
Slicing Aided Design of Obfuscating Transforms
Stephen Drape, Anirban Majumdar and Clark Thomborson

Department of Computer Science
The University of Auckland

New Zealand
email: {stephen,anirban,cthombor}@cs.auckland.ac.nz

Abstract—An obfuscation aims to transform a program, with-
out affecting its functionality, so that some secret information
within the program can be hidden for as long as possible from
an adversary armed with reverse engineering tools. Slicing is a
reverse engineering technique which aims to produce a subset of
a program which is dependent on a particular program point and
is used to aid in program comprehension. Thus slicing could be
used as a way of attacking obfuscated programs. Can we design
obfuscations which are more resilient to slicing attacks?

In this paper we present a novel approach to creating obfus-
cating transforms which are designed to survive slicing attacks.
We show how we can utilise the information gained from slicing
a program to aid us in manufacturing obfuscations that are more
resistant to slicing. We give a definition for what it means for a
transformation to be a slicing obfuscation and we illustrate our
approach with a number of obfuscating transforms.

Keywords: Obfuscation, Slicing, Program Transformation

I. INTRODUCTION

Numerous PhD dissertations and publications have been
written on the issue of software protection by means of code
obfuscation following the publication of a technical report by
Collberg et al. [6] in 1997. The intent of obfuscation is to
transform the source code of an application to the point that it
becomes unintelligible to automated program comprehension
and analysis tools. The motivation for research in obfuscation
stems from the problem of software piracy. A software pirate
will make every effort to steal or change the logic contained
in commercially distributed code by reverse engineering; and,
the software developer would want to prevent the pirate
from stealing those code secrets. With the advent of platform
independent mobile code, reverse engineering has become a
serious challenge to the software industry [14]. Commercially
successful software such as the Skype internet telephony client
[5], the SDC Java DRM [19], and most license-control systems
rely, at least in part, on obfuscation for their security.

In [16] it was observed that most obfuscating transforms in
the existing literature were designed with the goal of being
resilient against all possible reverse engineering attacks. This
is ambitious since Barak et al. [2] proved it impossible to
design a completely-secure software black-box for any broad
class of programs. A recent DPhil thesis [9] designed data
obfuscations in the functional programming domain targeted
at deterring adversaries armed with static theorem provers.
Continuing this trend, in this paper, we describe a novel and
promising way to design obfuscating transforms by using an
attack tool. Our approach is based on the maxim that “attack

is the best form of defence”. Specifically, we will show how to
use a static slicer to manufacture obfuscations that are resistant
to slicing.

II. PROGRAM OBFUSCATION

The first formal definition of obfuscation was given by
Collberg et al. [6], [7]. They defined an obfuscator in terms of
a semantic-preserving transformation function O which maps
a program P to a program O(P) such that if P fails to
terminate or terminates with an error, then O(P) may or may
not terminate. Otherwise, O(P) must terminate and produce
the same output as P .

Collberg et al. classified obfuscating transforms into three
general categories:

• Layout obfuscations: This class of transforms changes
or removes useful information from the intermediate
language code or the source code without affecting the
instructions that contribute to actual computation. Most
common obfuscating techniques fall in this category, such
as removing debugging information and comments, and
scrambling/renaming identifiers.

• Data obfuscations: This category of transforms is tar-
geted at the data and data structures contained in the pro-
gram. Using data-obfuscating transforms, data encoding
can be changed, variables can be split or merged, and
arrays can be split, folded or merged.

• Control-flow obfuscations: The objective of this cate-
gory of transforms is to alter the flow of control within the
code. Examples of control-flow obfuscations are: reorder-
ing of statements, methods, loops and hiding the actual
control flow behind irrelevant conditional statements.

Layout obfuscations have been extensively used in commer-
cial obfuscators like the Dotfuscator [12]. In this contribution,
we will focus on two other classes of obfuscation; namely, data
and control-flow obfuscations since we believe layout obfus-
cations such as comment stripping and identifier renaming are
generally only good for confusing a human adversary.

It was observed in [9] that the virtual black-box property of
[2] is too strong. Obfuscators will be of practical use even
if they do not provide perfect black boxes. Therefore, the
focus of obfuscation research has shifted to finding obfuscating
transforms that are difficult (but not necessarily impossible) for
an adversary to reverse engineer.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

III. USING STATIC SLICER FOR MOUNTING ATTACKS

In the domain of software engineering, program slicing is
widely used for program maintenance, integration, modular-
isation, and comprehension [3], [4], [10], [18], [20]. These
techniques form the basis of reverse engineering since the
primary objective in these techniques is to abstract away the
relevant parts of the code from other unnecessary details.
Indeed, this is what a software pirate intends to do when he/she
makes an attempt to steal or change the relevant parts (of
her/his interest) in the code with the intention of reusing the
extracted module in illegal derivative software or invalidating
the code licensing routine. The main challenge in deterring
such kinds of code comprehension attacks is to intertwine the
relevant code with other irrelevant sections so that the attacker
fails to recognise the portions of interest from the code.

A. Experimental Design

We have based our experiments on CodeSurfer, a static
program slicer for code written in C [1]. It uses system
dependence graphs (SDGs), an intermediate structure for
representing programs [11]. Slicing using SDGs is the most
precise and complete slicing method currently available [20].
CodeSurfer is capable of backward slicing, forward slicing,
and chopping. A backward slice includes all program points
that affect a given point in the program. A forward slice
includes all program points that are affected by a given point
in the program. A chop includes all program points that are
affected between a source program point and a sink program
point. For our illustrations in this paper, we use the backward
slicing feature of CodeSurfer on program output statements.

Mobile code (such as Java byte code, Microsoft’s MSIL)
is considered more vulnerable to reverse engineering attacks
than binary executables. Nonetheless we have designed our
experiments using the constructs of the C language. Our design
choice was influenced by two primary factors:

• We want to substantiate the rather suppositional claims
in the literature that it is easy to mount static slicing
attacks on simple obfuscating transforms [7]. Since we
do not know how to arbitrarily generate hard problem
instances, we limit ourselves to manufacturing resilient
obfuscating transforms using simple program constructs
in this paper. Therefore, we choose the language C
and restrict our obfuscations on a subclass of program
constructs (assignments, output statements, conditionals
and loops) that is common for all imperative languages.

• Secondly, it was difficult to find a full-fledged working
slicer for a language other than C. Experience with using
third-party tools for experimentation suggests that most
of the tools built as part of academic projects are in
their prototypical phase and not well maintained [15].
The only well-known static slicer for Java programs is
Indus [13]; again, it is an academic project and is yet to
be empirically evaluated for correctness and performance.
CodeSurfer is an exception — it has been widely used
since the release of the prototype Wisconsin Program-
Slicing Project in 1996 (based on the slicing algorithm by

int sumprod (int n) {
int i = 0;
int x = 0;
int y = 1;
while (i < n) {

i + +;
x = x + i;
y = y ∗ i; }

out(x);
out(y); }

Fig. 1. Method to calculate the sum and product of the first n positive integers
(the backwards slice from out(y) is indicated by underlined statements).

Horowitz et al. [11]) and has been extensively evaluated
in published literature [3], [4], [17].

B. Slicing Notation

We use the notation

slice(P, s,V)

to denote a backwards slice of program P from the statement
S with respect to the set of variables V . The statement s and
the set V are called the slicing criterion. We restrict the set V
to variables which are output — an output variable could be
as part of a printf statement or passed to another method. We
will use the statement out to denote an output. In this paper
we will be concerned only with backwards slices from out
statements.

If we apply an obfuscation O to a program P we insist that
the obfuscation does not change the input/output behaviour
of the program. Our obfuscations will impose a relationship
between the original and obfuscated variables and so we
can write O(V) to denote the set of variables in O(P) and
the output statement s remains but it may take different
arguments. Note that we consider obfuscation as refinement
[8] to establish a “relationship” between the original and
obfuscated programs — it is beyond the scope of this paper
to discuss this further (more details can be found in [9]).

C. An example

Throughout the rest of the paper we will consider the
program given in Figure 1 as a running example. The statement
out(x) produces the sum of the integers 1 to n, which we write
as sum(1..n) and out(y) produces the product prod(1..n).
In Figure 1 we have also indicated the backwards slice from
out(y) by underlining.

Now let us perform a simple obfuscation on the sum/product
example by adding some statements involving a dummy vari-
able d. We can use a slicer on this program to produce a
backwards slice from out(y) with respect to the variable y.
The obfuscation and the slice are shown in Figure 2. We can
see that the statements contained in the slice do not include the
dummy variable d (and in fact the slice is exactly the same as
the one in Figure 1). We obtain a similar result if we perform
a backwards slice from out(x).

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

int sumprodobf (int n) {
int i = 0;
int x = 0;
int y = 1;
int d = x + y;
while (i < n) {

i + +;
x = x + i;
y = y ∗ i;
d = d ∗ x + i + y; }

out(x);
out(y); }

Fig. 2. Simple obfuscation of the sum/product example (the backwards slice
from out(y) is indicated by underlined statements).

This illustrates that a slicer can be used as an attack against
this simple obfuscation. The question we will try to address
in this paper is: Can we manufacture better obfuscations that
will withstand similar slicing attacks?

IV. USING SLICING TO DEFINE OBFUSCATION

As mentioned earlier, slicing is often used to aid program
comprehension. As obfuscation is used to make programs
harder to understand we should aim to create obfuscations that
make slicing less useful — such obfuscations will be called
slicing obfuscations. But what do we mean by “less useful”? In
[17] various metrics are given which measure the effectiveness
of a slice. These metrics rely on the size of a slice and so a
first attempt at defining a slicing obfuscation is that such an
obfuscation creates larger slices.

First attempt: An obfuscation O is a slicing obfuscation
for a program P , an output statement s and set of variables V
if it increases the size of the slice, i.e.

|slice(P, s,V)| < |slice(O(P),O(s),O(V))|
For our restricted language we could measure the size by

counting the number of assignments, loops, conditional and
output statements.

Let us consider the following (trivial) program Q:

s1 : x = 2;
s2 : y = 3;
o1 : out(x);
o2 : out(y);

Then slice(Q, o2, {y}) = s2; o2 and so just contains two
statements.

A simple transformation O(Q) is:

s1 : x = 2;
s3 : y = 1;
s4 : y + +;
s5 : y + +;
o1 : out(x);
o2 : out(y);

and now slice(O(Q), o2, {y}) = s3; s4; s5; o2 and so we
have a bigger slice. We can continue performing this kind

of transformation and so we can arbitrarily increase the size
of the slice — thus we can never obtain a maximal slice. We
could just consider the statements in the slice that came from
the original program but our transformations may change every
statement of the original program and so this would not be a
practical measure.

Our example transformation does not affect any of the
statements that are left out of the slice (i.e. s1 and o1). A more
suitable obfuscation would try to increase the size of the slice
by including more of the statements that are left behind. We
call the statements that are omitted from a slice the orphaned
statements of a slice. We can define:

orphan(P, s,V) = P\slice(P, s,V)

Using this expression, we can define a slicing obfuscation as
follows:

Definition: An obfuscation O is a slicing obfuscation
for a program P , an output statement s and set of variables V
if it decreases the number of orphaned statements, i.e.

|orphan(P, s,V)| > |orphan(O(P),O(s),O(V))|
For the example Q above, suppose that we perform the

following obfuscation, O(Q):

s1 : x = 2;
s3 : y = x + 1;
o1 : out(x);
o2 : out(y);

Now, slice(O(Q), o2, {y}) = s1; s3; o2 and this obfuscation
has decreased the number of orphaned statements as well as
increasing the size of the slice.

Now consider the program and the backwards slice for y
given in Figure 1. We can see that slicing at out(y) leaves us
with the following statements:

int x = 0;
. . .

x = x + i;
. . .
out(x);

According to our slicing definition of obfuscation we would
like to reduce the number of orphaned statements. So, how
can we obfuscate our example so that a slice contains the two
orphaned assignments to x?

V. EXAMPLE TRANSFORMS

In this section, we will discuss some program transforma-
tions that are suitable as slicing obfuscations. To help us to
explain how these transformations operate we will use the
example given in Figure 1. We assume that our slicing criterion
is the statement s ≡ out(y) and the set of variables is {y}.
By slicing at s, the slice contains all the statements which
contribute to the value of y.

When obfuscating we should aim that the backwards slice
for y should include all the statements (except for output
statements for variables other than y) which occur before the

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

slicing point. Thus when manufacturing slicing obfuscations
we should try to create dependencies between variables.

A. Rewriting expressions

We can create a dependency on x by rewriting assignments
to y. Suppose that we have an assignment to x which depends
on some other variable a. Then we have a sequence of
statement in which neither x nor a is redefined followed by
an assignment to y. So we are looking for the following code
pattern:

x = F (a); S; y = E; (1)

where x and a are not redefined in S. Now find the expression
(if it exists) G such that G(F (a)) = a and then rewrite the
assignment to y as

y = E + a − G(x);

This rewrite is not suitable for our sum/product example as
the assignment to x (which is x = x+i) also includes a use of
x. But we can store the old value of x in a temporary variable
and so we could write (for some fresh variable t)

t = x;
x = t + i;
y = y ∗ i + x − t − i;

But since both assignments to x and y include a use of i we
can write the assignments as follows:

t = x;
x = t + i;
y = y ∗ (x − t);

The slice from s now contains the assignments to x (and t).

B. Adding a bogus predicate

To include a statement x = G in a slice for y we can
transform it to

x = G;
if (pF) y = H(x);

where pF is a false predicate and H is an expression depending
on x. As we appear to have set up that the definition of y
depends on x then the statement x = G will be included in the
slice for y. Another possibility is the following transformation:

x = G;
S; � x = G;

if (qT) S; else y = H(x);

where S is a statement and qT is a true predicate.
For our sum/product example, let us perform the following

transformation:

x = x+i; � if (i < 5 || x < y) x = x+i; else y = x∗i;

In Figure 3 we can see that after slicing the whole method for
y we will be left with the statement out(x).

How did we produce the predicate above? Since x =
sum(1..i) and y = prod(1..i) then for i ≥ 4 we have x < y.
Immediately before this expression we have i + + and so we

int bogus(int n) {
int i = 0;
int x = 0;
int y = 1;
while (i < n) {

i + +;
if (i < 5 || x < y)
x = x + i;
else y = x ∗ i;
y = y ∗ i; }

out(x);
out(y); }

Fig. 3. Adding a bogus predicate (with the slice from out(y))

need to have i < 5 rather than i < 4. To construct predicates
we can use properties of the program (such as invariants) that
the programmer knows but may be difficult for an attacker to
find out.

C. Variable Encoding

Another data obfuscation is a variable encoding [6] which
transforms a variable v into the expression α ∗ v + β where α
and β are constants. This particular transformation is not very
useful for creating dependencies but we can adapt it so that v
is transformed to F (v, w) where F depends on v and another
variable w. For example, we can take F (v, w) = α∗v+β ∗w.
Applying this kind of transformation means that v will be
dependent on w.

How can we apply this transformation? Suppose that v �
α ∗ v + β ∗ w and we will assume that we have exact arith-
metic and that our variables (and constants) are integers. We
transform a use of v, say U(v), to U(v−β∗w

α). An assignment
to v is transformed as follows:

v = E; � v = α ∗ E′ + β ∗ w;
where E′ = E[v−β∗w

α /v]
(2)

A use of w is left unchanged but since v now depends on w
whenever we define w we have to define v as well. We use a
fresh temporary variable t to store the original value of v and
so we transform an assignment to w as follows:

w = U(v); �




t = v−β∗w
α ;

w = U(t);
v = α ∗ t + β ∗ w;


 (3)

We need to exhaustively apply these transformations to the
whole method.

For our sum/product method, let us transform y so that it
becomes y + x. The initialisations of x and y stay the same
and the output becomes out(y − x). Using Equation (3) the
assignment for x in the loop becomes

int t = y − x;
x = x + i;
y = t + x;

Using Equation (2), the assignment to y becomes:

y = (y − x) ∗ i + x;

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

int varEnc(int n) {
int i = 0;
int x = 0;
int y = 1;
while (i < n) {

i + +;
x = x + i;
y = (y + i − x) ∗ i + x; }

out(x);
out(y − x); }

Fig. 4. Adding a variable encoding (with the slice from out(y − x))

So, putting these transformations together we have

int t = y − x;
x = x + i;

x = x + i; � y = t + x;
y = y ∗ i; y = (y − x) ∗ i + x;

We can remove the temporary variable t and so:

x = x + i; � x = x + i;
y = y ∗ i; y = (y + i − x) ∗ i + x;

This transformation has the advantage that it does not
rely on any opaque predicates which are usually hard to
manufacture [7]. The transformed method can be seen in
Figure 4, and we show the backwards slice from out(y−x).

D. Adding to the guard of a while loop

Since we have a while loop in our example we can add
predicates to the guard to create dependencies. We have two
choices:

while (c) S � while (c && p) S
while (c) S � while (c || q) S

provided that c ⇒ p (i.e. p is true when c is true) and ¬c ⇒ ¬q
— this last condition can be weakened so that the first time c
is false (i.e. when the loop exits) then q must also be false.

For our sum/product method, we can add a predicate to the
guard which depends on x and thus in the while loop y will
depend on x. So, for example

while (i < n) S � while (i < n || x < 0) S

We can also add a new, fresh variable j to the loop with
which we can create dependencies on x and y. Let us suppose
that we add the statement j = j + y − x into the loop. Before
the loop, we initialise j by adding the statement int j = 2.
With this initial value, we can prove that the value of j is
always positive in the loop and so we change the header to

while (i < n && j > 0)

The full method can be seen in Figure 5 (including the slice
from out(y)). This transformation has the advantage that it
adds dependencies to both x and y and so slicing for x (or y)
removes everything but the output statement for y (or x).

int addVar (int n) {
int i = 0;
int x = 0;
int y = 1;
int j = 2;
while (i < n && j > 0) {

i + +;
x = x + i;
y = y ∗ i;
j = j + y − x; }

out(x);
out(y); }

Fig. 5. Adding a new loop variable (with slice from out(y))

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel way to design
obfuscating transforms by considering the maxim: “Attack
is the best form of defence”. We attacked our programs by
computing the backwards slices for the output variables and
we considered the statements that were left behind after slicing
— we called these the orphaned statements. Once we have
computed the slices of a particular program we then try to
transform the program so that we decrease the number of
orphaned statements. Our ideal obfuscation for a particular
program will minimise the number of orphaned statements for
all output variables.

To evaluate our slicing obfuscations we have used some slic-
ing metrics given in [17]. These slice-based metrics consider
the sizes of the slices and the intersection of the slices. We can
see that for our examples we always increase the size of the
slice for y and as we add dependencies between the variables
we also increase the size of the intersection. It is beyond
the scope of this paper to give these results but, in general,
our obfuscations increase these metrics and so decrease the
effectiveness of slicing.

When manufacturing slicing obfuscations we aim to create
dependencies between variables by rewriting assignments or
creating new ones. Where should we place such assignments?
One area for future work is develop heuristics enabling to de-
cide where to place slicing obfuscations in order to maximise
the effects of the transforms.

In our sum/product example we focused on slices for the
variable y but, in general, we should ensure that we try to
defend against backwards slices for all output variables. Thus
we should aim to obfuscate our programs so that the number
of orphaned statements for all output variables decreases.
But how do we manufacture such an obfuscation? The loop
transformation given in Section V-D managed to change the
program so that a slice for either of the output variables
contains everything but the output statements — but as this
transformation relies on loops, it will not possible in general.
What we could do is to concentrate on just one variable
initially and add obfuscations until the slice with respect to
this variable produces a minimal set of orphaned statements.
Then we consider slicing our obfuscated program for another

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

output variable and add in obfuscations accordingly. We can
continue this process until we have covered the entire set of
output variables — in the Appendix we sketch out a possible
algorithm for producing slicing obfuscations. Note that we
should make sure that any new obfuscations do not affect the
slices for previous variables — if this is case then we may
have to add in extra obfuscations. In following this method we
will create an obfuscation that consists of many obfuscations
composed together. For future work we will study the effects
of composing obfuscations together and, in particular, does the
order in which we add obfuscations (and the order in which
we consider the output variables) matter?

REFERENCES

[1] Paul Anderson and Tim Teitelbaum. Software inspection using
CodeSurfer. In Proceedings of the Workshop on Inspection in Software
Engineering (WISE 2001), Paris, France, July 2001. IEEE Computer
Society.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. In Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 1–18.
Springer-Verlag, 2001.

[3] David Binkley and Mark Harman. An empirical study of predicate
dependence levels and trends. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 330–339,
Washington, DC, USA, 2003. IEEE Computer Society.

[4] David Binkley and Mark Harman. A large-scale empirical study of for-
ward and backward static slice size and context sensitivity. In ICSM ’03:
Proceedings of the International Conference on Software Maintenance,
pages 44–53, Washington, DC, USA, 2003. IEEE Computer Society.

[5] Phillipe Biondi and Fabrice Desclaux. Silver needle in the Skype.
Presentation at BlackHat Europe, March 2006. Available from URL:
www.blackhat.com/html/bh-media-archives/bh-archives-2006.html.

[6] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical Report 148, Department of
Computer Science, University of Auckland, July 1997.

[7] Christian Collberg, Clark Thomborson, and Douglas Low. Manu-
facturing cheap, resilient, and stealthy opaque constructs. In POPL
’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 184–196, New York, NY,
USA, 1998. ACM Press.

[8] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1998.

[9] Stephen Drape. Obfuscation of Abstract Data-Types. DPhil thesis,
Oxford University Computing Laboratory, 2004.

[10] Keith Brian Gallagher and James R. Lyle. Using program slicing in
software maintenance. IEEE Trans. Softw. Eng., 17(8):751–761, 1991.

[11] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang.
Syst.(TOPLAS), 12(1):26–60, 1990.

[12] PreEmptive Solutions Inc. Dotfuscator.
URL: www.preemptive.com/products/dotfuscator.

[13] Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff.
Kaveri: Delivering the Indus Java program slicer to Eclipse. In FASE,
pages 269–272. Lecture Notes In Computer Science, SpringerVerlag,
2005.

[14] Mark Ladue. When Java was one: Threats from hostile bytecode.
In Proceedings of the 20th NIST-NCSC National Information Systems
Security Conference, pages 104–115, 1997.

[15] Anirban Majumdar, Antoine Monsifrot, and Clark Thomborson. On
evaluating obfuscatory strength of alias-based transforms using static
analysis. In ADCOM 2006: Proceedings of the 14th International
Conference on Advanced Computing and Communication (ADCOM
2006), Mangalore, India, 2006. IEEE Computer Society.

[16] Anirban Majumdar, Clark D. Thomborson, and Stephen Drape. A survey
of control-flow obfuscations. In Information Systems Security, Second
International Conference, ICISS 2006, Kolkata, India, pages 353–356,
December 2006.

[17] Timothy M. Meyers and David Binkley. Slice-based cohesion metrics
and software intervention. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE’04), pages 256–
265, Washington, DC, USA, 2004. IEEE Computer Society.

[18] Juergen Rilling and Tuomas Klemola. Identifying comprehension
bottlenecks using program slicing and cognitive complexity metrics. In
IWPC ’03: Proceedings of the 11th IEEE International Workshop on
Program Comprehension, pages 115–124, Washington, DC, USA, 2003.
IEEE Computer Society.

[19] Nuno Santos, Pedro Pereira, and Luı́s Moura e Silva. A Generic
DRM Framework for J2ME Applications. In Olli Pitkänen, editor, First
International Mobile IPR Workshop: Rights Management of Information
(MobileIPR), pages 53–66. Helsinki Institute for Information Tecnhol-
ogy, August 2003.

[20] Frank Tip. A survey of program slicing techniques. Technical
report, CWI (Centre for Mathematics and Computer Science) CS-R9438,
Amsterdam, The Netherlands, 1994.

APPENDIX

Algorithm: Here is a possible algorithm for manufactur-
ing slicing resistant obfuscations.

(1) Let V be the set of variables to be sliced and P be the
slicing points (representing an output for each variable).

(2) Pick a variable v ∈ V and the corresponding slicing point
Pv from P .

(3) Slice the program at Pv with respect to v. Consider the
sequence of statements Sv that are orphaned (i.e. not
contained in the slice). If Sv is minimal then repeat Step
(2) with a different variable.

(4) Choose one or more of the transformations (a) to (d)
below. Transformations should be applied until Sv is
minimal. Once a transformation is applied the program
can be re-sliced using Step (3).

(a) Find a variable definition that matches the code
pattern in Equation (1) and rewrite an expression for
v (see Section V-A).

(b) Look at any variable assignments in Sv and add a
bogus predicate after the assignment (see Section
V-B).

(c) Find a variable w from V that is defined in Sv and
encode v so that it depends on w. From Section V-C,
we need to choose an expression F so that v �
F (v, w).

(d) If a statement in Sv is contained within a loop
then apply one of the loop transformations given in
Section V-D.

(5) Steps (2) and (3) should be applied until the backwards
slice from the output point for each variable in V produces
a minimal number of orphaned statements.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

