for a ran-
domly chosen circuit in C.3

Whereas requiring the black box property to hold when
an auxiliary input is given, is a strengthening of the require-
ment made by the original [BGI+01] definition, the fact
that we require the black box property to hold for a ran-
dom circuit in the class rather than for every circuit, is a
weakening of the requirements of [BGI+01]’s definition.4

We emphasize that weakening the definition of obfuscation,
strengthens any impossibility results on obfuscation which
is the focus of this work. More importantly, we believe that
this weakening is meaningful and sufficient for many posi-
tive applications of obfuscation, where the particular obfus-
cated circuit is chosen at random. This is how obfuscation
is used in most of the examples of [BGI+01], where gener-
ally speaking a class of circuits C corresponds to a class of
cryptographic algorithms (e.g. a class of circuits each per-
forming RSA decryption for a different secret key, or a class
of circuits each computing digital signatures for a different
signing key, or a class of circuits each computing a pseudo
random function for a different seed) and a random choice
of C ∈ C corresponds to choosing a particular secret key
for the cryptographic algorithm at hand. Let us illustrate
this with an example.

Example of Obfuscation w.r.t Independent Input: Take
any secure digital signature SIG = (G, S, V ). Say a
signer Alice with secret signing key SK1 and a signer
Carol with an independent signing key SK2 share an as-
sistant Bob. Alice delegates to Bob the ability to sign on

3At first it may seem that fixing the independent auxiliary input z to
the adversary before choosing the circuit to be obfuscated, is equivalent
to hard-wiring z to the adversary, and thus that an impossibility result for
obfuscation w.r.t. independent auxiliary input implies an impossibility re-
sult for obfuscation w.r.t. [BGI+01]’s original definition. However this
intuition is misleading, as the following illustrates. Consider a z that sat-
isfies the following three requirements: (1) given z and an obfuscation of
C ∈R C it is easy to compute some predicate π(C, z); (2) given z and
black-box access to C ∈R C it is hard to compute the predicate π(C, z);
(3) given z and black-box access to C ∈R C and the value of some hard
computation on z (say s = f(z), for a hard function f ) it is easy to com-
pute the predicate π(C, z). Then, certainly, requirements (1) and (2) imply
that obfuscating C w.r.t. auxiliary input is impossible. In contrast, no such
impossibility is implied for the [BGI+01]’s definition, since by require-
ments (1) and (3), if z is hard-wired to the adversary which is given z and
an obfuscation of C, then f(z) can be hard-wired to the simulator which
is only given z and black-box access to C. This will enable the simulator
to compute π. We note that both in our impossibility results and in our
examples we use an auxiliary input of this form.

4The negative results of [BGI+01] hold with respect to this weakening.
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her behalf the documents which pertain to personal mat-
ters, by giving Bob the obfuscated circuit O(S1SK1), where
S1SK1(m) � “output SSK1(m) if and only if m starts
with ‘subject:personal’.” Carol delegates to Bob the ability
to sign on her behalf all documents which pertain to stu-
dent affairs matters, by giving Bob the obfuscated circuit
O(S2SK2), where S2SK2(m) � “output SSK2(m) if and
only if m starts with ‘subject:student affairs’.”

Thus, Bob is given two obfuscations O(S1SK1) and
O(S2SK2). In this case, in contrast with the example given
in Section 1.1, O(S1SK1) is an auxiliary input independent
of O(S2SK2). Naturally, we wish to require that whichever
predicate can be learned from O(S1SK1) and O(S2SK2),
can also be learned from input/output access to S2SK2 and
the independent auxiliary input O(S1SK1).

1.3 Our results

We give separate impossibility results for obfuscation
w.r.t. independent auxiliary input and obfuscation w.r.t. de-
pendent auxiliary input. We stress that our impossibility
results are unconditional and do not require any intractabil-
ity assumptions such as the existence of one-way functions.
We note that [BGI+01] assume that one-way functions exist
in order to obtain a class of circuits that is unobfuscatable.

1.3.1 Impossibility of Obfuscation w.r.t. Independent
Auxiliary Input

Our first result considers obfuscation w.r.t. independent
auxiliary input. Loosely speaking, we show that many nat-
ural filter functions (defined below) cannot be obfuscated
w.r.t. independent auxiliary input.

Filter functions
Loosely speaking, each filter function is associated with

a circuit C and an NP language L, and is denoted by
CL. The filter function CL on input (x, w) checks whether
(x, w) ∈ RL (where RL is the NP relation that corre-
sponds to L), and outputs C(x) if and only if w is a valid
witness. Thus, CL gives the value of C(x) only to whoever
knows a witness corresponding to x.

Formally, each class of filter functions is associated with
a class of circuits C and an NP language L. The class
of filter functions CL � {CL : C ∈ C} is the class of
circuits where each circuit CL ∈ CL is defined as fol-
lows: CL(x, w) = C(x) for every input (x, w) ∈ RL, and
CL(x, w) = ⊥ for every input (x, w) �∈ RL. For example,
one may think of C = SIG = {SIG} as any class of secure
digital signature circuits, L as the set {(N, y) : y ∈ QRN}
(the set of quadratic residues mod N ), and SIGL as com-
puting SIG(N, y) only for those users who supply the pair
(N, y) together with a square-root of y modulo N . An anal-
ogy may be taken from the setting of certification authority:

a user’s identity corresponds to a pair (N, y) for which only
the legal user knows a square root of y mod N , and when he
presents this square-root to the trusted center, he gets from
the authority a signed certificate of (N, y).

The first result on the impossibility of obfuscation w.r.t.
independent auxiliary input is the following:

Result 1 (Informal): Let L be any NP-complete lan-
guage, and let C be any any class of pseudo-random func-
tions, secure encryption algorithms, or randomized digital
signature algorithms (where the coins used by the algo-
rithms are replaced by a pseudo random function). Then
the class of filter functions CL cannot be obfuscated w.r.t.
independent auxiliary input.

To express our result in its full generality, we need to
introduce the concept of circuits with super-polynomial
pseudo entropy.5

Circuits with super-polynomial pseudo entropy
Pseudo entropy can be thought of as a relaxation of

pseudo-randomness. A class of circuits C is pseudo-random
if it is hard to distinguish between having oracle access to
C ∈R C and having oracle access to a totally random func-
tion. The pseudo-randomness requirement is very strong: C
needs to look truly random on every element in the domain
which is polynomial time computable. Pseudo entropy re-
quires the pseudo-randomness to hold only on a subset of
the domain. Moreover, the function need not look truly ran-
dom on this subset; rather we require the function values on
this subset to have “high pseudo entropy.”

Specifically, we say that a class of circuits C has pseudo
entropy at least p(·) if there exist polynomial size subsets
In ⊆ {0, 1}n such that for C ∈R Cn, the random variable
{C(x)}x∈In cannot be distinguished from a random vari-
able which has statistical min-entropy p(n).6 We say that
C has super-polynomial pseudo entropy if it has pseudo en-
tropy at least p(·), for every polynomial p(·).

We claim that the class of circuits with super-polynomial
pseudo entropy is a very broad class, and in particular
we show (Claim 4.0.1) that any pseudo random func-
tion [GGM86], any secure encryption algorithm [GM84],
and any secure probabilistic digital signature algorithm
[GMR88] (where the coins used by the algorithms are re-
placed by a pseudo random function), are examples of
classes of circuits with super-polynomial pseudo entropy.

Result 1 can be stated now more generally.

Result 1 (General): The class of filter functions CL cannot
be obfuscated (in the presence of independent auxiliary in-
puts), where L is any NP-complete language and C is any
class of circuits that satisfies the following two properties:

5The term “pseudo entropy” was introduced by [HILL99] in the context
of random variables. We extend the use of this term to the context of
classes of circuits.

6We refer the reader to Section 4 for the precise definition.

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



1. C is strongly unpredictable. Namely, for every x and
for a random C ∈R C it is hard to predict C(x), given
oracle access to C everywhere except x .

2. C has super-polynomial pseudo entropy on inputs in
L (i.e., where the polynomial size subsets In are con-
tained in L ∩ {0, 1}n).7,8

1.3.2 Impossibility of Obfuscation w.r.t. Dependent
Auxiliary Input

We next consider obfuscation w.r.t. dependent auxiliary in-
put. We show that if point-filter functions (defined below)
can be obfuscated then every class of circuits with super-
polynomial pseudo entropy cannot be obfuscated (in partic-
ular, every pseudo random function, every secure encryp-
tion algorithm, and every randomized digital signature al-
gorithm cannot be obfuscated).9 Using a separate proof we
show that this condition also implies that the decryption al-
gorithm of any secure encryption scheme cannot be obfus-
cated.

Point-filter functions: Loosely speaking, each point-filter
function is associated with an NP language L, a point x,
and a secret bit b. On input w, it outputs its secret bit b if
and only if w is a valid witness of x (with respect to the
language L). We stress that the language L and the point x
are public, whereas the output bit b is secret. Intuitively, the
reason that it may be hard to compute the secret bit b is that
it may be hard to find a valid witness w for x.10

More precisely, every class of point-filter functions is as-
sociated with some language L ∈ NP and is of the form
∆L = {∆L

n}n∈N. Every function δx,b ∈ ∆L
n is associated

with a public string x ∈ {0, 1}n and a secret bit b ∈ {0, 1}.
The function δx,b reveals its secret bit b only on inputs
w such that (x, w) ∈ RL (where RL is the NP relation
corresponding to the language L). In order to emphasize
that x is public, we append x to each output. Formally,
δx,b(w) = (x, b) if (x, w) ∈ RL, and δx,b(w) = x other-
wise. Examples of point-filter classes are ∆SIG = {δvk,b},

7We note that every class of pseudo-random functions, secure encryp-
tion algorithms and secure probabilistic digital signature algorithms (that
use pseudo-random functions to replace their randomness), satisfies these
two properties.

8Although it may seem that strong unpredictability implies super-
polynomial pseudo entropy, and thus that item 2 is superfluous, this is not
the case. For example an unpredictable function may be verifiable (i.e.,
hard to compute but easy to verify), and thus have pseudo entropy 0.

9We stress that [BGI+01] presents particular (contrived) examples of
classes of pseudo-random functions, encryption algorithms and digital sig-
nature algorithms which are not obfuscatable.

10Note the contrast between point-filter functions and point functions of
[C97, W05]. While point functions are zero everywhere except for one
point, a point-filter function can be non-zero on exponentially many inputs
(x may have exponentially many witnesses). Moreover, in a point-filter
function, x is public and may yield information about the points w which
yield the secret value b, whereas there is absolutely no information about
which point yields a non-zero value in the point function case.

where δvk,b reveals its secret bit b only on inputs which are
valid signatures w.r.t. the verification key vk, and the class
∆SAT = {δφ,b}, where δφ,b reveals its secret bit b only on
inputs which satisfy the formula φ.

We can now state the result, on the impossibility of ob-
fuscation w.r.t. dependent auxiliary input.

Result 2: Every class of circuits with super-polynomial
pseudo entropy cannot be obfuscated w.r.t. dependent
auxiliary input, or for every NP-complete language L,
the class of point-filter functions ∆L cannot be obfuscated
w.r.t. dependent auxiliary input.

Thus, we exhibit two classes of functions and show that
at least one of them cannot be obfuscated. An alternative,
and interesting, conditional formulation of this result, is that
if one could obfuscate a single point-filter class ∆L for an
NP-complete language L, then every class of circuits with
super-polynomial pseudo entropy cannot be obfuscated.

The question of whether there exists an NP-complete
language L for which the point-filter class ∆L is obfuscat-
able is thus a worthy future direction to pursue. We show
that this question is related to a beautiful fundamental ques-
tion on the existence of a hard core predicate for NP lan-
guages (see Section 6.1 for details).

1.4 On Obfuscating Point Functions

As mentioned earlier, there are two main positive results
about the obfuscation of point functions under complexity
assumptions.

The work of Canetti [C97] considers the existence of
an auxiliary input (in the context of perfect one-way hash-
functions), and shows that point functions are weakly ob-
fuscatable w.r.t. dependent auxiliary input, under a strong
variant of the DDH Assumption (known as the Strong-DDH
Assumption). Canetti does not distinguish between the de-
pendent and independent case. In contrast, the work of Wee
[W05] does not consider the existence auxiliary inputs, and
it seems unlikely that his obfuscator is robust against depen-
dent auxiliary input (see Section 7 for further discussion).

We show that the question of obfuscating point functions
in the presence of independent auxiliary input, is equivalent
to asking whether obfuscating point functions is possible at
all. More formally, we prove the following.

Result 3: If the class of point functions is (weakly) ob-
fuscatable without auxiliary inputs, then it is also (weakly)
obfuscatable w.r.t. independent auxiliary inputs.

In [C97], Canetti suggested that one of the usages of ob-
fuscation of point functions is to obtain content concealing
signatures; i.e., to sign documents m in such a way that if
m is known then the signature can be verified as usual, but
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otherwise the signature of m hides all partial information
about m. This proposal is useful for signing more than one
message (even for signing random and independent mes-
sages) only when the obfuscator of point functions is w.r.t.
auxiliary input. Result 3 implies that, when the messages
to be signed are chosen from the uniform distribution inde-
pendently of each other, it suffices to use an obfuscator of
point functions (without auxiliary inputs). See Section 7 for
elaboration.

1.5 Other Related Work

Interestingly, even prior to the work of [BGI+01], Hada
[H00] considered the question of whether pseudo random
functions can be obfuscated. He also considered a “virtual
black box” type definition. However, he did not restrict
the output to be a boolean predicate. Instead, he defined
the notion of obfuscation with respect to a given adversary.
Namely, an obfuscator which is designed to work against a
specific PPT adversary A (who may be given an auxiliary
input). He shows a negative result for obfuscating any class
of pseudo-random functions against the following adversary
A: A fixes a language L ∈ NP , fixes a zero-knowledge
proof (P, V ) for L, and fixes a sequence {xn}n∈N such that
xn �∈ L. Given any “obfuscated” circuit C, it outputs an ac-
cepting view of (P, V ∗)(xn), where V ∗ computes its mes-
sages by applying C to all previous messages. This can be
done using the simulator of the zero-knowledge proof.11

Other related works include [CMR98] and [LPS04]. The
work of [CMR98] generalizes the work of [C97], in the
sense that it relies on weaker and more general assumptions.
However, their work yields an obfuscation for the class of
point functions, which is weaker in two aspects: (1) the ob-
fuscation is not w.r.t. auxiliary inputs. (2) The “virtual black
box” property holds only w.r.t. distributions with high min-
entropy (i.e., where the point function Ix, to be obfuscated,
is chosen according to some high min-entropy distribution
over the class of all point functions). The work of [LPS04]
is in the Random Oracle Model (which assumes black box
access to a truly random function). It generalizes the works
of [C97, W05] in the sense that it shows that (in the Ran-
dom Oracle Model) many access control functions (not only
point functions) can be obfuscated.

2 Preliminaries

We adopt the standard way of modelling an efficient ad-
versary as a family of probabilistic polynomial-size circuits.
In this paper, A PPT adversary will in fact refer to a family

11The result of Hada was conditioned on the existence of a constant-
round public-coin zero knowledge proofs, which was later shown to exist
by Barak [B01].

of probabilistic polynomial-size circuits. Similarly, compu-
tational indistinguishability refers to indistinguishability by
non-uniform poly-size adversaries.

For any language L ∈ NP we denote by RL the NP-
relation corresponding to L. Namely x ∈ L if and only if
there exists w such that (x, w) ∈ RL.

Throughout this paper we distinguish between a family
of circuits (which has one circuit for every input size) and
a class of circuits (which has many circuits for every input
size). A class of circuits is of the form C = {Cn}n∈N (de-
noted by calligraphic letters), where for every n ∈ N, Cn is
a set of many circuits, each on inputs of size n.

Definition 1 [BGI+01]: A probabilistic algorithm O is an
obfuscator for a class of circuits C = {Cn}n∈N if the fol-
lowing three conditions are satisfied:

• (Functionality): There exists a negligible function µ(·)
such that for every n ∈ N and every C ∈ Cn, with
probability 1− µ(n) over the internal coin tosses of the
obfuscator, O(C) describes a circuit that computes the
same function as C.12

• (Polynomial blowup): There is a polynomial l(·) such
that for every C ∈ C, |O(C)| ≤ l(|C|).

• (“Virtual black-box” property): For every PPT A there
exists a PPT S and a negligible function µ(·), such that
for every n ∈ N, every C ∈ Cn, and every predicate
π(·),
|Pr[A(O(C)) = π(C)]−Pr[SC (1n) = π(C)]| < µ(n).13

Throughout this paper, we restrict our attention to effi-
cient obfuscators, defined as follows.

Definition 2 An obfuscator O is said to be efficient if it
runs in probabilistic polynomial time.

A few positive results for obfuscation (in the plain
model) exist in the literature [C97, CMR98, W05]. All these
positive results are for weak obfuscators which have the fol-
lowing weaker variant of the “virtual black-box” property:

For every PPT A and every polynomial p(·) there
exists a PPT S such that for every n ∈ N, every
C ∈ Cn, and every predicate π(·),

|Pr[A(O(C)) = π(C)]−Pr[SC (1n) = π(C)]| <
1

p(n)
.

12The original definition in [BGI+01] considered a slightly stronger
functionality property: they required that O(C) always computes the same
function as C. This was relaxed as above in [W05].

13[BGI+01] formalized the “virtual black-box” property in a different,
yet equivalent, way. They required that for every PPT A there exists a PPT
S and a negligible function µ(·), such that for every n ∈ N, and every
C ∈ Cn,

|Pr[A(O(C)) = 1] − Pr[SC(1n) = 1]| < µ(n).
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We note that the negative results of [BGI+01] hold also
for weak obfuscators. Similarly, our negative results hold
also for weak obfuscators w.r.t. auxiliary input.

3 Obfuscation w.r.t. Auxiliary Input

We consider two definitions of obfuscation w.r.t. auxil-
iary input. In the first definition we allow the auxiliary in-
put to depend on the function being obfuscated, whereas in
the second definition we require the auxiliary input to be
independent of the function being obfuscated. Both defini-
tions follow the spirit of the original definition of obfusca-
tion given in [BGI+01].

Definition 3 (Obfuscation w.r.t. dependent auxiliary in-
put): A probabilistic algorithm O is an obfuscator w.r.t. de-
pendent auxiliary input for a class of circuits C = {Cn}n∈N

if it satisfies the functionality property and the polynomial
blowup property as in Definition 1, and in addition it satis-
fies the following “virtual black box” property:

For every PPT A there exists a PPT S and a negligible func-
tion µ(·), such that for every polynomial q(·), every n ∈ N,
every C ∈ Cn, every auxiliary input z of size q(n) (z may
depend on C), and every predicate π(·), the following quan-
tity is smaller than µ(n) :

|Pr[A(O(C), z) = π(C, z)] − Pr[SC(1n, z) = π(C, z)]|.
Definition 4 (Obfuscation w.r.t. independent auxiliary in-
put): A probabilistic algorithm O is an obfuscator w.r.t.
independent auxiliary input for a class of circuits C =
{Cn}n∈N if it satisfies the functionality property and the
polynomial blowup property as in Definition 1, and in addi-
tion it satisfies the following “virtual black box” property:

For every PPT A there exists a PPT S and a negligible func-
tion µ(·), such that for every polynomial q(·), every n ∈ N,
every auxiliary input z of size q(n), and every predicate
π(·), the following quantity is smaller than µ(n) :

|Pr[A(O(C), z) = π(C, z)] − Pr[SC(1n, z) = π(C, z)]|,
where the probabilities are over C ∈R Cn, and over the
random coin tosses of A, S, and O.

Notice that Definition 4 is weaker than Definition 3, not
only because the auxiliary input is independent of the func-
tion being obfuscated, but also because in Definition 4 the
simulator S is required to succeed only for random C ∈R

Cn (whereas in Definition 3 the simulator S is required to
succeed for every C ∈ Cn). As was noted in the Intro-
duction, considering only randomly chosen circuits seems
to suffice for most cryptographic applications. Moreover,
even if Definition 4 does seem to be too weak, this is not

a concern to us, since we are proving impossibility results,
and impossibility of achieving a weak definition implies im-
possibility of achieving a stronger one.

Our negative results hold also for the notion of weak ob-
fuscation w.r.t. auxiliary input, which is defined analogously
to weak obfuscation (without auxiliary input). In Section 5
we show negative results for weak obfuscation w.r.t. inde-
pendent auxiliary input, and in Section 6 we show negative
results for weak obfuscation w.r.t. dependent auxiliary in-
put. In order to state formally each of these results we need
to define the notion of pseudo entropy of a class of circuits.

4 High Pseudo Entropy Circuits

Loosely speaking, we say that a class of circuits C has
pseudo entropy at least p(·) if there exist polynomial size
sets In ⊆ {0, 1}n such that the set C(In) looks as if it has
min-entropy at least p(n), even given oracle access to C on
Īn � {0, 1}n \ In. This is formalized as follows.

Definition 5 (Pseudo entropy of a class of circuits:) We
say that a class of circuits C = {Cn}n∈N has pseudo en-
tropy at least p(·) if there exists a polynomial t(·) and sets
In ⊆ {0, 1}n of size t(n), and for every C ∈ Cn there is
a random variable �Y C = (Y1, . . . , Yt(n)) such that the fol-
lowing holds:

1. �Y C has (statistical) min entropy at least p(n).14

2. For every PPT oracle machine D there is a negligible
function µ(·) such that for every n ∈ N,

|Pr[DC|Īn (�Y C) = 1]−Pr[DC|Īn (C(In)) = 1]| ≤ µ(n),

where the probability is over C ∈R Cn, �Y C , and the
random coin tosses of D. The circuit C|Īn

agrees with
C on every x /∈ In and outputs ⊥ on every x ∈ In.

There is a slight abuse of notations here. We use In to
denote both a set and a list (or a vector). For In =
(x1, . . . , xt(n)) we let C(In) = (C(x1), . . . , C(xt(n))).

Definition 6 We say that a class of circuits C = {Cn}n∈N

has super-polynomial pseudo entropy if it has pseudo en-
tropy at least p(·), for every polynomial p(·).

We give a few examples of natural classes of circuits that
have super-polynomial pseudo entropy.

Claim 4.0.1 The following classes of circuits all have
super-polynomial pseudo entropy:

1. Every class of pseudo-random functions.

14A random variable X over some set S is said to have (statistical) min-
entropy at least k if for every x ∈ S, Pr[X = x] ≤ 2−k .

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



2. Every secure randomized digital signature algorithm,15

in which the signer replaces the randomness by apply-
ing a (secret) pseudo-random function to the message
to be signed.

3. Every secure secret-key and public-key encryption al-
gorithm, in which the randomness is replaced by apply-
ing a (secret) pseudo-random function to the message
to be encrypted.

Proof: Due to lack of space we prove only item 2. Let
SIG be any secure randomized digital signature algo-
rithm, and let SIG′ be the deterministic signature algo-
rithm obtained by taking any pseudo-random function en-
semble F = {fs}, and modifying the (randomized) sign-
ing algorithm SIGSK(·) by appending a (random) seed s
of F to its signing key, and by setting SIG′

SK,s(M) �
SIGSK(M ; fs(M)). For every set of t(n) messages
In = (M1, . . . , Mt(n)), let �Y SK = (Y1, . . . , Yt(n)) be
a sequence of t(n) independent random variables, where
each Yi is identically distributed to SIGSK(Mi). The
fact that Yi has (statistical) min-entropy at least 1, im-
plies that �Y SK has (statistical) min-entropy at least t(n).
It remains to notice that the pseudo-randomness of F im-
plies that every PPT oracle machine DSIG′

SK,s|Īn cannot
distinguish between the random variable SIG′

SK,s(In) =
(SIG′

SK,s(M1), . . . , SIG′
SK,s(Mt(n))) and the random

variable �Y SK = (Y1, . . . , Yt(n)) (for randomly chosen
SK, s), implying that SIG′ has super-polynomial pseudo
entropy.

Remark. The reason circuits with super-polynomial
pseudo entropy are useful in the context of obfuscation, is
that when proving impossibility results, we exploit the fol-
lowing distinction:

1. An obfuscation O(C) is a small (polynomial size) cir-
cuit that agrees with C on In.

2. Given black-box access to C, it is hard to construct a
small circuit that agrees with C on In.

When arguing for (2), we use the fact that C has super-
polynomial pseudo entropy. If C has super-polynomial
pseudo entropy, then given black box access to C|Īn

, it
is hard to distinguish (for C ∈R Cn) between the pair
(In, C(In)) and the pair (In, �Y C), where �Y C is a random
variable with high (statistical) min-entropy. Using the con-
nection between (statistical) min entropy and compression,
it can be shown that with high probability (over the ran-
dom variable �Y C ) there does not exist a small circuit v
such that v(xi) = Yi, where In = (x1, . . . , xt(n)) and

15A signature scheme is said to be randomized if for every message
M and for every signing key SK , the random variable SIGSK(M) has
(statistical) min-entropy at least 1.

�Y C = (Y1, . . . , Yt(n)). Thus, it must be the case that for
a random C ∈ Cn it is hard to come up with a small cir-
cuit that agrees with C on In. Otherwise, this can be used
to distinguish between the pair (In, C(In)) and the pair
(In, �Y C). We elaborate on this in Sections 5 and 6.

5 Impossibility of Obfuscation w.r.t. Inde-
pendent Auxiliary Input

In this section, we define the classes of filter functions,
and show that many natural classes of filter functions are
not even weakly obfuscatable w.r.t. independent auxiliary
input.

Definition 7 Let L ∈ NP , and let C be any class of cir-
cuits. For every C ∈ C we define CL(x, w) = C(x) if
(x, w) ∈ RL, and CL(x, w) = ⊥ otherwise. The class of
filter functions CL is defined by CL � {CL : C ∈ C}.

We show that the class of filter functions CL is not
weakly obfuscatable w.r.t. independent auxiliary input, for
L and C = {Cn}n∈N that satisfy the following properties:

1. L is an NP-complete language.

2. C is strongly unpredictable: For every x ∈ {0, 1}n,
and for a random C ∈R Cn, given oracle access to C
everywhere except at the point x, it is hard to guess
C(x) (except with negligible probability).

3. C has super-polynomial pseudo entropy over elements
in L: for every polynomial p(·) there exists a polyno-
mial t(·) and sets In ⊆ L ∩ {0, 1}n of t(n) elements,
and for every C ∈ Cn there exists a random variable
�Y C = (Y1, . . . , Yt(n)) with (statistical) min entropy at
least p(n), such that every PPT oracle machine DC|Īn

cannot distinguish (for C ∈R Cn) between the random
variable C(In) and the random variable �Y C .

We note that all our natural examples of classes of circuits
given in Claim 4.0.1, satisfy both properties (2) and (3).

Theorem 8 For every L and C that satisfy the above three
properties, the class of circuits CL cannot be weakly obfus-
cated w.r.t. independent auxiliary input.

Proof Idea: The proof is by contradiction. We assume
that there exist C and L as above, such that CL can be
weakly obfuscated w.r.t. independent auxiliary input by an
obfuscator O. The main idea is to exploit the fact that
CL has the property, that for every n ∈ N there is a set
In = (x1, . . . , xt(n)) of t(n) elements in L∩{0, 1}n, and a
set Wn = (w1, . . . , wt(n)) of t(n) corresponding witnesses,
such that:
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1. For every PPT S, given black-box access to a
random circuit CL ∈R CL

n it is hard to come
up with a “small” circuit that computes CL on
(x1, w1), . . . , (xt(n), wt(n)). This follows from the fact
that C has super-polynomial pseudo entropy over L.

2. For every C ∈ Cn, O(CL) is itself a “small” circuit that
computes CL on (x1, w1), . . . , (xt(n), wt(n)).

We exploit this difference to obtain a contradiction. How-
ever, for this we need to show that given O(CL) it is easy to
compute a single bit b, whereas every PPT oracle machine
S(CL) fails to compute this bit (with noticeable probability).
This is where our auxiliary input comes into play.

Our first idea was to take the auxiliary input z to be an
obfuscation of a circuit that outputs a secret bit b only on
inputs that encode a small circuit that agrees with CL on
(x1, w1), . . . , (xt(n), wt(n)). Such an approach is actually
taken in Section 6. However, here we need to take a dif-
ferent approach: first, because we need the auxiliary input
to be independent of our obfuscated circuit, and z as de-
fined above does depend on our obfuscated circuit CL; and
second, because we do not want to add the additional as-
sumption that the above z is obfuscatable.

Instead, we let z be an obfuscation of a random filter
function KL ∈R CL

n .16,17 We show that there exists a string
x∗ ∈ {0, 1}n (that depends only on In and C(In)) such
that:

1. For every PPT S, given black-box access to a random
circuit CL ∈R CL

n , and given O(KL) it is hard to com-
pute K(x∗).

2. For every C ∈ Cn, given (O(CL),O(KL)) it is easy to
compute K(x∗).

The full proof of Theorem 8 is omitted due to lack of space.

6 Impossibility of Obfuscation w.r.t. Depen-
dent Auxiliary Input

In this section we define the classes of point-filter func-
tions. We show that if point-filter functions can be weakly
obfuscated w.r.t. dependent auxiliary input then every class
of circuits with super-polynomial pseudo entropy cannot be
weakly obfuscated w.r.t. dependent auxiliary input.

Definition 9 For every L ∈ NP , the class ∆L =
{∆L

n}n∈N is a class of point-filter functions, where ∆L
n =

{δx,b}x∈{0,1}n,b∈{0,1} and δx,b(w) = (x, b) if (x, w) ∈ RL

and δx,b(w) = x otherwise.

16Notice that KL is independent of CL.
17Actually, in the full proof we let z be an obfuscation of KL′ ∈R CL′

n ,
where L′ is some specific NP-language. We use the NP-completeness
of L to deduce that CL′

is obfuscatable (assuming CL is obfuscatable).

Theorem 10 For every NP-complete language L the class
∆L is not weakly obfuscatable w.r.t. dependent auxiliary in-
put, or every class C with super-polynomial pseudo entropy
is not weakly obfuscatable w.r.t. dependent auxiliary input.

The proof of Theorem 10 is omitted due to lack of space,
and the intuition is summarized below.

Proof Idea: Assume that there exists an NP-complete lan-
guage L such that the class ∆L is weakly obfuscatable w.r.t.
dependent auxiliary input. This implies that for every NP
language L′ the class ∆L′

is also weakly obfuscatable w.r.t.
dependent auxiliary input. (This follows from the existence
of an NP-reduction.18)

We need to prove that every class C with super-
polynomial pseudo entropy is not weakly obfuscatable w.r.t.
dependent auxiliary input. Assume for the sake of con-
tradiction that there exists a class C with super-polynomial
pseudo entropy that can be weakly obfuscated w.r.t. depen-
dent auxiliary input by an obfuscator O.

The main idea is to exploit the fact for every n ∈ N there
is a polynomial size set In ⊆ {0, 1}n, such that:

1. For every PPT S, given black-box access to a random
circuit C ∈R Cn, it is hard to come up with a “small”
circuit that computes C on In.

2. For every C ∈ Cn, O(C) is itself a “small” circuit that
computes C on In.

We want to exploit this difference to obtain a contradiction.
However, for this we need to show that given O(C) it is
easy to compute a single bit b, whereas every PPT oracle
machine SC fails to compute this bit (with noticeable prob-
ability). This is where the auxiliary input comes into play.

We let the auxiliary input z = zC be a point-filter func-
tion that is associated with a secret bit b. zC outputs its
secret bit b only on inputs that encode a “small” circuit that
agrees with C on the elements in In. More precisely, zC is
the point filter function δ(In,C(In)),b, where a valid witness
for (In, C(In)) is a “small” circuit that agrees with C on
elements in In.

Thus, it remains to show:

1. For every PPT S, given black-box access to a random
circuit C ∈R Cn, and given zC it is hard to compute the
secret bit b.

2. For every C ∈ Cn, given (O(C), zC) it is easy to com-
pute the secret bit b.

It is easy to see that (2) holds, since O(C) is a valid wit-
ness of (In, C(In)). Thus, given (O(C), zC), the secret bit

18We actually need to assume here that the NP-reduction is witness
preserving. We refer to the final version of this work for more details.
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b can be easily computed by evaluating zC on input O(C).
However, it is not clear that (1) holds, since it may actually
be easy to extract the secret bit b from zC , which can be
any circuit computing δ(In,C(In)),b. To hide the secret bit
b from S, we obfuscate this point-filter function. Namely,
the auxiliary input zC that we consider is an obfuscation of
δ(In,C(In)),b. Now, it is easy to see intuitively that (1) holds
since S does not have any valid witness of (In, C(In)), and
therefore does not have any advantage in guessing the secret
bit b from its obfuscated point-filter function at hand.

Using similar ideas, we can prove the following theorem.

Theorem 11 For every NP-complete language L the class
∆L is not weakly obfuscatable w.r.t. dependent auxiliary in-
put, or for every secure (secret-key or public-key) encryp-
tion scheme (G, E, D), the class of decryption algorithms
D = {Dsk} is not weakly obfuscatable w.r.t. dependent
auxiliary input.

6.1 Are Point-filter Functions Obfuscatable?

Theorems 10 and 11 both give conditional results. We
would much prefer to have the explicit result that every class
with super-polynomial pseudo entropy is not weakly obfus-
catable w.r.t. dependent auxiliary input, which would im-
ply that many natural cryptographic tasks (such as pseudo-
random functions, encryption algorithms, signature algo-
rithms, etc.) cannot be weakly obfuscated w.r.t. dependent
auxiliary input. Therefore, we think that it is worth inves-
tigating the question of whether point-filter functions are
weakly obfuscatable w.r.t. dependent auxiliary input. We
do not have a complete answer to this question. Rather, we
relate it to another (seemingly unrelated) problem that is of
independent interest. We show that the existence of a weak
obfuscator w.r.t. dependent auxiliary input for the class ∆L,
is closely related to the existence of a hard-core predicate
for the language L.

Intuitively, B(·) is a hard-core predicate for the language
L if the following two conditions hold: (1) for every x ∈ L,
given any witness of x it is easy to compute B(x). (2) It
is hard to compute B(x) without knowing a witness for x.
We formalize the hard-core predicate B(·) as a probabilistic
predicate, as follows.

Definition 12 (Hard-core predicate for L): A randomized
predicate B(·) is said to be a hard-core predicate for L ∈
NP , if the following two conditions hold:

1. There exists a PPT machine A1 and a polynomial p(·)
such that for every (x, w) ∈ RL and every r ∈
{0, 1}|x|,

Pr[A1(x, w, r) = B(x, r)] ≥ 1
2

+
1

p(|x|) ,

where the probability is over the random coin tosses of
A1.

2. There exists a PPT oracle machine A2 such that for ev-
ery polynomial q(·) there exists a polynomial p(·) such
that for every x ∈ L,

Pr[Afx

2 (x) = w s.t. (x, w) ∈ RL] ≥ 1
p(|x|) ,

where fx is a function that on input a random r out-
puts B(x, r) with probability 1

2 + 1
q(|x|) , and where the

probability is over the random coin tosses of A2.

Theorem 13 If L ∈ NP has a hard-core predicate then the
class ∆L is weakly obfuscatable w.r.t. dependent auxiliary
input.

The proof of Theorem 13 is omitted due to lack of space.

7 Obfuscation of Point Functions

As was mentioned in the Introduction, the only (non-
trivial) positive results for obfuscation (in the plain model)
are for point functions [C97, CMR98, W05]. In this section,
we explore the question of whether point functions can be
obfuscated w.r.t. auxiliary input.

When considering independent auxiliary input we can
prove the following:

Theorem 14 Every obfuscator (resp. weak obfuscator)
without auxiliary input is also an obfuscator (resp. weak
obfuscator) w.r.t. independent auxiliary input.

An interesting application of Theorem 14, suggested by
Canetti [C97], is to content concealing signature schemes.
Canetti’s idea is the following. Take any secure digital sig-
nature SIG = (G, S, V ), and an obfuscator O for point
functions (recall, Ix(y) = 1 if and only if x = y) and
create a secure content concealing digital signature scheme
SIG′ = (G, S′, V ′) as follows. The signing algorithm S′

on message m outputs (O(Im), S(O(Im))). The verifica-
tion algorithm V ′ on input message m and a presumed sig-
nature (C, σ) accepts if and only if C(m) = 1 and (C, σ) is
a legal message and signature pair according to V .

It is easy to see that if the obfuscator O satisfies the
virtual black box property, then SIG′ is a secure content-
concealing signature when used to sign one-message.
However, in order to claim that this remains the case when
several messages are signed, one must show that whatever
predicate can be learned from O(Im) and O(Im′ ), can also
be learned from input/output access to Im and auxiliary
input O(Im′). Theorem 14 implies that as long as the
messages are drawn independently at random from {0, 1}n,
proving the existence of obfuscator O for point functions
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suffices for this application, without having to address the
issue of independent auxiliary inputs.

Theorem 14 does not seem to hold in the case of depen-
dent auxiliary input. In particular we believe that the ob-
fuscator in [W05] is not robust against dependent auxiliary
input, as the following illustrates.

The obfuscator presented in [W05] assumes the exis-
tence of a very strong one-way permutation π, and is de-
fined as follows: For every x ∈ {0, 1}n, and randomness
τ1, . . . , τ3n ∈R {0, 1}n, the obfuscator O(Ix; τ1, . . . , τ3n)
is defined to be:

(τ1, . . . , τ3n, 〈x, τ1〉, 〈π(x), τ2〉 . . . , 〈π3n−1(x), τ3n〉).
For a random string R, consider the auxiliary input
z(x, R) � (x ⊕ R, π(x) ⊕ R, . . . , π3n−1(x) ⊕ R).

Claim 7.0.2 Assuming the function z : (x, R) → z(x, R)
cannot be inverted (except with negligible probability over
random x, R), O is not an obfuscator w.r.t. dependent aux-
iliary input.

Proof Sketch of Claim 7.0.2: It suffice to prove that the
following two statements are true.

1. For every n ∈ N, every x, R ∈ {0, 1}n, given the pair
(O(Ix; τ1, . . . , τ3n), z(x, R)), it is easy to compute x.

2. For every PPT oracle machine S and for infinitely
many n’s, SIx (z(x, R)) does not have any advantage
in guessing x (for x, R ∈R {0, 1}n).

We omit further details due to lack of space.

8 Directions for Future Work

An intriguing question posed by this work is whether
there exists an NP-complete language L such that the
point-filter class ∆L is obfuscatable w.r.t. dependent aux-
iliary input? A positive answer would imply very strong
negative results: every class with super-polynomial pseudo
entropy is not obfuscatable w.r.t. dependent auxiliary input.

On the positive front, an interesting direction to pursue
is to try to extend the model in which obfuscation is done,
with the hope that such extension would enable wide and
meaningful possibility results. For example, one may con-
sider the question of whether obfuscation is possible in the
Common Reference String (CRS) model. This is a natu-
ral first choice, as non-interactive zero-knowledge proofs,
which can be thought of as “proof obfuscation” is possi-
ble in the CRS model. Unfortunately, our negative results,
as well as the negative results of [BGI+01], hold also in
the CRS model. Still, finding the right model which would
be realizable in applications and in which wide obfuscation
could be done is a worthy direction to pursue.
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