Metrics-based Evaluation of Slicing Obfuscations

Anirban Majumdar, Stephen Drape and Clark Thomborson
Department of Computer Science
The University of Auckland, New Zealand.
email: {anirban, stephen, cthombor}@cs.auckland.ac.nz

Abstract

An obfuscation aims to transform a program, without af-
fecting its functionality, so that some secret data within the
program can be hidden for as long as possible from an ad-
versary armed with reverse engineering tools. Slicing is a
reverse engineering technique which produces a subset of
a program that is dependent on a particular program point
and is used to aid in program comprehension. Thus slicing
could be used as a way of attacking obfuscated programs.

In this contribution, we highlight a few obfuscating
transforms that were proposed in an earlier publication for
making attacks difficult to mount using slicers and then il-
lustrate an experimental design to evaluate the strength of
these transforms with respect to well defined slicing metrics.

Keywords: Obfuscation, Slicing, Metrics, Evaluation

1 Introduction

The goal of software protection through code obfusca-
tion is to transform the source code of an application to the
point that it becomes unintelligible to automated program
comprehension and analysis tools [13]. The motivation
for obfuscating code arises from the problem of software
piracy. A piece of distributed software may contain secrets
(tangible artefacts such as cryptographic keys or intellectual
artefacts such as a patented algorithm) which a software pi-
rate may want to steal or tamper. This could be facilitated by
malicious reverse engineering — a process of discovering
the technological principles of a system through analysis of
its structure, function and operation [5]. With the advent
of platform independent mobile code, reverse engineering
has become a serious challenge to the software industry and
commercially successful software such as the Skype inter-
net telephony client [4], and most license-control systems
rely, at least in part, on obfuscation for their security.

The first formal definition of obfuscation was given by
Collberg et al. [6, 7] where an obfuscator was defined in
terms of a semantic-preserving transformation function O

which maps a program P to a program O(P) such that if
P fails to terminate or terminates with an error, then O(P)
may or may not terminate. Otherwise, O(P) must termi-
nate and produce the same output as P. Barak et al. [2]
strengthened the formalism of Collberg et al. by defining an
obfuscator, O, in terms of a compiler that takes a program,
P, as input and produces an obfuscated program, O(P), as
output such that O(P) is functionally equivalent to O(P),
the running time of O(P) is at most polynomially larger
than that of P, and O(P) simulates a virtual black-box. Tt
was observed in [8] that the virtual black-box property of
[2] is too strong. Obfuscators will be of practical use even
if they do not provide perfect black boxes. Therefore, the
focus of research in obfuscation has shifted to constructing
obfuscating transforms that are difficult (but not necessarily
impossible) for an adversary to reverse engineer.

Our motivation is derived from the difficulty of empir-
ically evaluating the obfuscatory strength of seemingly re-
silient obfuscating transforms. Majumdar et al. [12] (and
separately in [18]) observed that in order to do such evalua-
tion, we need to be able to answer the following question —
“What kinds of tools and program analyses are suitable for
evaluating a particular obfuscating transform?” An imme-
diate observation that follows from this question is the fact
that it is probably impossible to come up with one general
purpose reverse engineering tool that will deobfuscate any
obfuscating transform (thinking from an adversary’s per-
spective, an adversary will have to use different techniques
to deobfuscate a program obfuscated with different kinds
of transforms). As a corollary, we can argue that it is also
ambitious to design an obfuscating transform that will with-
stand all possible reverse engineering attacks.

In the domain of software engineering, program slicing
is widely used for program maintenance and comprehen-
sion [3, 10, 17]. These techniques form the basis of reverse
engineering since the goal of these techniques is to iden-
tify relevant parts of the code from other unnecessary de-
tails. Indeed, this is what a software pirate intends to do
when he/she attempts to steal or change the relevant parts
(of her/his interest) in the code with the intention of reusing

the extracted module in illegal derivative software or inval-
idating the code licensing routine. The main challenge in
deterring such kinds of code comprehension attacks is to
intertwine the relevant code with other irrelevant sections
so that the attacker fails to recognise the portions of inter-
est from the code. In [9], the authors proposed ways to
design obfuscations (called slicing obfuscations) by intro-
ducing dependencies between seemingly unrelated portions
of code to try to defend against slicing attacks. In this con-
tribution, we will demonstrate an experimental design for
evaluating the obfuscatory strength (measured in terms of
various slicing metrics) of those proposed transforms in the
restricted security model of static slicing attacks.

2 Experimental Design

Since slicing can be used to aid program comprehension,
we should design obfuscations that make slicing less use-
ful. In this paper we present some experiments in which we
manufacture obfuscations that are designed to decrease the
effectiveness of slicing. We have based our experiments on
CodeSurfer, a static program slicer for code written in C [1],
which uses system dependence graphs (SDGs), an interme-
diate structure for representing programs [11]. Slicing using
SDGs is the most precise and complete slicing method cur-
rently available [17]. CodeSurfer is capable of backward
slicing, forward slicing, and chopping. A backward slice
includes all program points that affect a given point in the
program. A forward slice includes all program points that
are affected by a given point in the program. A chop in-
cludes all program points that are affected between a source
program point and a sink program point. For our illustra-
tions in this paper, we use the backward slicing feature of
CodeSurfer from program output statements.

For our experiments, we consider a set of five C pro-
grams and discuss how we can obfuscate them with the aim
of making slicing less effective. We have restricted our pro-
grams to use a subclass of common program constructs (as-
signments, output statements, conditionals and loops) and
thus our obfuscations are applicable to languages other than
C. We also restrict ourselves to intra-procedural slices. In
the rest of this section we discuss how we set up our ex-
periments by describing what properties were are going to
measure, how we compute these measurements and what
transformations we are going to use as obfuscations.

2.1 Slicing Metrics

The goal of our experiments is to investigate whether
our slicing obfuscations, which were proposed in [9], make
slicing less effective as a tool for program comprehension.
To help us evaluate our obfuscations we will consider some
metrics used to assess program slicing.

Meyers and Binkley [14] studied five slice-based met-
rics which were proposed as measures of the quality of
software. Three of the metrics (Tightness, Coverage and
Overlap) were originally presented by Weiser [20] and the
other two (MinCoverage and MaxCoverage) were proposed
by Ott and Thuss [15].

For each program (method) M in our experiments we
will concentrate on variables which are output (for instance,
as part of a printf statement) and so we have a set of out-
put variables V. Our slicing point will be the last output
statement for each output variable. For each v; € V the
backwards slice for v; is denoted by SL;, S L, is defined
to be (), SL; (i.e. the intersection of all the slices) and | . . . |
denotes the size. Here are the definitions taken from [14]
for the five slice-based metrics that we will use.

Definition 1 (Tightness Metric). Tightness measures the
number of statements common to every slice.

TAD =7

Definition 2 (Minimum Coverage). Minimum coverage is
the ratio of the smallest slice in a method to it’s length.

1
= — mm |SL;|

Definition 3 (Coverage). Coverage compares the length of
slices to the length of the entire method.

Definition 4 (Maximum Coverage). Maximum coverage
is the ratio of the largest slice in a method to it’s length.

Max(M) = InaX|SL |

\M |
Definition 5 (Overlap). Overlap is a measure of how many
statements in a slice are found in all the other slices.

1 Sl
O = 1y 2 L]

These metrics give values in the range between 0 and 1
(so we give our values as percentages) and, in terms of slic-
ing, good slices are indicated by low metric values. Our in-
tention in this paper is to see whether the obfuscations from
[9] increase these slicing metrics. We use these metrics to
evaluate how our obfuscations affect the effectiveness of
slicing. Our aim when performing slicing obfuscations is
to increase some (and ideally all) of the slicing metrics.

We use CodeSurfer to compute the backward slice for
each output variable. To compute the metrics for each slice

we need to measure the size of the method and well as the
size of the slices in a consistent manner. CodeSurfer has a
feature which allows the user to compute sets of program
points (i.e. nodes in the SDG) using a set calculator. We
can use this calculator to compute measurements for slices
as well as for methods and we can perform set operations.

For a particular method M, the size |M]| is obtained by
computing the number of program points contained within
the method itself (and not any that are contained in calls
to other methods). The set of program points for a back-
wards slice from a point in M may contain points from
other methods, such as method calls, and so the size of a
slice may actually be bigger than |M|. Since in this pa-
per we are only concentrating on a single method M, when
computing the size of the slice we will only consider the
part of the slice that is contained in M. Using standard flat-
tening techniques, we inline the code of every method into
one method M which contains the desired slicing criterion
(output variables). Our results can be seen in Table 1 which
we discuss in more detail in Section 4.

2.2 Transformations

For completeness, we provide a brief overview of some
of the slicing obfuscations from [9] which we will use to
obfuscate our candidate programs. Suppose that we have an
output variable y. To manufacture a slicing obfuscation for
y we have to ensure that the slice for the obfuscation con-
tains points that were not included in the original slice for y.
We can do this by creating dependencies on y on any vari-
able x that was not in the original slice for y. We will use
the following three transformations (which are taken from
[6]) to create dependencies for y on x.

Bogus Predicate 'We can add a bogus predicate ¢”', which
is always true, as follows:

r=G; S=x=G0G;if(¢") S; else y = H(z);
We can add a false predicate similarly.

Adding to a while loop We can add a new variable j that
depends on both x and y as follows (provided that ¢ = p):
while (¢) S = while (¢ && p(j)) {S; j = F(z,y); }
Variable Encoding An encoding for y has the form y =

a *y + (. We can adapt this so that y depends on z as
follows: y = « * y + [* x. We have three rewrite rules:

Uly) = U(ly—Bxz)+a)
e A definition of y:

e A use of y:

y=E=y=axEX2L/yl 4 Bxa

e A definition of x:

z=V(y) =
{t=y—Brz;x=V(t+a)y=t+pB*x;}

where ¢ is a fresh, temporary variable.

3 Obfuscating Example Programs

For our experiments, we considered obfuscating five dif-
ferent programs with the goal of creating dependencies be-
tween all of the output variables. In the rest of this section
we briefly describe each of the programs and the obfusca-
tions that we performed. We restrict our obfuscations to the
transformations that we discussed in Section 2.2.

3.1 Word Count

The word count program takes in a file and outputs the
number of lines (nl), words (nw) and characters (nc). The
results for slicing for these three variables can be found in
Table 1 where the original program is called wec.

As an obfuscation we added this simple bogus predicate

if (nl > ne) nw = ne + nl;
else {if (nw > nc) nc = nw —nl; }

before the three values are printed. This single obfuscation
adds dependencies between the three variables and so the
slice for each variable contains the definitions for the other
variables. We called this obfuscated method wc-obfI and
the metric values for this method can be found in Table 1.

3.2 Product and Sum

The classic slicing example of a method calculating the
product (prod) and sum (sum) of the first n positive inte-
gers was considered next. Our program contained a while
loop using a variable ¢ which counts up from O to n.

We first created a dependency for prod on sum by
adding the condition of Vsum < 0 in the guard of the
while loop. Next we need to create a dependency for sum
and so we added a bogus predicate p” around the statement
prod = prod * i. The metrics values for three methods can
be seen in Table 1. The method ps relates to the original
unobfuscated method, in ps-obfl the loop dependency was
created and finally we added the predicate in ps-obf2.

3.3 Search Sort

The search sort program (obtained from [19]) takes an
argument n from the user, performs different sorts and
searches on n elements and then displays the time taken
to do each one. So the two output variables at each stage

For each v; the slice size |SL;|

Method M | [M]] [Vol |

[SLin] [TG) [Min(M) | CQM) | Maz(M) [OQM) |

we 36 3 nl 15 nw 20 | nc| 10 7 19.4% 27.8% 41.7% 55.6% 50.6%
we-obf1 42 3 nl 30 nw 30 | nc| 30 28 66.7% 71.4% 71.4% 71.4% 93.3%
ps 21 2 |prod| 12 | sum | 12 7 33.3% 57.1% 57.1% 57.1% 58.3%
ps-obfl 22 2 |prod| 16 | sum | 13 11 50.0% 59.1% 65.9% 72.7% 76.7%
ps-obf2 26 2 |prod| 19 | sum | 19 17 65.4% 73.1% 73.1% 73.1% 89.5%
search 107 2 n 9 secs 11 2 1.9% 8.4% 9.3% 10.3% 20.2%
search-obfl | 120 2 n 45 | secs | 11 10 8.3% 9.2% 23.3% 37.5% 56.6%
search-obf2 | 127 2 n 49 | secs | 48 46 36.2% 37.8% 38.2% 38.6% 94.9%
rov 124 2 | fuel | 23 | dist | 46 19 15.3% 18.5% 27.8% 37.1% 62.0%
rov-obfl 129 2 | fuel | 60 | dist | 46 45 34.9% 35.7% 41.1% 46.5% 86.4%
rov-obf2 132 2 | fuel | 62 | dist | 60 59 44.7% 45.5% 46.2% 47.0% 96.7%
scatter 143 3 st 116 | ru 111 | 4 9 8 5.6% 6.3% 55.0% 81.1% 34.3%
scatter-obfl | 148 3 st 132 | ru 132 | ¢ | 132 131 88.5% 89.2% 89.2% 89.2% 99.2%
scatter-obf2 | 150 3 st 139 | ru 139 | ¢ | 139 138 92.0% 92.7% 92.7% 92.7% 99.3%

Table 1. Table of results for our five example programs with their obfuscations. There is a separate
row in the table for recording the slicing metric values of the example programs and their obfuscated
counterparts. The row labelled wc, for example, records the slicing metric values for the unobfus-
cated instance of Word Count example; whereas, wc-obfI indicates the metric values when slicing
obfuscations have been applied. The columns from || to |SL,,.| reflect measures with respect to
the number of SDG nodes. The latter columns indicate the slicing metric values.

are the number of elements n and the number of seconds
secs. This program is different from those considered so
far as it contains different methods which the main method
calls. However the results for all of these methods are dis-
carded and only the time taken to perform each method is
computed. Thus slices for both n and secs only contain
statements from the main method. So for our experiments
we only consider changing statements in the main method.
(Obviously when obfuscating we should aim to obfuscate
the other methods in the program but this is beyond the
scope of this paper.) The metric results for the main method
search can be found in Table 1.

As n is constant throughout the program (it is inputted
by the user) we attempt to make n vary by adding a variable
encoding. We would like to create a dependency for n on
sec but n is declared as an integer and secs is a float. So
we declare a new integer variable k£ which we define as k =
(int) 10 x secs and we perform the transformation n =
n + k. By the replacement rules for variable encoding we
need to redefine k every time that secs is redefined and so
we can use a different declaration for k. Note that this kind
of transformation could make the value of n overflow and so
we should put in checks to ensure that this does not happen.
The results for this obfuscation can be found in Table 1 for
the method search-obfI.

To create some dependencies for secs we placed two bo-
gus predicates near the end of the method. The value of
secs is obtained by computing the difference between two

different clock values contained in c¢1 and ¢2. So, for exam-
ple, we can change the first assignment to:

if (secs >=0) c1 = clock(); else c1 = n/clock();

The results after adding these predicates can be found in
Table 1 for the method search-obf2.

3.4 Rover

The rover program checks whether a plan for manoeu-
vring a vehicle around an obstacle to a given target, with a
limited amount of fuel, satisfies certain constraints. It simu-
lates a land rover vehicle which needs to be driven around a
rock on the Martian surface by giving it coordinates as input
[19]. However, the vehicle goes off-track from the specified
target and it has limited amount of fuel. The challenge is to
bring the vehicle within 5km of the target by inputting a se-
quence of coordinates which will also not exhaust the fuel
before it reaches the target. Here we consider two output
variables fuel and dist. The results for the original method
can be seen in the rov row of Table 1.

So that fuel depends on dist we perform the following
variable encoding fuel = fuel + dist. Note that we have
to add an extra temporary variable ¢ to perform the encod-
ing. The values for this obfuscation can be found in the
rov-obf1 row of Table 1.

The value of dist is \/dx? + dy? where dz and dy are
two other variables. To create a dependency for dist we

changed an assignment to dx as follows:
dx = E;= if (fuel >= dist) do = F; else dx = bogus;

By the variable encoding above we know that since dist >
0 then fuel > dist. The row rov-obf2 in Table 1 contains
the values for this obfuscation.

3.5 Scattering

The scattering program is a typical physics problem deal-
ing with the famous Rutherford’s scattering experiment for
finding the size of the nucleus of an atom (from Tao Pang’s
book “An Introduction to Computational Physics” [16]).
The original program contained several procedures for per-
forming integration using Simpson’s rule, finding roots us-
ing the Secant method, and finding the first and second or-
der derivatives with the three-point formula. We flattened
the procedures by inlining them in the main() procedure
(which we call scatter) and we consider three output vari-
ables s, ru and 7.

The variable 7 is used repeatedly as an induction variable
in different parts of the method. So we link up different uses
of ¢ by adding variable encodings to change initialisations
of 4 and by creating bogus predicates. Also, we observe in
the program source code that the statement b = b0 + ¢ * db;
maintains the invariant 7 > b A b0 < b. So we introduce
the following bogus predicates:

si=FE; = if(i+1>0b)si=EFE; else si = bogus;
ru=FE; = if (b0 <=0b)ru= FE; else ru = bogus;

into the code. The row scatter-obfl in Table 1 contains
the values for these obfuscations. In an attempt to provide
maximum code coverage, we introduce other similar bogus
predicates to include more statements in SL;,;. The row
scatter-obf2 in Table 1 indicates the changes brought about
by the addition of these predicates.

4 Results

The results are depicted in Table 1. Each of the rows
indicate the number of SDG nodes and slicing metric val-
ues for each unobfuscated example program (abbreviated
by program name) and its obfuscated counterpart(s) (in-
dicated by abbreviated program name followed by obf#
where # indicates the obfuscated instance). The table has
been partitioned lengthways in five sections corresponding
to groups of our five example programs. The columns | M|
to |SLjnt| reflect measures with respect to the number of
SDG nodes. These are used to calculate the slicing met-
ric values as defined in Section 2.1. The columns T'(M) to
O(M) indicate the corresponding slicing metrics.

From Table 1 we can see that we have increased the val-
ues of all the metrics and we can also see that we do not
significantly increase the size of the methods (the worst is
a 24% increase for ps but the size of the slices increase by
58%). One exception is the metric values obtained for the
search sort program. We see from Table 1 that its metric val-
ues are much lower than those obtained for other programs.
This exception arose since we deliberately avoided inlining
the searching and sorting modules of the program in order
to observe any interesting characteristics of non-inlining.

The biggest gain was in the scattering example for the
variable 7. By adding an extra 7 nodes (only a 5% size in-
crease) we managed to increase the size of the slice for ¢
by 130 nodes. We achieved this gain by observing that in
the original scattering program, ¢ was used repeatedly as an
induction variable and so we added dependencies between
the different uses of 7.

One aspect that is key to increasing the metrics values is
to ensure that we increase |.SL;,+ | (i.e. the intersection of
all the slices) and so that we increase the slice sizes and the
values of the Tightness and Overlap metrics. To increase
|SL;n: | we need to add dependencies between all of the
variables in V.

5 Conclusions and Future Work

In this paper, we have built an experimental framework
and conducted experiments to observe the effects of apply-
ing slicing obfuscations (defined in [9]) on standard slicing
metrics described in [14]. The objective was to substanti-
ate the fact that slicing obfuscations indeed made the slic-
ing metrics worse. This is evident from the results obtained
in Table 1. Even though the size of our experiment was
relatively small, it can be used in a much wider scope of
obfuscating generic programs against static slicer attacks.

Our obfuscations were created manually and so one area
for future work is to consider automating the process of
adding obfuscating transforms. One particular concern for
automation is the development of heuristics to decide where
to place slicing obfuscations in order to maximise the ef-
fects of the transforms. Also, for some of our programs we
added more than one obfuscation and so, we have created
a composite obfuscation. Further work is needed study the
effects of composing obfuscations together and, in particu-
lar, does the order in which we add obfuscations (and the
order in which we consider the output variables) matter?

Even with these simple transformation we have still
managed to decrease the effectiveness of slicing which was
our stated goal. When faced with an attacker who is armed
with more than just a slicer we will obviously have to de-
sign more complicated transformations. This will involve
creating predicates that are harder for an attacker to under-
stand, using different program constructs such as arrays and

pointers and dealing with inter-procedural constructs. An-
other interesting area for future work is to see if a similar
approach can be used to design obfuscations for protecting
programs against other forms of static analysis attacks.

References

[1] Paul Anderson and Tim Teitelbaum. Software inspec-
tion using CodeSurfer. In Proceedings of the Work-
shop on Inspection in Software Engineering (WISE
2001), Paris, France, July 2001. IEEE Computer So-
ciety.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo,
Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating pro-
grams. In Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryp-
tology, pages 1-18. Springer-Verlag, 2001.

[3] David Binkley and Mark Harman. A large-scale em-
pirical study of forward and backward static slice size
and context sensitivity. In ICSM ’03: Proceedings
of the International Conference on Software Mainte-
nance, pages 44-53, Washington, DC, USA, 2003.
IEEE Computer Society.

[4] Phillipe Biondi and Fabrice Desclaux. Silver nee-
dle in the Skype. Presentation at BlackHat Eu-
rope, March 2006. URL: www.blackhat.com/html/bh-
media-archives/bh-archives-2006.html.

[5] Elliot J. Chikofsky and James H. Cross II. Reverse
engineering and design recovery: A taxonomy. /[EEE
Software, 7(1):13-17, 1990.

[6] Christian Collberg, Clark Thomborson, and Douglas
Low. A taxonomy of obfuscating transformations.
Technical Report 148, Department of Computer Sci-
ence, University of Auckland, July 1997.

[7] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In POPL ’98: Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 184—196, New
York, NY, USA, 1998. ACM Press.

[8] Stephen Drape. Obfuscation of Abstract Data-Types.
DPhil thesis, Oxford University Computing Labora-
tory, 2004.

[9] Stephen Drape, Anirban Majumdar, and Clark Thom-
borson. Slicing aided design of obfuscating trans-
forms. In IEEE/ACIS ICIS 2007: To appear in pro-
ceedings of the International Computing and Infor-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

mation Systems Conference (ICIS 2007), Melbourne,
Australia, 2007. IEEE Computer Society.

Keith Brian Gallagher and James R. Lyle. Using pro-
gram slicing in software maintenance. /EEE Transac-
tions on Software Engineering, 17(8):751-761, 1991.

Susan Horwitz, Thomas Reps, and David Binkley. In-
terprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS), 12(1):26-60, 1990.

Anirban Majumdar, Antoine Monsifrot, and Clark
Thomborson. On evaluating obfuscatory strength of
alias-based transforms using static analysis. In Pro-
ceedings of ADCOMZ2006, Mangalore, India, 2006.
IEEE Computer Society.

Anirban Majumdar, Clark D. Thomborson, and
Stephen Drape. A survey of control-flow obfusca-
tions. In Second International Conference on Infor-
mation Systems Security, ICISS 2006, Kolkata, India,
pages 353-356, December 2006.

Timothy M. Meyers and David Binkley. Slice-based
cohesion metrics and software intervention. In Pro-
ceedings of the 11th Working Conference on Reverse
Engineering (WCRE’04), pages 256-265, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

Linda M. Ott and Jeffrey J. Thuss. Slice based metrics
for estimating cohesion. In Proceedings of the Inter-
national Software Metrics Symposium, pages 78-81.
IEEE Computer Society, 1993.

Tao Pang. An Introduction to Computational
Physics. Cambridge University Press, 1997. URL:
www.physics.unlv.edu/~pang/cp.html.

Frank Tip. A survey of program slicing tech-
niques. Technical report, CWI (Centre for Mathemat-
ics and Computer Science) CS-R9438, Amsterdam,
The Netherlands, 1994.

Sharath K. Udupa, Saumya K. Debray, and Matias
Madou. Deobfuscation: Reverse engineering obfus-
cated code. In WCRE ’05: Proceedings of the 12th
Working Conference on Reverse Engineering, pages
45-54, Washington, DC, USA, 2005. IEEE Computer
Society.

University of Texas at Austin CS1713 Course. URL:
www.cs.utexas.edu/users/djimenez/utsa/cs1713-3/c.

Mark Weiser. Program slicing. In ICSE '81: Proceed-
ings of the 5th International Conference on Software
Engineering, pages 439-449. IEEE Computer Society,
1981.

