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Abstract

This thesis considers the problem of automating the locomotion of virtual creatures. A virtual creature is a
computer-simulated animal that exists in a simulated environment. The animal’s body and environment are
modelled according to physical laws, such as those of Newtonian mechanics. Our virtual creatures are
modelled as mass-spring systems.

We investigate a controller-based approach to virtual creature animation. Our controllers are simple
‘locomotion brains’ that produce locomotion by instigating and sequencing contractions and expansions of
virtual muscles in the creature’s body. We allow controllers to observe the creature’s local environment
through sensors in the creature’s body.

An evolutionary algorithm (EA) is used to synthesise locomotion controllers for a small set of virtual
creatures. We demonstrate the behaviour of our controller-synthesis EA on several different creature bodies
but focus the bulk of our investigation upon a worm-like creature. Two types of controller are evolved:
those that make use of sensors, which we term closed-loop controllers and those that do not, which we term
open-loop controllers. We show that the creature’s body determines which of these controller types our EA
will produce. Initial results from this work were published in [Sand_2000].

We investigate the benefits of applying a niching method to our evolutionary algorithm. We show that a
niching method can improve the expected performance of our EA. Additionally, niching results in the
synthesis of a range of different locomotion controllers for each evolution, usually including both open-
loop and closed-loop controllers.

We show that by applying small random variations to the terrain over which a creature’s locomotion
controller is evolved we improve the expected quality of controller. Additionally, we show that the amount
of variation in a creature’s environment influences the style of locomotion.

Throughout our experiments we present 3D visualisations of evolutionary data. We discuss and
demonstrate the benefits of 3D data visualisation for EAs as opposed to traditional textual output.

We present a simple, robust and highly effective distributed computation system for sharing the cost of
creature simulation between many computers over a local area network.
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Chapter 1  Introduction
Computer Generated Imagery (CGI) is rapidly replacing puppetry and stop-motion photography as the
preferred method of animation in cinema and television. Films such as Jurassic Park: The Lost World and
The Phantom Menace have shown that computer graphics can accomplish what previously would have
required the construction of detailed models or puppets, or may have been all but impossible with pre-CGI
techniques.

1.1 Automatic Controller Synthesis
Common techniques for animating realistic virtual creatures involve painstaking frame-by-frame control of
a 3D model of the creature’s body by highly skilled animators. As the demand for convincing, realistic
virtual creatures increases, techniques for automating their animation must be developed. Creatures should
ideally be transformed from virtual puppets into virtual actors or agents, with the ability to autonomously
perform complex animation tasks. Virtual worlds populated by autonomous, realistic, physically and
behaviourally plausible virtual creatures are already becoming feasible [Blum_95; Grze_95; Funge_99]

An interesting sub-problem is that of creature locomotion. A virtual creature capable of automatically
moving itself over virtual terrain in a convincing and realistic fashion would be extremely useful to an
animator. Using such a creature an animator could generate large quantities of high-quality animation with
relatively little effort. This low-level locomotion control problem does not involve behavioural animation,
trajectory planning or other high-level artificial intelligence techniques such as those investigated in
[Tu_94; Yama_94; Kodj_98; Funge_99].

Our approach to producing creature locomotion is to consider the task to be a control problem; the
creature’s virtual muscles must be made to act in a way that propels the creature forwards. A locomotion
controller is a device that instigates and sequences these muscle movements to produce locomotion. We
present locomotion controllers as localised neural systems; they “exist” within the creature’s body and may
only obtain information about the creature’s body or local environment that would be readily available to
the brain of a real creature. We term controllers that make use of sensor information and thereby alter their
behaviour in response to local stimuli to be closed-loop. Controllers that do not use sensor information and
yield time-based cyclic output are termed open-loop.

The automatic synthesis of locomotion controllers for physically-based virtual creatures may have
applications in robotics research. A locomotion controller for a real-world robot could be evolved using an
accurate physically-based simulation of the robot’s body and its environment. Learning in simulation will
usually have advantages of speed, economy and safety.

1.2 Existing work
Controller-based animation techniques have received attention in recent years due to their success at
animating a wide variety of virtual creatures. These creatures range from simple two-dimensional stick
figures to realistic three-dimensional fish and articulated-rigid-body creatures1.

1.2.1 Karl Sims
Karl’s 1994 paper “Evolving Virtual Creatures” [Sims_94] introduced an evolutionary algorithm to
synthesise three-dimensional ‘block’ creatures. His creatures concurrently evolved both morphology and
controller for such tasks as swimming, walking, jumping, and following a light source. Creatures existed in
a physically-based world with bodies constructed from articulated rigid blocks as illustrated in Figure 1-1.

                                                          
1 Diagrams reproduced with permission.
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Creature morphology is encoded in a directed graph,
termed a genotype. Each node of the genotype graph
contains information specific to one class of block in
the creature’s body. Links between nodes describe the
relative positions of blocks (including rotation and
scaling) and joint-articulation information. The
creature’s morphology is constructed by performing a
traversal of the genotype graph, originating from its
fixed root node. Evolution of morphology involves
making changes to the genotype graph in terms of
topology or content. Adding a new node creates an
additional block class. Adding a new link results in the
creation of an additional instance of a particular block
(or hierarchical block structure) in the creature’s body.
Alterations to the information held by nodes or links
affect the size and shape of blocks and properties of
the articulated joints connecting them.

Creature controllers are directed data-flow graphs similar to electrical circuits. These controller graphs
consist of three types of node:

• Sensors, which supply the controller with information about the creature’s body and its local
environment

• Neurons, which perform various arithmetic, geometric and signal-processing operations upon input
signals

• Effectors, which apply input controller signals as torques to the creature’s articulated joints.

Links between controller nodes define the flow of data within the controller, from sensors through neurons
to effectors. Evolution of a controller involves altering the topology and content of the data-flow graph.

Natural selection and reproduction are repeatedly applied to a population of block creatures. A creature’s
fitness is determined by evaluating its performance according to a fitness function during a period of
simulation. Fitness functions are metrics of the form “How far/fast did it swim?”, “ How high did it jump?”.
Creatures with high fitness values are given preference in reproduction; they have the opportunity to
propagate their morphological structure and controller information to the next generation. Reproduction
also applies random changes to morphology and controller. Many of these changes are detrimental to
fitness but some result in superior performance, leading to selection for reproduction.

Sims’ evolutionary algorithm produced a diverse range of virtual creatures for both land and marine virtual
environments. Some, such as the ‘water snake’ illustrated in Figure 1-1, were of familiar form. A few were
unlikely contraptions of largely redundant blocks, yet still managed to provide effective locomotion.

1.2.2 Ngo and Marks
Ngo and Marks et al [Ngo_95] describe an
evolutionary algorithm for the synthesis of
animation controllers for two-dimensional and
three-dimensional stick figures. They define a
controller as a group of stimulus-response rules,
which they term a Banked Stimulus Response
(BSR) controller.

A BSR controller is a finite-state machine in which
each state defines a deformation (or pose) for the
creature’s body to assume. Transitions can occur

Figure 1-1. An evolved ‘water snake’.

Figure 1-2. A stick-figure quadruped.
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between any two states according to sensor data or the world-time parameter, thus allowing for either open-
loop or closed-loop control.

A BSR controller contains R rules, where each rule Ri contains vectors of stimuli parameters lo
iS

uuuv
 and hi

iS
uuuv

,

and response parameters  0
iθ
uuv

 and i . A rule outputs a vector ( ) 0 tθ
uuv

 of target joint angles and a time

constant, i , which define a deformation of the stick figure and the rate at which the creature’s geometry
should assume the deformation from the current physical configuration. Only one rule can be active at a
time. The active rule is determined by ranking each rule according to coverage of the instantaneous sensor

vector ( )S t
uv

 by the hyper-rectangle formed by the upper and lower limits in the rule’s hi
iS

uuuv
 and lo

iS
uuuv

 sensor

vectors. Each element of a rule’s output vector ( ) 0 tθ
uuv

 is static during simulation.

A BSR controller’s set of rules are evolved by both global and local search. Global search replaces one of
the rules with a new rule containing a randomly generated target deformation vector, time constant and
sensor vectors. Local search occurs by the random perturbation of values belonging to an existing rule.

For 2D stick figures, of which a five-pronged star creature and a bipedal walker were described, the BSR
synthesis algorithm is run for 40,000 physical simulations. For the 3D stick figures, of which a quadruped
and a bipedal walker were presented, between 100,000 and 200,000 simulations were required to discover
and optimise a locomotion controller.

Against their expectations, Ngo and Marks et al found that the majority of controllers discovered for 2D
stick figures were time based and therefore using open-loop control. As expected, they were unable to
generate robust open-loop controllers for the 3D bipedal walker due to its inherent instability, but they were
successful in generating useful closed-loop sensor-based controllers for that model.

1.2.3 Van de Panne and Fiume
Van de Panne and Fiume [Van_93] describe a method of
locomotion controller synthesis for small virtual
creatures using sensor-actuator networks of a fixed
topology. A sensor-actuator network (SAN) is very
similar topologically to a three-layer feed-forward neural
network in that each layer of units is strongly connected
to the next layer. The layers are the input (sensors), the
hidden layer and the output layer (actuators).
Additionally, the input layer of a SAN is strongly
connected to the output layer, the hidden layer is
strongly connected within itself and the output layer is
strongly connected to the hidden layer. Figure 1-3
illustrates a simple SAN topology.

Creatures are constructed from rigid links and are two-
dimensional. Sensors in the creature’s body supply a binary output signal. For example, a ‘touch’ sensor
would return a value of 1.0 if its associated body part is in contact with something, or 0 if no contact was
detected. Actuators are of two types - linear or angular - and act upon a joint between two links. Actuators
and hidden-layer units calculate their output as a weighted sum of their inputs from other units, and include
an output-damping mechanism to reduce “chattering” due to rapidly fluctuating sensor values.

Sensors and actuators are defined and placed in the creature’s morphology by the human experimenter.
One-to-one mappings exist between units in the input layer and sensors in the creature, and between output
layer units and actuators in the creature. The number of units in the SAN’s hidden layer is fixed, and is
specified by the experimenter.

Input layer
(sensors)

Hidden layer Output layer
(actuators)

Figure 1-3. Topology of a simple SAN.
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Controller synthesis involves setting the weights of connections in the SAN and adjusting the mutable
parameters of sensors and actuators. In an initial phase, sets of weights and parameters are generated
randomly until a set results in some form of locomotion. The algorithm then enters a period of either
simulated annealing or stochastic gradient ascent in which the locomotion is optimised by fine-tuning the
weights and parameters. As with the previously described approaches, controller fitness is determined by
evaluating the creature’s behaviour during a period of simulation.

The authors present a range of simple creatures for which locomotion controllers have been generated.
Often, repeated controller synthesis trials upon a particular creature morphology would result in several
different locomotion gaits.

1.2.4 Terzopoulos, Grzeszczuk and Tu
The virtual fish and rays of Terzopoulos,
Grzeszczuk and Tu [Tu_94; Grze_95] exist in a
physically-based virtual world of striking aesthetic
and behavioural authenticity. Primitive animation
controllers for actions such as “swimming
forwards”, “turning left” and “turning up” are
automatically learned and then are sequenced by a
behavioural animation controller.

The various piscine inhabitants of the aquatic
environment are modelled as three-dimensional
mass-spring systems. A controller may deform a
fish’s body by adjusting the rest lengths of springs
along the fish’s sides. Hydrodynamic forces are
modelled to produce propulsion in response to
model deformation.

Primitive locomotion controllers are sets of
periodic wave functions, each of which acts upon

an effector. An effector is an arbitrary grouping of springs in the model. Each spring in an effector has its
rest length set as a linear function of the effector’s single input. Wave functions are defined either spatially
in terms of control points, or spectrally in terms of frequency components. Optimisation of a controller
involves finding a set of control points or frequency components such that the model performs optimally in
its environment according to a fitness function. Simulated annealing is used to converge upon an optimal
controller.

A high-level behavioural animation controller switches between the periodic primitive controllers to
accomplish an animation task. Interpolation between adjacent controllers’ component wave functions
allows a smooth transition of control.

1.2.5 Critique and Conclusions
The approaches to controller synthesis described above are diverse and novel. Each approach is highly
specialised for one genre of creature morphology, be it articulated rigid body, stick figure or mass-spring
structure. Approaches based on a purely random search of controller space such as the SANs of van de
Panne and Fiume are unlikely to succeed in complex creatures; the probability of locating a meaningful set
of weights by chance will surely become vanishingly small as creature complexity increases. The BSR
controllers of Ngo and Marks place strict limits on the number of poses a creature may adopt, thus limiting
their ability to adapt to complex environments. The modular locomotion controllers of Terzopoulos,
Grzeszczuk and Tu are well suited to a homogenous aquatic environment but do not allow for the
incorporation of sensorial data at the locomotion controller level. A creature moving over rough terrain
would surely benefit from being able to adapt its locomotion to suit changing local conditions.

Figure 1-4. The fish of Terzopoulos, Grzeszczuk
and Tu.
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The dataflow-graph controllers of Sims are scalable in complexity to suit a wide range of virtual creatures.
These controllers may develop either open-loop or closed-loop control as suits the task, and do not require
any a priori information in the form of sensor or effector placement. We consider Sims’ controller
representation and evolutionary algorithm to be the most highly automated and general method of those
investigated.

1.3 Thesis Goals
The original goal of this thesis was to investigate the automatic evolution of animation controllers for
Amoeba Man, a physically-based soft object model developed by Daniel Nixon [Nixon_99]. Initial
experiments in controller evolution made it clear that the very high computational cost of animating the
Amoeba Man model would preclude any substantial investigation. In the interests of animation speed we
chose an alternative creature modelling technique – mass-spring systems.

Our goal was therefore to investigate controller synthesis by an evolutionary algorithm for mass-spring
virtual creatures. We aimed to develop a robust, reliable controller synthesis method capable of producing
realistic locomotion for a variety of morphologies. Additionally, we aimed to investigate the automatic
development of a range of qualitatively different locomotion styles for each creature.
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Chapter 2  Virtual Creatures

We define a virtual creature to consist of a virtual body and a controller. The body must contain at least one
degree of freedom that is alterable over a range of values by the controller. A degree of freedom is a one-
dimensional activation level of a muscle or actuator in the creature’s body, e.g. the rest length of a spring, a
torque about a fixed axis, etc. The behaviour of a body with respect to its environment may be simulated
using physically-based animation techniques, or may be non physically-based. Recent physically-based
virtual creatures have been modelled using articulated rigid bodies [Sims_94], mass-spring systems
[Mill_88; Tu_94; Grze_95] and stick figures [Van_93; Ngo_95; Laszlo_96].

A controller is a mechanism for animating the creature’s body by acting upon the body’s degrees of
freedom. We define an effector to be an interface between the controller and a single degree of freedom in
the creature’s body. A controller may obtain information about the creature’s body and its environment
through Sensors. Figure 2-1 illustrates the flow of information between the controller and the creature’s
body.

A controller can be defined as a relation R between input sensor signals and output effector levels: E1..N =
R(S0..M), where E1..N are the activation levels sent to the N effectors, S1..M are the activation levels of the M
sensors, and S0 is a special case in which the input is the time parameter. We seek to develop creatures as
autonomous agents similar to real-world animals. Towards this goal we model the controller as part of the
creature’s body in a similar fashion to a brain and nervous system.

Our virtual creatures’ bodies are structures of masses and springs. These structures are inherently flexible,
which makes them suitable for modelling soft-bodied creatures such as worms, caterpillars, fish, amoeboid
blobs and many other interesting lifeforms. Our creatures’ mass-spring bodies have only one type of degree
of freedom: the rest length of a spring. We will discuss mass-spring systems in detail in Chapter 3. Figure
2-2 shows a selection of simple 2D mass-spring creature morphologies.

Figure 2-1. The controller’s interaction with the creature’s body.

Controller

Body

Sensor signals

Effector levels

Time

Figure 2-2. Mass-spring creatures: Worm-like, hopping and rolling morphologies.
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2.1 Morphology Representation
Because we store the creature’s controller with the creature’s body, the way in which the creature’s body,
or morphology, is defined has a great effect upon the types of controller that may exist within it and the
types of locomotion that are possible. Following the work of Sims [Sims_94] we use a genotype/phenotype
representation for morphology. Our genotype is a plan of how to build the creature’s body encoded as a
directed graph. The phenotype is the body constructed by following the plan specified in the genotype. The
genotype allows us to group similar features into a single substructure; For example, we may define a “leg”
once in the genotype and instantiate it several times in the phenotype at different positions and orientations.

Figure 2-3 demonstrates grouping in a simplified genotype
graph. The corresponding phenotype of this graph will
contain eight instantiations of node ‘A’.

2.1.1 Genotype Morphology
Our genotype is a directed graph consisting of nodes and links. Each node represents one or more masses in
the phenotype morphology. Links are directed connections that represent parent-to-child relationships
between masses. The genotype graph has a root node, which defines the starting point for the construction
of the phenotype mass-spring morphology.

Nodes specify information relevant to one type of mass in the phenotype and the construction of the
creature’s mass-spring body, including:
• The mass scalar of the phenotype mass
• Links to child nodes
• A recursive limit, which specifies the number of times the mass should be generated in a recursive

cycle.
• A virtual flag, which is set if the mass is acting as an alias to another mass. This flag is set false by

default.

Links contain information specific to the parent-child relationship:
• A reference to the child node.
• The minimum rest length, maximum rest length and strength of the spring connecting the parent mass

to the child mass.
• The position and orientation of the child relative to the parent
• A terminal-only flag, which is set if the connection should only be applied at the end of a recursive

chain of masses. This flag is set false by default.

2.1.2 Phenotype Morphology
The phenotype morphology is a tree structure created by performing a depth-first traversal of the genotype
graph, starting from its root node. Each phenotype node represents a single mass and each phenotype
connection represents a single spring. Figure 2-4 outlines the algorithm used to perform this traversal.
Figure 2-5 illustrates the construction of a phenotype morphology graph.

 Root
 1

 A
 1

Figure 2-3. A grouped genotype graph.
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Figure 2-5. Constructing the phenotype morphology by traversing the genotype graph.

 Root  A

 C B

Genotype
morphology

,…,

 Root  Root

A

 Root

A

B

 Root

A

B

C

 Root

A

B

C

C

 Root

A

B

C

C

A

B

C

C

Phenotype morphology construction

Figure 2-4. The genotype morphology expansion algorithm.

generateMorphologyPhenotype()

begin
expandGenotypeNode(rootNode, null, null)

end generateMorphologyPhenotype

expandGenotypeNode(node, connectionFromParent, parentNode)
begin

Create a new phenotype node phenotypeNode from the genotype node node.
if connectionFromParent = null then

phenotypeNode.position = the origin (0, 0)
else begin

phenotypeNode.position = parentNode.position + connectionFromParent.position
Create a new phenotype link from the genotype link connectionFromParent. {This
phenotype link connects parentNode to phenotypeNode}

end else

for each connection to a child connectionToChild do begin
if ((node.recursiveLimit > 0) and (not connectionToChild.terminalOnly)) or
    ((node.recursiveLimit = 0) and connectionToChild.terminalOnly) then begin

Decrement(node.recursiveLimit)
expandGenotypeNode(connectionToChild.childNode, connectionToChild,

 phenotypeNode)
Increment(node.recursiveLimit)

end if
end for

end expandGenotypeNode
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Unfortunately, mass-spring trees cannot form useful 2D or 3D bodies. Without structural cyclicity a mass-
spring system cannot maintain its shape when subjected to forces. For example, if we place a mass-spring
tree into a 2D environment consisting of a ground line and a gravity force, the tree will collapse and
become parallel with the ground line. Figure 2-6 illustrates this collapse.

We implement two methods of creating cycles in the phenotype mass-spring system. Both of these methods
may be used simultaneously in the same creature.

The first and simplest method is to specify a set of “extra” springs that are added to the phenotype mass-
spring tree. This method is trivial to implement and allows us to connect any two masses, thus allowing the
creation of arbitrarily cyclic structures, but has a major disadvantage in that these extra springs are not part
of the mass-spring tree. Our controllers (described in section 2.3) are only capable of acting upon springs in
the phenotype mass-spring tree, so cannot control “extra” springs.

Our second method allows for structural cycles by mapping multiple masses in the phenotype morphology
tree onto a single mass in the mass-spring system. We declare certain genotype masses to be virtual. Upon
generation of the mass-spring system each of these virtual masses must have its position exactly matching
that of a non-virtual mass. Any springs connected to the virtual mass are redirected to the matching non-
virtual mass. Figure 2-7 displays one possible genotype for a cyclic three-mass mass-spring system using a
virtual mass.

Note that the position of mass C exactly matches that of mass A. The spring connecting B and C is
remapped to connect B and A, forming a cycle. This structure will resist collapse under the influences of
gravity and other forces.

G
ravity

Figure 2-6. Structural collapse in a 2D mass-spring tree.

  Figure 2-7. Virtual-mass example.
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Figure 2-8 illustrates several simplified morphology genotypes and possible resulting phenotype mass-
spring systems.

Figure 2-8.  Morphology genotypes and their phenotype mass-spring systems.
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2.2 Controller Representation
Our controller representation is based on the work of Sims [Sims_94], and is similar to a dataflow diagram.
We represent a controller as a directed graph of data processing nodes and data connections. Data
processing nodes are of four types: Sensors, Neurons, Effectors and Constants. Connections between nodes
define the flow of data within the controller. A node can be abstracted as an input/output structure defining
a number of inputs, zero or one outputs and an internal relation. All input and output values are real-valued
numbers.

Figure 2-9 contains examples of data processing nodes. Inputs
are on the left side of each unit. Outputs are on the right.

• Top-left: a ‘product’ neuron. This unit’s relation is the
multiplication operator.

• Top-right: a ‘contact’ sensor.
• Bottom-left: A constant unit. This unit supplies a constant

value.
• Bottom-right: A ‘spring-length’ effector.

2.2.1 Sensors
Sensors are used to supply the controller with information about the creature’s mass-spring
system and the environment. Each sensor is associated with a single mass in the phenotype
morphology and returns a property of that mass. Sensor nodes accept no input from other
nodes and have a single output. A Sensor may be one of the following types:

• Contact: An output of +1.0 indicates that the sensor’s host mass is in contact with a surface in the
environment. An output of –1.0 indicates no contact.

• Spring length: The sensor returns the Euclidean distance between the host mass and the host’s parent
mass according to the phenotype morphology tree.

• Altitude: The vertical separation between the mass and the terrain, where “down” is defined by the
gravity vector.

• Vertical velocity: A signed value describing the mass’s vertical velocity.
• Horizontal velocity: A signed value describing the mass’s horizontal velocity.
• Orientation: A scalar indicating the orientation of the parent mass relative to the child mass. For

example, values of 0, 2π , π  and 7 4π  indicate that the parent mass is directly above, to the right,

directly below, and to the upper-left of the child mass respectively.

2.2.2 Neurons
Neuron nodes perform a transformation upon input data to calculate an output value. They
have a single output and at least one input. Most neurons’ output is calculated directly from
the instantaneous input data. Some neurons have an internal state that is used during
calculation of output, allowing them to provide output based on previous input data as well

as current input data. Neurons may use temporal context in their output calculation, allowing varying
output in the face of unchanging input values. The set of neuron types is listed below:
• Arithmetic and logical neurons:

Sum, Product, Divide,
Sum-threshold, Greater-than, Min, Max,
Sign-of, Absolute-value, If-then-else, Interpolate

• Trigonometric neurons:
Sin, Cos, Arctan

Figure 2-9. Four controller nodes.

* Contact

Effector
Constant

*

Contact
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Constant

• Wave generator neurons:
Oscillate-wave, Oscillate-saw

• Miscellaneous neurons:
Log, Exp, Sigmoid,
Integrate, Differentiate,
Smooth, Memory, Delay

2.2.3 Effectors
Effectors are the abstraction through which the controller acts upon the creature’s body.
Each effector in the controller is assigned to a unique spring in the mass-spring system.
Input to the effector is used to assign the spring’s rest length within the bounds of maximum
and minimum rest length specified in the genotype morphology.

 The rest-length of a spring is not allowed to change instantaneously; to do so would allow the
instantaneous injection of energy into the system, which is not physically plausible. A damping measure is
used to discourage rapid changes in rest-length:

( )t
new

r

t r r
r r

k

−
= + ,      1,   1rt k ≥=

where rnew is the new rest length,
r is the current rest length,
rt is the target rest length,
kr is the coefficient of rest-length damping, and t is the timestep size (see section 3.3).

2.2.4 Constants
 Constant value nodes simply supply a fixed value as their output. These nodes do not
accept input, and their output value does not change at any time.

2.2.5 Connections
Connections are responsible for carrying signals from the outputs of nodes to the inputs of other nodes.
Each input of a data processing node is bound to one connection, which connects to the output of another
node (or the output of the same node, in a recursive cycle). Each connection scales its signal by a mutable
weight.

Figure 2-10 illustrates a simplified controller graph containing one constant value node, two neurons and
two effectors. This controller generates a sine wave, which is used to oscillate the rest lengths of the
effectors’ springs. The frequency and amplitude of oscillation depend upon the constant node and the
scaling weights of the effector units’ connections. The sum neuron generates an ever-increasing output
value, which is passed through a sin neuron to create a sine wave.

Effector

Effector
Sum Sin

Effector

Constant

 Figure 2-10. A simple directed-graph controller.
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2.3 Nested Controllers
We store the controller elements with the creature’s morphology. By defining the controller within the
nodes of the genotype morphology graph we are able to take advantage of any grouping present. If a
morphological substructure is instantiated multiple times in the phenotype morphology, we need only
define one sub-controller for the substructure rather than define the same sub-controller multiple times.
Grouping reduces the number of controllers that are possible for any particular creature - this advantage
will become apparent in later chapters.

Each controller node is associated with a particular part of the creature’s genotype morphology graph. The
set of parts consists of all the morphology genotype nodes and a special node, the unassociated area. The
unassociated area contains controller nodes not associated with a morphological genotype node.

To encourage the development of local sub-controllers, connectivity between controller nodes is restricted
according to rules of adjacency. A node in part x may connect its input(s) to the output of a node in part y if
one of the following is true:
• x = y
• A parent-child link exists between x and y in the genotype morphology graph.
• Either x or y is the unassociated part.

Because effectors act upon the connection between their associated part and the part’s parent they cannot
exist within the unassociated area or the root node. Likewise, sensors draw information from their
associated part and cannot exist within the unassociated area. With the exception of the spring length and
orientation sensors, sensors can exist within the root node. The unassociated area exists to allow for
coordinated control of multiple sub-controllers throughout the creature’s morphology. Figure 2-11
demonstrates a genotype morphology graph containing a simple wave-based controller.

 Figure 2-11. Nested controller genotype.

Bold lines denote the morphology
genotype graph.
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Controller nodes contained within parts of the creature’s genotype morphology are replicated along with
the genotype nodes when creating the phenotype morphology. Figure 2-12 illustrates the phenotype
morphology tree and phenotype controller for the genotype presented in Figure 2-11.

 Figure 2-12.  Nested controller phenotype.

Bold lines denote the nodes and links of the
morphology phenotype tree.
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2.4 Controller Dynamics
Effector values are calculated as a function of the controller’s internal state and input data from sensors.
We propagate signals through the controller in discrete steps by periodically evaluating the outputs of all
nodes, which are calculated according to the nodes’ inputs, states and internal relations. Over several
controller updates, signals will propagate from sensors or wave generator neurons through to the
controller’s effector nodes. The order of node evaluation determines the rate of signal flow through the
controller. For example, for the controller presented in Figure 2-12 signals from the wave generator may
take anywhere from 1 to 3 controller updates to reach the middle-position effectors. Order of node update is
determined by the order in which nodes are added to the controller graph.

 The rate at which we update the controller is a trade-off between controller response time and
computational cost. We must update the controller at a sufficient rate that signals propagate quickly, but not
so often that the computational cost becomes significant. We find that an update rate of 50 times per
simulation second provides adequately fast ‘response-time’, and is of negligible cost compared to the
physical simulation.

2.5 Control Type
Controllers may or may not incorporate sensor units. In the absence of sensor data the controller cannot
respond to environmental conditions, and is termed open-loop. If sensor data is available, feedback loops
may form between the environment, the creature’s morphology and its controller. We term sensor-based
controllers closed-loop.

Locomotion control involves moving the creature’s body along an animation path through world-state
space. For our task these animation paths contain cyclic deformations of the creature’s body, which are
repeated as the creature advances. For example, a bipedal walking motion is a cycle in which the creature
brings its left leg and centre of mass forward, places its left foot upon the ground, brings its right leg and
centre of mass forward, places its right foot upon the ground, etc. We term a repeated cyclic motion a limit
cycle. Our limit cycles are a result of the creature’s interaction with its environment, which includes
gravity, viscosity, surface-collisions and friction.

Many virtual creatures can use a range of limit cycles. For example, a human morphology could contain
limit cycles for running, walking, hopping, crawling on all fours, wriggling on its belly etc. Some of these
limit cycles such as those for crawling and wriggling may be termed stable limit cycles; any deviation from
the cycle is passively corrected as a result of the creature’s interaction with its environment. For example, a
crawling or wriggling motion is stable because the centre of mass is low and the creature is not prone to
overbalancing as a result of small changes in terrain or the application of small external forces, etc.

Other limit cycles such as those for walking, running and hopping do not have the benefit of passive
deviation correction, and are termed unstable limit cycles. For example, a walking motion will be very
vulnerable to small changes in terrain or the application of small external forces. Unless active measures
are taken to keep the creature’s animation close to the limit cycle, the creature will overbalance and fall.

Clearly, open-loop control can only succeed where the creature’s morphology contains stable limit cycles.
Unstable limit cycles require the application of closed-loop control.

2.6 Summary
We use a controller-based approach to the animation of virtual creatures. Our virtual creatures’ bodies are
modelled as mass-spring structures. A genotype/phenotype representation is used to define morphology,
and our controllers are defined within the morphology in a similar fashion to a distributed nervous system.
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Chapter 3  Mass-Spring Systems
A mass-spring system is a simple particle system based on the laws of Newtonian mechanics. The system is
comprised of a set of point-masses and a set of springs that connect pairs of masses. Mass-spring systems
have no rigid parts or constraints and have been successfully applied to the modelling of soft, deformable
objects such as cloth [Provot_95], fish and rays [Grze_95] and elastic surfaces [Nixon_99]. The animation
of mass-spring systems requires little computational effort when compared with rigid-body modelling or
fluid-based modelling, thus making them attractive when simulation speed is of high priority. A good
introduction to the theory and implementation of a physically-based particle system can be found in
[Witkin_97].

3.1 Definitions

3.1.1 Masses
A mass is defined as an infinitely small particle; it has no volume, area or rotational velocity. A mass
particle has the following properties:
• Mass (m), an inertia scalar measured in kilograms.
• Position (p), a displacement vector measured in metres.
• Velocity (v), a vector defining the direction and magnitude of distance travelled per unit time.

3.1.2 Forces
A force is defined as an acceleration vector applied to a mass. The mass accelerates in the direction of the
force vector at a rate proportional to the magnitude of the total force vector and inversely proportional to
the mass’s mass scalar. Force vectors are measured in kilogram metres per second.

3.1.3 Springs
A spring represents a link between a pair of masses ma and mb. Springs apply equal and opposite forces to
ma and mb, and have the following properties:
• Rest length (r), a scalar defining the length at which the spring will apply no restorative forces to ma

and mb.
• Compression coefficient (ks), a scalar representing the strength or stiffness of the spring.
• Damping coefficient (kd), a scalar defining the degree of viscous damping associated with the spring.

Springs calculate their forces fma and fmb as a function of the distance and relative velocity between ma and
mb. The spring’s forces are applied along the vector L, where L = ma.p – mb.p.

( ) ( )
s d= k r kma

v L L
f L

L L

 ∆
− − + 

  

g
, where . .a bm mv v v∆ = − (3.1)

mb maf f= − (3.2)

The ks term in equation 3.1 calculates a restorative force that is used to push or pull the masses towards the
spring’s rest length. These forces increase in magnitude as a linear function of the displacement from the
rest length. If no other forces are applied to the masses, the distance between them will tend towards the
rest length.

The kd term in equation 3.1 applies a damping force, which resists the component of the mass’s velocity in
the direction of the spring, L. This term emulates the shock absorber of an automobile; rapid change in the
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distance between the two endpoints is resisted. Suppressing high-frequency oscillation is beneficial to the
stability of mass-spring systems.

3.1.4 External Forces
Forces applied by springs are balanced with respect to the momentum of the mass-spring system. Other
forces which may be applied such as gravity and atmospheric viscosity are unbalanced and will usually
change the system’s total momentum. These forces can therefore be considered external to the mass-spring
system, and are applied to each mass individually.

The force of gravity experienced by each mass ma is dependant upon the mass’s mass scalar and the gravity
vector kg. The vector kg defines the direction and magnitude of gravity throughout the system.

am .mma gf k=

Atmospheric viscosity is implemented as a force resistive to motion in the system. The “air” is treated as
static with respect to the coordinate system. Each mass ma experiences a force proportional to the square of
its velocity. The scalar kv defines the coefficient of viscosity throughout the system.

. .a a vm m kmaf v v= −

Other forces such as electromagnetic or gravitational interaction between particles, non-linear springs,
friction etc can be implemented easily.

3.2 Environment Modelling

3.2.1 Collision Modelling
Many animation tasks require some form of collision detection between the mass-spring system and some
objects. In this work, that object is the terrain over which the mass-spring creature must travel. For the sake
of simplicity and speed, collisions between surfaces and masses are treated as elastic; masses are allowed to
penetrate the surface slightly. A mass penetrating a surface will experience a repulsion force proportional to
its degree of penetration and the firmness of the surface.

Our two-dimensional terrain is represented using a height-map. For each horizontal position x we can
determine a height value h(x) and a unit normal vector n(x). Our height-map is stored as a piecewise linear
function in which every section occupies a constant horizontal interval. Figure 3-1 illustrates a section of
our terrain.

To detect a collision between a mass and the terrain we just need to identify the relevant terrain segment
and perform some elementary calculations. Assuming that our terrain segments begin at a horizontal value

0 1 2 3 4 5 6 7 8 9 10

 y

 x

Figure 3-1. Terrain height-map.
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of 0 and have a width of 1 unit, the terrain height at point m.p.x is denoted as h(x), and is calculated in
equation 3.3

( ) ( )h x a.y b.y a.y= + λ −  (3.3)

where a and b are the left and right endpoints of the terrain segment identified by x   . λ  is the parametric

distance of point x along the terrain segment, and is given by x- x   .

Once h(x) has been obtained we calculate d = m.y – h(x), the vertical displacement between mass m and the
terrain. If d is negative the mass is penetrating the terrain segment and we must investigate further. Figure
3-2 illustrates.

In the case of terrain penetration, we must calculate p, the distance of penetration. p is given by -dn.y.
We can now calculate a repulsion force to resist the mass’s penetration of the surface. Equation 3.4
calculates this force.

surfaceK pf n= × ×
(3.4)

where p is degree of penetration as shown in Figure 3-2.
Ksurface is the spring coefficient of the surface.

In addition to resisting penetrations our terrain acts to absorb kinetic energy. We apply a damping force to
oppose the mass’s momentum while it is moving into the surface. Equation 3.5 obtains vn, the component
of the mass’s velocity in the direction of the surface normal.

nv m.v n= g (3.5)

If vn is negative we calculate and apply the damping force specified in Equation 3.6

n surfaceDampingv Kf n= − × × (3.6)

3.2.2 Surface Friction
As well as providing repulsion forces a surface will usually be required to provide friction forces to resist
motion of particles in contact with the surface. Two kinds of friction force exist; static and kinetic. Static
friction forces exist between a particle and a surface when the particle is resting on the surface but is not
moving with respect to the surface. Kinetic friction forces exist when the particle is moving across the
surface. Static friction is always stronger than kinetic friction; a motion requires more force to start than it
does to maintain. Assuming floating-point values are used to represent the particle state, the particle should
be declared static relative to the surface if its tangential speed is beneath a very small non-zero limit.

Figure 3-2. Terrain segment intersection.
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b
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m
Where n = n(x), the normal vector
At point x.
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If an unbalanced tangential force acts upon a particle at rest upon a surface, the particle will accelerate
across the surface. Static friction seeks to exactly balance the unbalanced tangential force so that the
particle has a net tangential force of zero and remains at rest. The maximum magnitude of a static friction

force is the product of the size of the force pressing the particle into the surface and the surface’s static
friction coefficient, Kstatic. Equation 3.7 calculates this limit.

staticKmaxStatic nf f= × (3.7)

Figure 3-3 demonstrates three instances of a static friction force. In (a) and (b) force l is smaller than
fmaxStatic, the maximum static friction force and can be exactly balanced by force fs. In case (c), force l is
larger than fmaxStatic, so cannot be balanced. In (c), the particle will “break” static friction and begin to
accelerate. Force fs is calculated in Equation 3.8

,            

 = 
-  otherwise

maxStatic

s maxStatic

l l f

f f
l

l

 − ≤
 
 × 
 

(3.8)

If the particle is in contact with the surface but is not at rest, we must apply kinetic friction rather than static
friction. Kinetic friction acts to oppose velocity rather than unbalanced forces and is totally independent of
the speed of the particle as long as the speed is non-zero. The kinetic friction coefficient Kkinetic of a surface
is always smaller than its static friction coefficient Kstatic. Equation 3.9 calculates the kinetic friction force
fk.

kineticKn
k

f
f v

v

×
= − ⋅ (3.9)

Figure 3-4. Kinetic Friction.
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 v: Velocity of the particle across the surface.
 fn: Force pressing the particle into the surface
 fk: Kinetic friction force opposing v

Figure 3-3. Static Friction.

 l: Force attempting to accelerate the particle across the surface
 fn: Force pressing the particle into the surface (from gravity, and/or other springs)
 fx: Static friction force opposing l
 fmaxStatic: The maximum static friction force.
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Figure 3-4 demonstrates three situations in which only the particle’s velocity differs. In all cases the kinetic
friction force applied is the same.

In Figures 3-3 and 3-4 the surface was always horizontal and extended to infinity in both directions. For our
piecewise linear terrain we must be able to apply friction forces to particles in contact with surfaces of
arbitrary gradient.

Figure 3-5 illustrates a particle penetrating a segment of our terrain as described in section 3.2.1 above. We
must determine which form of friction should be applied. Equation 3.10 calculates vt, the component of the
particle’s velocity in the direction of the surface.

tv v t= g , where t is a unit tangent for the surface. (3.10)

nf f n= − g (3.11)

nl f f= + (3.12)

To calculate fn, the force pressing the mass into the surface we obtain the component of the total force
acting on the mass in the direction of the surface normal (Equation 3.11). Depending on the value of vt we
apply either static or kinetic friction as shown in Figures 3-3 and 3-4 respectively. If vt is “zero” we apply
static friction, obtaining the unbalanced tangential force l by using Equation 3.12. Otherwise, we apply
kinetic friction using our value of vt obtained in Equation 3.10.

3.3 Animating the Mass-Spring System
In general, the dynamics of mass-spring systems are too complex to solve analytically. Instead, we use
numerical methods to approximate the behaviour of the system over time. The system can be modelled as a
set of Ordinary Differential Equations (ODEs) as shown in Equation 3.13

( ),f tx x′ = (3.13)

where x is the system state (typically a vector), t is the time parameter, x′  is the state derivative vector and
f is a function that can be evaluated for the required ranges of state and time. In the classic Initial Value
Problem we know the state x0 at t0, the starting time, and we need to calculate the state x as time t increases.

Figure 3-6 illustrates the change in state of a variable with respect to its derivative. It is important to note
that the derivative field will usually change over time; it is usually defined in terms of other variables
within the system.

Figure 3-5. Friction calculation for our segmented terrain.

a,b: Endpoints of the surface segment
n: Unit normal for the terrain segment
f: Total force (excluding surface-repulsion) acting

upon the particle.
v: Velocity of the particle.
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The derivative of x with respect to time, x′ , defines how x changes as time increases. An ODE solver uses
x′  and x to advance x in discrete timesteps. By taking sufficiently small timesteps we can approximate the
true path of x to arbitrary accuracy. Section 3.5 describes three common ODE solvers and discusses their
accuracy with respect to time-step size.

For our mass-spring system, our state variables are the positions and velocities of each mass. All
derivatives are with respect to time. The derivative of position is velocity, and the derivative of velocity is
acceleration. Acceleration is simply the total force acting upon a mass divided by its mass scalar as shown
in Equation 3.14
a f m= (3.14)

3.4 ODE Solvers
An ODE solver is a function or algorithm that calculates a subsequent state for a variable based on its
current state, x, and its derivative, dx dtx′ = . As well as those described below, there are many specialised

forms of ODE solver such as predictor-correctors and Bulirsch-Stoer methods. Due to the wide variety of
differential equations to which an ODE solver may be applied there is no single “best” solver; instead, there
are usually several “good” solvers with varying degrees of speed and accuracy. It is often best to
experiment with several solvers on the problem domain and choose the one that provides the best trade-off
between speed and accuracy. In the subsections below we shall describe each solver and comment upon its
accuracy with respect to stepsize. In all cases, the expected error of a solver decreases with stepsize and the
number of higher derivatives evaluated. In all cases, stepsize= 1.

3.4.1 Euler
The Euler method is the simplest form of ODE solver and uses only the first derivative of the variable.
Equation 3.15 specifies the Euler function.

0+h 0 0hx x x′= + , where h is the step size. (3.15)

This method only considers the variable’s first derivative and has an expected error 2e O(h )≈ .

Figure 3-6. Variable in a Derivative Field

The variable moves through state-space over time.
A derivative field is defined over the state space,
influencing the variable’s state.

Small arrows indicate derivative values at certain
positions in state space. The dashed path tracks the
variable’s trajectory.

Figure 3-7. The Euler ODE solver

The variable’s path to its new state after a single Euler step.
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3.4.2 Midpoint
The midpoint method tries to obtain a more accurate approximation of the variable’s path through state
space by determining the variable’s derivative at half an Euler step forwards in time. A full Euler step is
then taken using this “midpoint” derivative. The midpoint method uses an approximation to the variable’s
second derivative, so error 3e O(h )≈ .

0+h 0 0+h/2hx x x′= +

where is the derivative at point ,
20+h/2 0+h/2 0+h/2 0 0

h
              x x x x x′ ′= +

3.4.3 Runge-Kutta 4th order
The Runge-Kutta 4th order (RK4) is so called because it approximates the fourth order derivatives of the
variable. First, we take half an Euler step and calculate the derivative, 

1
x′ . We then return to the starting

state and take another half Euler step using 
1

x′ . We obtain 
2

x′ , the derivative after the second Euler step.

We now take a single full Euler step from the original point using derivative 
2

x′  and obtain a last

derivative, 
3

x′ , at this point. We then advance the state of x by using a blend our four derivatives as

described in Equation 3.16. Figure 3-9 illustrates the RK4 algorithm in action. The RK4 algorithm has an
expected error  5e O(h )≈ .
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2 2
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′ ′= + +

′ ′= + +

′ ′= + +
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(3.16)

Figure 3-8. The Midpoint ODE solver

The derivative at half an Euler step.

The variable’s path to its new state after a single Midpoint step.

Figure 3-9. Runge Kutta 4th order ODE solver.

Intermediate derivatives

The variable’s path to its new state after a single Runge-Kutta step.
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3.4.4 Accuracy

Figure 3-10 contains the state of the variable after a single step according to the three ODE solvers and the
true state of the variable. For our simple example domain the three methods are ranked
Euler<Midpoint<RK4 according to accuracy. All three methods are capable of approximating the true path
through state space to within an arbitrary small tolerance, but for the Euler method this may require an
extremely small step size. For many computational tasks the RK4 method is considered to be a good
compromise between speed, accuracy and ease of implementation.

3.4.5 Adaptive Stepsizing
Choosing an appropriate stepsize for the domain is important. Ideally, we want a stepsize that is sufficiently
small to allow accurate approximation of rapid changes in state space, but large enough that we can
simulate the system at a reasonable speed. Adaptive Stepsizing refers to the automatic adjustment of the
step size according to local topology of the state space. By adjusting the stepsize we can take small steps
through rapidly changing areas and large leaps through smoother more predictable space. Figure 3-11
outlines the adaptive stepsize algorithm. Note that instead of specifying a step size h, we specify a
maximum acceptable error emax and an appropriate value for h is chosen automatically.

Adaptive stepsizing can be computationally expensive. Note that for each timestep we advance we must
take two or three ODE solver steps compared with only one for a fixed stepsize. If we are to benefit from
adaptive stepsizing we must be able to reduce the total number of steps taken during the course of our
simulation. This can only be achieved by taking larger steps, which will only be possible in a relatively
slow-changing, smooth region of derivative space. The archetypal function for which adaptive stepsizing is

c

b

a

Figure 3-10. Accuracy Comparison

The true path of the variable during the timestep.

 The variable’s state according to the:
      a Euler method.
      b Midpoint method.
      c Runge-Kutta 4th order method.

begin
calculate xa, the state after a single step of size h

calculate xb, the state after two steps of size 
h

2
calculate e, an estimate of the error:

e a bx x= −
calculate hnew, the appropriate stepsize given the current
error e and the maximum acceptable error emax.

1

l
max

new

e
h =h  

e
 
  

, where l is the order of the ODE solver.

if hnew < h then
calculate x , the state after a single step of size hnew.

else
x = xb

h = hnew

end

Figure 3-11.  The Adaptive Stepsize algorithm.
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suited contains large tracts of smooth derivative space interspersed with occasional areas of rapid change.
Such a function allows the stepsize to alter over a significant range; at least an order of magnitude. If our
function is very homogenous or allows only a narrow range of stepsizes, a fixed stepsize may yield faster
computation with no significant change in error.

3.4.6 Performance Comparison, Conclusions.
For mass-spring systems the dominant computational cost is calculating the state derivative (function f in
Equation 3.14). Using this operation as a performance measure we see that the Euler method requires only
one evaluation, the midpoint method requires two and the RK4 method requires four. When comparing the
different solvers we have two concerns:
• Accuracy and numerical stability. The solver must approximate the dynamics of the system to within a

certain tolerance. For mass-spring virtual creatures this tolerance level is rather vague; We are usually
more concerned with whether the animation appears physically accurate rather than is physically
accurate. In any case, the system must not become numerically unstable because of accumulated error
due to inaccurate simulation.

• Speed of simulation. We obviously wish to simulate the system as rapidly as possible for any fixed
accuracy criteria.

Table 3-1 presents the results of applying a visual stability metric to the three ODE solvers.

ODE solver Euler Midpoint RK4
Maximum stable step size 0.0075 0.045 0.08
Time per simulation run at
maximum step size (seconds)

29 10.2 12.1

Table 3-1

Of the three ODE solvers the midpoint method appears to offer the best combination of performance and
accuracy. The RK4 method is only slightly slower; it’s ability to take larger steps is more than offset by the
increased computational cost per step. The Euler method is totally outclassed.

Adaptive stepsizing was applied to the mass-spring systems introduced in this chapter.  Figure 3-12
illustrates the range of stepsizes observed during a typical period of simulation (approximately 30 seconds
simulation time). A maximum error of 0.01 was specified and the ODE solver was the midpoint method.
The stepsize values observed lie within the range [0.01, 0.12] and more than 97% of stepsize values lie

Figure 3-12. Adaptive step size during a period of simulation.
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within the range [0.04, 0.08]. A range of creature simulations2 were run using both adaptive stepsizing and
a fixed stepsize of 0.02, which appears to offer at least the same degree of accuracy as adaptive stepsizing.
Table 3-2 compares the running times of these two sets of simulations.

Adaptive step size (seconds) Fixed step size (seconds)
Simulation 1 37 21
Simulation 2 17 21
Simulation 3 32 21
Simulation 4 15 21
Simulation 5 29 21
Average 26 21

Table 3-2

Table 3-2 clearly shows that adaptive stepsizing does not offer a great increase in simulation speed for
mass-spring systems. In some cases such as simulations 2 and 4 a small advantage to the adaptive method
was noted. However, on average the fixed step size method appears to offer a moderate increase in
simulation speed without a significant loss of accuracy.

We conclude that a combination of the midpoint ODE solver and a fixed step size will yield the best
speed/accuracy trade-off in the simulation of mass-spring systems. We use this combination for all further
simulation in the evolution of virtual creatures.

                                                          
2 The mass-spring creature used and world parameters for these trials are specified in sections 6.1.1 and 6.3
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Chapter 4  Evolution of Controllers
Evolutionary Algorithms (EAs) are search techniques based on the process of evolution via natural
selection. EAs have proven to be robust, general methods capable of efficiently searching vast high-
dimensional spaces and finding optimal or near-optimal solutions [Gold_89]. Given our subject matter it
seems only appropriate that we should use an evolutionary technique to synthesise our controllers.

4.1 Evolutionary Algorithm Introduction
An EA uses a generate-and-test methodology. A set of solution candidates (called a population) is
maintained by the algorithm, and the optimality of candidates in the population increases over time.
Candidates are evaluated according to some optimality measure (called a fitness function), and those with
the highest optimality are investigated further. The optimality of the population is improved over time by
generating new candidates from old ones via reproduction methods modelled on natural processes. EAs are
often referred to as parallel beam search techniques.

If the population size remains constant and reproduction takes place in small increments the algorithm is
said to be steady state. The other common reproduction strategy is to generate a new population in one
large operation after all candidates have had their optimality evaluated. In this case the algorithm is said to
be generational. A comparison of the properties of generational and steady state EAs can be found in
[Noever_92]

4.2 Algorithm Overview
Our algorithm is a traditional generational EA based on that presented by Sims [Sims_94]. Our population
consists of controller candidates for a creature of static morphology. Our fitness functions are defined in
terms of the phenotype’s mass-spring system and its interaction with the simulated environment during a
short period of simulation. Figure 4-1 contains a high-level outline of our algorithm. Our initial population
is a set of small, randomly generated controllers.

4.3 Selection Mechanisms
The process of natural selection, or “survival of the fittest” is taken from nature, and provides a mechanism
by which we can investigate promising solution candidates at the expense of less promising ones. For
generational EAs this selection operation takes place when creating the next generation of candidates, and
“survival” refers to the candidate’s genetic content, i.e. the number of offspring created by the candidate.

Generate initial population C1..n

repeat

for each controller Ci, [ ]1,i n∈ do

Evaluate fitness of controller Ci

Rank controllers by fitness
Create next generation of n controllers
using a combination of:

Mutation
Crossover
Grafting
Cloning

 until stopped

  Figure 4-1. Evolutionary algorithm overview.
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Figure 4-2 illustrates the selection mechanism in the context of the algorithm used to create the subsequent
generation. The selectParent(controllers) method implements a probabilistic algorithm that chooses a
controller candidate from the given population in such a way that fit candidates are more likely to be
selected than unfit candidates. There are two common implementations of this method; fitness
proportionate selection and rank selection.

4.3.1 Fitness Proportionate Selection
In fitness-proportionate selection the probability of a candidate being selected for reproduction, pcandidate, is
directly proportional to its fitness.

, [ ]
populationSize

candidate
candidate total

i=1total

F
p  where F controllers i .fitness

F
= = ∑

4.3.2 Rank Selection
Rank selection algorithms set the selection probability for a candidate based on the candidate’s rank
according to fitness in the population, rather than the candidate’s raw fitness value. This function may be
linear or non-linear.

( ) ( )

( ) ( ) [ ]

f , f 1,

f f 1

populationSize

candidate candidate
x=1

candidate

p R  where x

     x+1 x , x , populationSize-1 , and R  is the candidate’s rank

 
= = 

 
< ∈

∑

Our rank selection algorithm is non-linear, and is specified in Equation 4.1
biasselectedParent populationSize q= × , (4.1)

where q is a random real-valued number3 in the range [0, 1), and bias ≥  1

                                                          
3 Note: a new random value for q is generated each time the selection algorithm is evaluated.

for i=1 to populationSize do begin

parent_a = selectParent(controllers);
parent_b = selectParent(controllers);

choose a reproduction method, method
if method is Mutation then

newControllers[i]= mutate(parent_a);
else if method is Cloning then

newControllers[i]= clone(parent_a);
else if method is Crossover then

newControllers[i]= crossover(parent_a, parent_b);
else {Grafting}

newControllers[i]= graft(parent_a, parent_b);

end for

Data structures:
newControllers: An array [1..populationSize] for storing the new generation of candidates.
controllers: An array [1..populationSize] containing the current generation, sorted

into non-increasing order of fitness.

Figure 4-2. The generational reproduction algorithm.
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4.3.3 Properties
We define selection pressure to be the degree of bias of a selection mechanism towards choosing fit
candidates over less-fit candidates. High selection pressure means that fit candidates are likely to produce
many offspring, and unfit candidates are likely to produce few or none.

Fitness proportionate selection is the most widely used selection mechanism in EAs, but may apply too
much selection pressure for some domains. In search spaces containing many local maxima, high selection
pressure may lead to premature convergence upon a local peak. On the other hand, in predominantly
convex search spaces high selection pressure should yield fast convergence to the global maximum. Rank
selection provides a less intense selection pressure.  Figure 4-3 illustrates the selection preferences
expressed by the two methods discussed in 4.3.1 and 0 over a small population.

It is often desirable to exclude unfit candidates from selection by only selecting from a subset of the
population. This subset is typically a top portion of the entire population and is obtained by applying a
survival ratio. Following Sims [Sims_94] our EA uses a survival ratio of 0.2.

4.4 Reproduction Methods
Except in the initial population, all solution candidates are created by reproduction. A reproduction method
creates a new candidate by copying and modifying one or more ‘parent’ candidates. Modification of the
parent(s) genetic information is a random process, and may result in major or minor differences between
the parent(s) and the child. Although most random modifications will be detrimental to the child’s fitness, a
few may be beneficial. Coupled with a selection mechanism as described in section 4.3, reproduction
allows the fitness of the population to increase over successive generations. We implement four
reproduction methods for our directed graph genotype. A theoretical and experimental comparison between
mutation and crossover can be found in [Spears_92].

4.4.1 Mutation
Mutation is the primary method by which new controller nodes are added to a candidate. A single parent is
chosen, cloned, then the clone is subjected to random alterations in both content and structure. Mutation
involves two distinct phases:

• Adding nodes to the graph
The number of new nodes to add, newNodeCount, is a randomly generated integer in the range [0,
MaxNewNodes], where MaxNewNodes is an adjustable parameter of the EA. For each new node we
select a random location within the creature’s genotype morphology (including the Unassociated Area).
The choice of location may restrict the types of node that we can add, as mentioned in section 2.1. Each

  Figure 4-3. Selection probability under Fitness Proportionate and Rank Selection methods.
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new node is generated randomly from the available types; its internal parameters and the initial weights
of its input connections are randomised to lie in the range [-1, 1]. The node’s input connections are
initially connected to Constant nodes, and the addition of the new node to the chosen location has no
immediate functional effect on the controller. Figure 4-4 outlines the algorithm for the addition of new
controller nodes.

• Altering weights and reassigning connections.
The number of mutations (alterations) to inflict, mutationCount, is an integer in the range [1,
MaxMutations], where MaxMutations is an adjustable parameter of the EA. mutationCount is generated
according to a gaussian distribution about MaxMutations/2. For each mutation we randomly select a
controller node, then randomly select a particular weight, parameter or connection to adjust. Figure 4-5
outlines this algorithm.

The mutateValue(value) method adjusts the given value by adding a random number in the range [-1, 1],
of gaussian distribution about zero. Additionally, the magnitude of the change applied to value is scaled
by the size of value; small values are altered less than large ones. This mechanism allows small numbers
to be fine-tuned and large numbers to be altered greatly.

for i=1 to newNodeCount do begin

location = randomLocation()
if location is the Unassociated Area then

generate newNode, a random neuron node
else if location is the Root Node then

generate newNode, a random sensor or neuron node.
else {The location is in one of the non-root genotype nodes}

generate newNode, a random sensor, neuron or effector node.

add newNode to the given location
end for

where
randomLocation() returns a particular part of the creature’s genotype  morphology as defined in
section 2.1

  Figure 4-4. Adding new nodes to the controller graph.

for i=1 to mutationCount do begin

node = selectNode()
location = the genotype morphology ‘part’ enclosing node.
component = selectComponent(node)

if component is a weight or parameter then
mutateValue(component)

else {component is a connection}
mutateConnection(component)

end for

where
selectNode() selects a controller node at random from the controller graph.
selectComponent(node) randomly chooses a weight, parameter or connection belonging to node.

Figure 4-5. Selecting a weight, parameter or connection to adjust.
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The mutateConnection(connection) method is responsible for adjusting the given input connection to
draw its source data from the output of a randomly chosen node. Because of the rules of adjacency
specified in section 2.1, our connection will usually be restricted to choosing from a small subset of the
total nodes in the controller. Figure 4-6 illustrates the result of a mutation upon the controller presented
in Figure 2-11.

4.4.2 Crossover
The phenomenon of hybrid vigour within natural systems is well documented, if not well understood.
Mixing genetic information from two parents can allow offspring to combine “good” genes from each, and
become fitter than either of their parents. In terms of a search algorithm, crossover can allow two solution
candidates to be combined into a more optimal solution containing elements of both.

Our crossover operation involves arranging the parents’ genetic information in two parallel lines and
copying information from them alternately. A randomly chosen number of crossover points are placed at
random locations upon the lines, at which the copying swaps to the other parent’s genotype. Figure 4-7
illustrates the crossover operation applied to a simple fixed-length array genotype. Note: no ‘horizontal’
migration of genes occurs during crossover.

 Figure 4-6. Mutation applied to a small controller graph.

Mutated elements are marked with
dotted lines or borders:

Unassociated area
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Figure 4-7. Crossover on a simple genotype.
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To implement crossover between two directed graph controllers we make use of the fact that they reside
within the genotype morphology graph. Crossover points are chosen randomly while copying according to
an instantaneous probability CrossoverProbability. Figure 4-8 outlines our crossover algorithm.

4.4.3 Grafting
Grafting is a two-parent reproduction method that allows ‘horizontal’ migration and multiple duplication of
genetic information to occur. This method allows useful local sub-controllers or controller elements to be
rapidly propagated throughout the creature’s morphology. For simplicity, we implement grafting on a
morphology ‘part’ basis, i.e. we copy all nodes in a source part to one or more target parts.

parent = parent1
for l=1 to |locations| do begin

n=1
while n ≤  parent.locations[l].numberOfNodes do begin

node = parent.locations[l].nodes[n]
add node to offspring.locations[l]

r = random in range [0, 1)
if r < CrossoverProbability then

if parent = parent1 then
parent = parent2

else
parent = parent1

n = n + 1
end while

end for

where
parent1, parent2 are the two parent candidates.
offspring is a copy of the creature’s genotype morphology initially devoid of controller elements.
locations is the set of all ‘parts’ of the genotype morphology (The genotype nodes plus the

         unassociated area)
CrossoverProbability is typically 0.1

Figure 4-8. Crossover algorithm for our genotype representation.

sourceLocation = choosePart(parent1)
targetCount = random integer in the range [1, |locations| ]

for i=1 to targetCount do begin
targetLocation = choosePart(offspring)

remove all controller nodes from offSpring.locations[targetLocation]
copy all nodes in parent1.locations[sourceLocation] to offspring.locations[targetLocation]

end for

where
parent1, parent2 are the two parent candidates
offspring is initially a clone of parent2
locations is the set of all ‘parts’ of the genotype morphology (The genotype nodes plus the

         unassociated area)
choosePart(candidate) chooses a random ‘part’ from the set of locations in candidate.

Figure 4-9. The grafting algorithm.
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4.4.4 Cloning
Cloning is a single-parent reproduction method that exactly duplicates the parent. This method allows
controller candidates to pass unaltered into the next generation, which may be beneficial if other
reproduction methods have a high probability of making detrimental changes. The presence of a cloning
method may allow higher mutation rates than is otherwise the case, leading to a wider investigation of the
search space.

4.4.5 Validity Enforcement and Garbage Collection
The mutation, crossover and grafting methods will often result in the offspring breaking the rules of
controller validity. In section 2.1 we stated that controller nodes are only permitted to connect to nodes in
the same part or nodes in immediately ‘adjacent’ parts. Additionally, effectors and some types of sensor are
not allowed to exist in some parts of the creature’s morphology. With the exception of the cloning method,
we must enforce the rules of adjacent connection and node placement in every offspring.

Firstly, we check for and remove any redundant effectors or sensors. These nodes are considered redundant
if there already exists in the same part a node of the same type. Secondly, we verify or reassign each
connection of every controller node. If a connection is found to be invalid it is reassigned to another
available node. Figure 4-10 contains a flow chart illustrating the connection verification process.

Following duplication-removal and connection verification, nodes that cannot contribute to effector output
are garbage collected. Garbage collection helps to keep the size of controllers to a minimum, which in turn
keeps the controller evaluation time minimal (see section 2.4). The garbage collection algorithm is
presented in Figure 4-11.

Does c’s source
node still exist?

Was c’s source
node in an

‘adjacent’ part?

Are there any
available node outputs

in c’s source part?

no yes

Connection is valid.

yes

Are there any available
node outputs in

adjacent parts or the
local part?

no

Is c’s source
node in an

‘adjacent’ part?

no

no

yes

Connect to an available node
output in c’s source part.

yes

Connect to an available node output in
an adjacent part or the local part.

yes

Connect to a constant value node.

no

Note: c is the controller node
connection we are examining. c draws
its input from another node, the
source, located in the source part.

Figure 4-10. Verifying or correcting a controller connection.
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4.5 Distributed Fitness Evaluation
Distributed fitness evaluation refers to the application of parallel processing to the task of evaluating the
fitness for a population of controller candidates. In our implementation this involves sharing the cost of
physical simulation across many computers on a local area network (LAN).

4.5.1 Motivation
Our fitness functions are all based around the performance of the controller when applied to the creature’s
body in a period of physical simulation. Physical simulation is enormously computationally expensive
when compared to the EA’s other tasks such as selection and reproduction. When evaluating a generation
of controllers, the order of evaluation is irrelevant and there is no interaction between different controllers.
All the fitness evaluations are totally independent. Making the assumption that our population size will
always be greater than or equal to the number of processors available, we can easily and efficiently harness
multiple processors to the task.

4.5.2 Master/Slave Architecture
Our distributed system uses a master/slave architecture. We have a single master process that implements
the EA sans physical simulation, and multiple slave processes that implement physical simulation only.

begin garbageCollect(candidate)
mark all nodes ‘unvisited’
for each node n in the controller do

if n is an effector then begin
source = the source node of n’s connection.
visitNode(source)

end if
end for

remove all nodes still marked ‘unvisited’
end garbageCollect

begin visitNode(node)
if node is flagged as ‘unvisited’ then begin

mark node as visited
for each input connection c of node do begin

source = the source node of connection c
visitNode(source)

end for
end if

end visitNode

Figure 4-11. Garbage collection algorithm.

Master

Slave-1

Slave-n

Candidate evaluation request

Candidate fitness

Figure 4-12. Master/Slave message passing.
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To make efficient use of a fluctuating number of available processors in the face of differing processor
speed, network unreliability, etc requires a flexible, fault-tolerant approach. Pseudo-code for the master’s
population-evaluation loop is presented in Figure 4-13

Our algorithm allows for different processor speeds and the possibility of slave process termination mid-
evaluation. Each slave process is given one candidate at a time, and processes candidates at its own pace. If
a candidate is assigned to a slave that then terminates prior to finishing its evaluation, the candidate will
subsequently be reassigned to another slave.

evaluatePopulation()
mark all candidates as ‘unevaluated’ and ‘unassigned’

repeat
candidate = getFirstUnassigned()
if candidate = null then

candidate = getUnevaluated()

if candidate <> null then begin
slave = getAvailableSlave()
send candidate to slave for fitness evaluation
mark slave as ‘unavailable’
mark candidate as ‘assigned’

end if
until (getUnevaluated() = null)

send cancellation messages to any ‘unavailable’ slaves
end evaluatePopulation

receiveFitnessEvaluation(candidate, slave)
record candidate’s fitness value
mark candidate as ‘evaluated’
mark slave as available

end receiveFitnessEvaluation

where
getFirstUnassigned() returns a candidate that has yet to be assigned to a slave for fitness

evaluation, or ‘null’ if all candidates have been assigned.
getUnevaluated() returns a candidate for which a fitness value has not yet been received

from a slave, or ‘null’ if all candidates have been evaluated. If more than
one candidate is ‘unevaluated’ one of them is chosen at random .

getAvailableSlave() returns a slave that has not been assigned a candidate. This method will
not return until a slave becomes available.

Note: The receiveFitnessEvaluation(candidate, slave) method is asynchronous to the
evaluatePopulation method, and executes whenever the master receives a candidate’s fitness evaluation
from a slave.

Figure 4-13. Distributed fitness evaluation algorithm.
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4.5.3 Performance Benefits and Conclusion
Performance is linear with processor power and the number of slaves available up to the size of the
population. Our distributed system allows for efficient utilisation of multiple processors across a LAN, and
is tolerant of the addition and removal of slave processes during evolution. Network traffic is sparse and
small. Implementation of our algorithm is straightforward and is highly recommended for any evolutionary
computation task with costly fitness evaluation. We cannot think of a better use for a computer laboratory
during a university holiday �

4.6 Summary
An evolutionary algorithm involving a generate-and-test approach to fitness evaluation is used to generate
controllers. Our EA implements mutation, crossover and grafting reproduction operations for our directed-
graph genotype. We have presented a simple master/slave distributed computation architecture to spread
the cost of fitness evaluation over many computers on a LAN.
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Chapter 5  Visualisation of Evolution
The progression of an evolutionary algorithm through a search space may be very unintuitive. A good
understanding of the effects of the EA’s various control parameters is required if we are to make intelligent
parameter choices rather than use a blind try-it-and-see approach. Additionally, evolutionary algorithms are
notoriously difficult to debug; the implementation may contain subtle bugs causing the EA to behave sub-
optimally or erratically. Some form of data processing to allow human understanding and investigation of
the EA’s operation is required. An overview of visualisation techniques applied to evolutionary algorithms
can be found in [Collins_97].

5.1 Introduction and Motivation
Humans are very good at interpreting three-dimensional visual information. Our eyes provide a very high-
bandwidth input mechanism to our brain, and our brain has evolved specialised processing facilities to deal
with three-dimensional data. Data-visualisation technologies use the human visual system as an intuitive
and natural interface between information and intellect. To present the appearance of three-dimensional
data on a two-dimensional computer screen we use animation; we allow the user to translate and rotate the
viewpoint over time.

We present a simple visualisation utility designed specifically for our controller-synthesis evolutionary
algorithm. Data is collected from controller candidates during evolution and is imported into the Visualiser
utility for offline investigation. Knowledge obtained from investigating this data can be used to adjust EA
parameters or may lead to the discovery of algorithmic or implementation problems.

Our Visualiser displays a point cloud within a cube in 3-space. Each point represents a single controller in
the evolution sequence. The Cartesian coordinates of points within the view volume represent various
metrics selectable by the user. Lines between points represent parent-child relationships. The number of
points in the volume is determined by a user-specified range of generations. Point and line colours denote
each controller’s generation and reproduction method.

5.2 Views Available
The quantity represented by each axis can be selected from a set of data fields that are stored for each
controller. Our fields are:
• Fitness.
• The number of neurons
• The number of sensors
• The reproduction method used to create the child
• The child’s niche4

The user specifies a range of generations by selecting start and stop generations, where start < stop. The
colour of a point denotes the controller’s position in the generation range; controllers in the start generation
are shown as dark blue points, ranging through to white points for controllers in the stop generation.

Parent-child line colour represents the reproduction method used to create the child controller:
White: Mutation
Red: Crossover
Yellow: Grafting
Blue: Cloning

                                                          
4 This field only exists if niching is used; niching is introduced in Chapter 8 .
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In the case of crossover and grafting, two parent-child lines exist. Colour gradient is used to apply
directionality to the line; the child always lies at the brighter end of the line. The user may select to display
only parent links for which the child controller is fitter than the parent, or hide all parent links to obtain an
unobstructed view of the point cloud.

Two data scaling methods are available.  Local scaling scales data within the selected generation range to
fit the view volume, and is useful for obtaining a close-up view of the selected range. Global scaling scales
the entire evolution’s data to fit the view volume, and is useful for comparing differences of scale between
generations.

A simple animation facility is available to help visualise the EA’s dynamics over subsequent generations. A
two-generation window slowly advances through the selected range of generations. The user may rotate the
viewpoint using a standard trackball interface.

5.3 Demonstration
Figure 5-1 contains a view of the first two generations of an evolution. The x, y and z axes, shown in blue,
light grey and green respectively, represent the number of neurons (dataflow units), fitness and number of
sensors. Note the explosion of mutated offspring from a fit controller in the first generation. Many of the
mutations have resulted in superior controllers; some spectacularly so. A variety of controllers produced by
grafting are extending along the z axis towards us; they contain large numbers of sensors, few neurons and
have very low fitness values.

Figure 5-2 follows the same evolution for another two generations. In the fourth generation a controller
created by grafting has proven to be vastly fitter than either of its parents. Other less spectacularly
improved controllers have been created by crossover and grafting operations. Note: vertical scaling has
changed as a result of the peak fitness increasing by a factor of 20.

5.4 Summary and Conclusions
Visualisation techniques can help provide a useful and intuitive understanding of an evolutionary
algorithm’s operation. Our Visualiser application simply presents raw evolutionary data in 3-space, but aids
understanding considerably due to its ease of use and rapidity of data access. In particular, visualiser views
are superior to textual data for examining groups of controllers or determining the distance between
controllers in the search space.

Data visualisation increases the likelihood of the discovery of algorithmic or implementation bugs because
patterns or occasional aberrations in a 3D data set are usually much more obvious than in tabulated textual
data. Our visualisation tool has contributed to the discovery of many bugs during the course of this thesis.

Our current Visualiser has some limitations. We find that the number of parent-lines must be limited for
clarity, typically to at most a thousand. The viewpoint is currently restricted to a sphere around the visual
volume; the ability to move the viewpoint and centre of rotation to arbitrary locations within the volume
would allow detailed investigation of sub-groups of controllers. A more flexible data-selection method than
our generation range would enable the user to remove superfluous information.

In later chapters we will include visualisation views to demonstrate aspects of the evolution process. Such
views will usually contain two generations (a parent generation and a child generation). Unless otherwise
specified our three axes will be:

Green: Number of sensor nodes.
White: Fitness.
Blue: Number of neuron nodes.
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Figure 5-1. Mutation explosion.

Figure 5-2. Grafting produces an improvement.
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Chapter 6  Models and Parameters
Our controller synthesis experiments involve a range of creature morphologies and animation goals. We
now describe these morphologies and fitness functions in detail.

6.1 Test Creatures
The set of test creatures contains worm-like, ring-like, octagonal and bipedal morphologies. A creature
model contains only the minimum number of masses and springs necessary to approximate the target
morphology shape; simulation speed is of higher priority to us than aesthetic issues.

6.1.1 Worm
Our primary test creature is a long, thin worm-like structure. This morphology’s locomotion space was
envisaged to contain stable limit cycles, so could be animated by either open-loop or closed-loop control.
The genotype for this creature does not use grouping; there is a one-to-one mapping between nodes in the
genotype graph and masses in the mass-spring system.

The creature may adjust the rest lengths of the lateral springs along its top and bottom. Extra springs are
used to provide vertical and diagonal bracing for each quadrilateral cell. For our normal world conditions
this creature has sufficient muscular power to form an arch, touching the terrain only at its two ends.

Figure 6-1. Worm model.
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6.1.2 ‘Ring’ Creature
This creature’s morphology is a 16-mass ring designed for rolling. The controller may alter the rest lengths
of the circumferential springs and thereby move masses along the circumference. Extra springs internally
reinforce the muscular ring, resulting in a strong but flexible morphology. It was envisaged that a
locomotion controller for this creature would require sensor information, i.e. be closed-loop.

6.1.3 Octagonal Creature
Our octagonal creature is designed to roll. We specify the creature in two different genotype morphology
graphs; with and without using grouping. Figure 6-3 illustrates the mass-spring system for our octagonal
creature. Figure 6-4 illustrates its two genotype morphology graphs.
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Figure 6-2. Ring model.

Figure 6-3. Octagonal creature mass-spring system.
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The grouped morphology graph forces the local controllers in different circumferential masses to be
identical. Because of this enforced symmetry local controllers can only apply differing effector output if
sensor units are used, thus making only closed-loop control viable. The expanded genotype allows different
local controllers in different circumferential masses, so may allow either open-loop or closed-loop control.

6.1.4 Biped
We implement a simple bipedal morphology to investigate ‘walking’ behaviours.  This creature uses an
expanded genotype morphology graph, and is expected to contain both stable and unstable limit cycles.
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Figure 6-5. Biped model.
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6.2 Fitness Functions
Our fitness functions are real-valued metrics defined entirely in terms of the creature’s interaction with its
simulated world. Following the work of Grzeszczuk and Terzopoulos [Grze_95] a term α  evaluates the
motion and a term β  evaluates the controller’s energy efficiency. Fitness functions are of the form

efficiencyKα + αβ , where Kefficiency specifies the weighting for the efficiency term.

Our primary term α  is calculated according to one of the following:
• Absolute average velocity of the centre of mass.

. * . .
T M

i i
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m mass m x  dt velocity
 α =   
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• Maximum horizontal displacement of the centre of mass

* . .
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• Maximum vertical separation between the centre of mass and the terrain.
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m .mass a m  during simulation
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∑

where T is the length of simulation, M denotes the number of masses in the creature’s morphology and mi

denotes the ith mass in the creature’s mass-spring system. Function a(mi) returns mass mi’s altitude, i.e. the
vertical displacement between mi and the terrain.

The energy-efficiency term β  is given by:
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where T is the length of simulation, S denotes the number of springs in the creature’s phenotype
morphology tree and si denotes the ith spring. si.rt denotes the rest length of spring si at time t, and si.rt-1

denotes the rest length of spring si at the previous simulator timestep.

Our rationale for an efficiency term is that real-world creatures exhibit remarkably energy-efficient
locomotion [Light_70]. Energy efficiency may therefore be a useful performance measure in the search for
realistic locomotion. Additionally, we believe that the promotion of energy-efficient controllers may result
in more graceful, aesthetically pleasing locomotion.
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6.3 Parameter Description
Parameters for our experiments can be separated into two groups, simulation parameters and EA
parameters.

6.3.1 Simulation Parameters
Gravity vector: (x, y) = (0, -0.05).
Atmospheric viscosity: 0.001
Static friction coefficient, Kstatic: 1.0
Kinetic friction coefficient, Kkinetic: 0.9
Spring damping (global), Kd: 0.3
Terrain hardness: 100
Terrain damping: 0.05
Terrain height: 2.0
Terrain steepness: 0.5
ODE solver: Midpoint
Step size: 0.02

6.3.2 Evolutionary Algorithm Parameters
Population size: 300 unless otherwise stated.
Simulation time: 600
Fitness function: Absolute average velocity of the centre of mass.
Efficiency weighting, Kefficiency: 0.1
Survival proportion: 0.2
Selection method: Rank selection
Rank selection bias: 4.0
Reproduction method probabilities

Mutation: 0.4
Maximum mutations: 20
Maximum new units: 50

Crossover: 0.3
Per-unit crossover probability: 0.1

Grafting: 0.25
Cloning: 0.05

Note that the mutation probability is very high compared with other EAs; another popular form of EA, the
Genetic Algorithm represents solution candidates as bit-strings and typically has a bit-flip mutation
probability of 0.005 or less. Our mutation probability is taken from Karl Sims’ work [Sims_94].
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Chapter 7  Initial Results
Controller-synthesis trials were conducted using the worm, octagonal, ring and biped creature models and
the parameters specified in chapter 6. For the worm and biped morphologies open-loop control was quickly
discovered and optimised. For the octagonal and ring creatures closed-loop control proved dominant. The
bulk of our investigation is focused upon controllers for the worm model.

Sets of trials were run for each creature. For each trial an initial random number seed was chosen based on
the least significant bits of the system real-time clock. In most cases the EA was stopped after 100
generations. Some trials were allowed to continue for up to 300 generations to illustrate a particular aspect
of the EA’s behaviour. Due to the high computational cost of a 100-generation evolution run, the number of
trials per experiment is at most 10. Parts of this work have previously been published in [Sand_2000].

7.1 Worm Model
The worm model is very stable, both statically and dynamically. We envisaged that both open-loop and
closed-loop controllers could be synthesised, but that closed-loop control should have a fitness advantage.

Figure 7-1 displays a few selected frames of closed-loop worm
locomotion; the worm is travelling to the right using a stretch-
and-anchor gait.

The EA synthesised a range of open-loop locomotion
controllers over repeated trials with identical parameters
(except the random seed). Figure 7-2 contains a graph of
fitness against generation to illustrate the variation in
controller optimality over different trials. Note that with the
exception of three trials the controllers are of similar peak
fitness and have similar fitness histories.

In three trials, the algorithm’s rate of ascent during the first 10
generations is very low, and the population has relatively low
peak fitness after 100 generations. Figure 7-3 traces one of
these trial’s fitness for more than 300 generations and suggests
that the EA has become trapped in a local maximum.Figure 7-1. Worm locomotion

Figure 7-2. Evolution of worm locomotion controllers.
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Figure 7-4 contains a visualisation view of the trial
in Figure 7-3 at generations 320-321. This view
illustrates the loss of genetic diversity in the
population and confirms that the EA has indeed
become trapped in a local maximum. Observe that
all parent-child lines appear to originate from a
single point near the upper-left corner; The
population has become dominated by clones (or
near-clones) of a single genotype. The EA is
exploring a small region of controller-space local
to the dominant genotype but is unable to advance;
the dominant genotype has been optimised as much
as it can, and further improvement may require a
different controller architecture. The probability of
spontaneously generating a fit controller of a
different architecture is extremely small, so the EA
is unlikely to escape the local maximum in a
reasonable number of generations.

We found that our EA always produced an open-loop locomotion controller based upon one or more wave
generator nodes. Closed-loop control was only discovered once wave generator nodes had been disabled.
This is interesting because closed-loop (sensor-based) controllers were of similar fitness to open-loop
controllers and were evolved after a similar number of generations. This evidence implies that open-loop

Figure 7-5. Open-loop control has an early fitness advantage.
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control has an advantage early in evolution, and consequently that for this model the EA is biased towards
open-loop control. Although the worm model is dynamically stable and does not require closed-loop
control to reach high locomotion speeds, we are still interested in closed-loop control from an animation
perspective. Figure 7-5 illustrates the fitness advantage of open-loop control in the first two generations of
evolution. The trials plotted in Figure 7-5 are of two different types; In open-loop trials we have disabled
sensor nodes, and in closed-loop trials we have disabled wave generator nodes. Note that closed-loop trials
have a first-generation peak fitness close to zero, and that open-loop trials have a greater first-generation
peak fitness of at least 0.017. Because of this early fitness advantage to open-loop control and our small
survival proportion of 0.2, the EA is biased away from investigating closed-loop control and subsequently
generates an open-loop locomotion controller.

We believe that the early advantage of open-loop control stems from the fact that a cyclic open-loop motion
is much more likely to be produced than a cyclic closed-loop motion. Simple cyclic motions based upon
one spring/muscle are the first beginnings of a locomotion controller. The periodic extension and retraction
of a spring in the worm’s body will usually result in an asymmetric contraction/expansion of the body as a
whole, resulting in a motion bias towards the left or the right. The type of controller instigating the first
such cyclic motion greatly influences the resulting course of controller evolution.

To produce a cyclic open-loop motion the EA need only connect the input of an effector node to the output
of a wave generator node. The production of a cyclic closed-loop motion is more complex, and requires
interaction with the creature’s local environment. The most common form of evolved closed-loop
controller uses contact sensors; a contact sensor outputs a value of +1.0 if its associated mass is in contact
with a surface, otherwise a value of –1.0. A contact-sensor based motion cycle is formed by connecting the
input of an effector node to the output of a contact sensor in such a way that the effector’s spring lifts the

sensor’s mass off the surface when contact is detected. Figure 7-6 illustrates this form of sensor-based
cyclic motion.

The illustrated sensor-based cyclic motion is very sensitive to local conditions in the creature’s body and
environment. If the fully contracted spring does not lift the sensor’s mass off the surface the cycle will be
broken and no further motion will be produced. Because of this sensitivity, such closed-loop cyclic motions
are less likely to be generated than open-loop cyclic motions. In our EA the probability of generating a
closed-loop cyclic motion appears to be very much less than the probability of generating a wave-node
based open-loop cyclic motion, thus explaining the lack of closed-loop control in the presence of wave
generator nodes. By disabling wave generator nodes we reduce the probability of discovering an open-loop
cyclic motion and thereby promote the discovery of closed-loop cyclic motions. Even without wave-
generator nodes open-loop control may still be discovered (as in Figure 2-10), but such an event appears to
be extremely improbable.

7.2 Other Creatures
Our controller synthesis EA has been applied to three other creature models in addition to our primary
creature, the worm. This section briefly discusses the results of trials using each additional creature model.
Model specifications can be found in section 6.1.

Figure 7-6. A simple sensor-based cyclic motion.
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7.2.1 Ring model
Our ‘ring’ creature was designed for rolling. It uses an ‘expanded’ morphology genotype graph, i.e. one
node in the genotype graph for each mass in the creature’s mass-spring system. This creature approximates

a 2D incarnation of the Amoeba Man, a soft-object model
mentioned in section 1.3. We believed that this model would
require closed-loop control, and that rolling would be the
archetypal locomotion method.

Several forms of closed-loop controller were discovered by the
EA. A controller was always based around one type of sensor,
including contact sensors, orientation sensors and velocity
sensors.

Figure 7-7 illustrates the locomotion produced by a velocity-
sensor based controller. This gait is a combination of rolling and
hopping, and enables the creature to jump up sudden steps in the
terrain. Controllers based on orientation sensors or contact
sensors produced a faster, more fluid rolling gait.

Interestingly, over the small number of trials run the EA was
never observed to become trapped in a very low-fitness local
maximum. We believe that this was due to open-loop control
being totally infeasible for the model, and thus removing the vast
majority of local maxima from the controller search space.

7.2.2 Octagonal model
This creature’s morphology was specified in two different ways, both ‘grouped’ and ‘expanded’ genotype
graphs as described in section 6.1.3. The dual morphology graphs of this creature allow us to demonstrate
the benefits of grouping. It was envisaged that this creature would be capable of locomotion by rolling. A

rolling controller would push or pull the heavy central
mass towards one side of the creature’s body, resulting in
a change to the creature’s centre of mass and subsequent
rotation. This form of locomotion would almost certainly
require sensor information, as the speed of rotation would
vary depending on terrain and linear velocity. Figure 7-8
displays a few frames of evolved high-speed rolling
locomotion.

Rolling controllers such as that illustrated in Figure 7-9
were only discovered in the grouped genotype.

Evolution using the expanded genotype produced a range
of open-loop wave-node based controllers, none of which
produced a rolling motion. These low-quality controllers
moved the creature by random hopping and thrashing,
which usually resulted in the creature travelling some
small distance from the starting point. Such controllers
correspond to local maxima in the search space.

Figure 7-8. ‘Octagon’ creature locomotion.

Figure 7-7. ‘Ring’ locomotion.
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By using the grouped genotype we force all circumferential parts to contain identical controller elements.
Open-loop control can therefore only produce a symmetric contraction/expansion of the radial springs; it
cannot adjust one radial spring without adjusting all of them. Conversely, closed-loop control may adjust

radial springs based on sensor data from the
circumferential masses, allowing for individual
adjustments based on different local conditions in each
mass’s environment. Our grouped genotype provides a
controller search space in which open-loop control is
infeasible, thus removing a vast number of local maxima.

Evolution using the grouped genotype has produced two
different rolling controllers based on two varieties of
sensors. Figure 7-9 illustrates an orientation-sensor based
rolling controller. The controller elements in “Part 1” are
replicated for each circumferential mass in the creature’s
body. The other closed-loop rolling controller was of
similar simplicity and was based on contact sensors. We
believe that the grouped genotype has allowed us to find
the maximally fit locomotion controller for this creature.

7.2.3 Biped model
The biped model uses an expanded genotype, and moves by adjusting the rest lengths of its four ‘leg’
springs. We believed that this model was stable enough to be open-loop controllable, but that closed-loop
control might allow higher-speed locomotion. It was envisaged that the fastest gait for this model would be
rapid side-stepping.

As with previous models, several different locomotion styles were
discovered by the EA. Open-loop controllers based around wave
generator nodes were common, as were closed-loop controllers based
around contact sensors.

Although the fittest evolved locomotion style was side-stepping,
against our expectations side-stepping controllers were open-loop. The
EA was observed in several trials to become trapped in a local
maximum with the creature falling onto its side, where controller
evolution was focused on learning to move while lying sideways.
‘Walking’ controllers were only discovered in trials where falling-
sideways did not occur in early evolution. Modifying the fitness
function to penalise overbalancing and falling would help the EA to
avoid these local maxima, and should be beneficial when evolving
controllers for highly unstable creatures.

Figure 7-10 illustrates an interesting open-loop hopping gait. This gait
provides rapid locomotion and is robust against considerable variations
in terrain. Very similar sensor-based gaits were also evolved.

7.3 Quality of animation
Animations produced by our evolved locomotion controllers are of varying aesthetic plausibility. Some
gaits are immediately recognisable and believable, others are novel, and a few are hilarious. The
physically-based nature of our mass-spring systems is obvious to an observer: things fall, bounce, roll and
flail in a believable manner. The most significant plausibility-limiting factor is the inability of a 2D mass-
spring system to conserve its enclosed area. However, this limitation is often subtle and may not be noticed

Figure 7-10 Biped locomotion.

Figure 7-9. Sensor-based rolling controller
for the octagonal creature’s grouped
morphology graph.
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unless explicitly drawn to an observer’s attention. Non-conservation of area in the worm model can be
observed in the left half of Figure 7-16. The vertical thinning in this model as a response to horizontal
stretching is a consequence of the internal diagonal bracing springs.

In order to produce higher-quality animations of our worm model we have applied texture maps to the
worm and its environment. We implement this texture wrapping in an OpenGL-enabled version of our
slave application, frames from which are illustrated in Figure 7-11.

7.4 Randomised Terrain: Fitness Evaluation in a Noisy World
It has been demonstrated that including a small amount of random noise in the fitness evaluation of an EA
may improve the robustness of solutions [Reyn_94]. By introducing random noise we help weed out
‘fragile’ solutions and promote more robust, noise-tolerant solutions.

There are many ways we could introduce random noise into our creature’s fitness evaluation, such as
slightly perturbing spring strength coefficients, spring rest length bounds, mass values, the gravity vector,
etc. We choose to apply our random noise in the form of varying terrain. A random terrain is constructed
for each generation of controller candidates so that each generation experiences a slightly different local
environment. Ideally, fragile controller types will soon encounter terrain outside their operational
parameters and will be surpassed by more robust controllers.

The random nature of our terrain generator results in some landscapes that are ‘easier’ and some that are
‘harder’. This fluctuation does not affect the convergence properties of the EA as selection pressure only
exists between candidates in the same generation. The ‘difficulty’ of a particular terrain must be taken into
account when comparing candidates from different generations, such as in parent-to-child comparisons.
The performance of cloned candidates from the parent generation provides a useful benchmark to
determine the relative difficulty of the child’s terrain to the parent’s.

Our terrain generation algorithm creates a regular-spaced height-map according to a set of three input
parameters, Kheight, Ksteepness and terrainSeed. Kheight and Ksteepness specify the maximum height/depth of the
terrain, and the maximum gradient that a terrain segment may assume. Our terrainSeed parameter supplies

Figure 7-12. ‘flat’, ‘normal’ and ‘extreme’ terrain types.

Kheight = 2,  Ksteepness = 0

Kheight = 20,  Ksteepness = 0.3

Kheight = 2,  Ksteepness = 0.5

Figure 7-11. Texture-mapped worm model and terrain.
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an initial seed for a random number generator specific to our terrain generator. By defining a terrain as a
function of these three parameters we minimise the network traffic to our distributed slave processes.
Figure 7-12 contains sections of three randomly generated terrains of differing difficulty.

 In this set of experiments we evolve locomotion controllers for the worm model over both ‘flat’ and
‘normal’ terrain types. We compare the performance of our EA over the two problem domains, and draw
comparisons between our two sets of evolved controllers.

7.4.1 Flat Terrain versus Varying Terrain
 Figure 7-13 graphs the fitness curves of trials run using flat terrain. Figure 7-14 graphs the trials run using
‘normal’ varying terrain.

Figure 7-13. Controllers evolved over ‘flat’ terrain.
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Figure 7-14. Controllers evolved over ‘normal’ type terrain.
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It can be seen that trials run using flat terrain may attain higher fitness, but exhibit much more sensitivity to
initial conditions than trials run using varying terrain. The ‘flat’ trials have produced a very wide range of
fitness curves, no two of which are very similar. By comparison, trials run using varying terrain can be
grouped into two sets: the majority quickly ascend to a near-plateau in the range [8..11], and the others
ascend very slowly and attain much lower peak fitness values.

Evolved over flat terrain Evolved over varying terrain
Fitness over varying terrain Fitness over flat terrain Fitness over varying terrain Fitness over flat terrain

Mean Median Std. dev Mean Median Std. dev Mean Median Std. dev Mean Median Std. dev
4.348 4.24 2.177 9.741 8.28 5.14 7.799 9.007 3.31 8.318 9.698 3.392

Table 7-1. Flat/varying terrain fitness summary.

Table 7-1 contains a brief summary of peak fitness values after 100 generations. We include both flat-
terrain and varying-terrain fitness values. Figure 7-15 contains scatter diagrams of the same source data.

Given that the set of trials evolved over flat terrain appears to contain an outlying trial, we believe a
median-value comparison to be more appropriate than a mean-value comparison. Making this assumption,
the application of noise to the creatures’ environment has resulted in a higher expected peak fitness value.

We hypothesise that randomised terrain has resulted in increased median fitness by significantly reducing
the probability of a trial becoming trapped in a local maximum. Controllers of low fitness usually rely upon
only a few springs to provide locomotion, and are vulnerable to terrain variation around those springs. Over

Figure 7-15. Peak fitness distributions for trials evolved over flat terrain / varying terrain.
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several generations it becomes likely that such a controller will encounter terrain it cannot traverse early in
its fitness evaluation and therefore increase the probability of alternative controllers being selected for
reproduction.

7.4.2 Animation Comparison
Evolution over flat terrain results in a qualitatively different locomotion style to evolution over randomised
terrain. Controllers evolved over flat terrain typically evolve a ‘skating’ gait in which the body is held very
low, or lies entirely upon the surface.  Randomised terrain yields gaits in which the body is held higher,
usually in one or more arches. The effect of terrain variation on locomotion style may be useful to an
animator, who may be seeking a particular type of gait. Figure 7-16 illustrates these differences in gait.

7.4.3 Conclusion
Controllers evolved over varying terrain appear to be of higher median fitness when evaluated over both
varying terrain and flat terrain. Our trials evolved over flat terrain have produced a very wide range of
fitness values, so we believe that more trials would reinforce this conclusion. However, Figures 7-13 and 7-
14 clearly show that randomised terrain has resulted in increased predictability of peak controller fitness.
Lastly, the degree of variation in the terrain over which a controller is evolved has a noticeable qualitative
effect on the controller’s style of locomotion.

7.5 Summary
Our EA is successful in generating locomotion controllers for a small range of mass-spring creatures but in
some cases is prone to becoming trapped in a local maximum. A creature’s genotype morphology graph
defines the controller search space, and may bias the EA towards either open-loop or closed-loop control.
In our worm model we were not able to synthesis closed-loop controllers until wave generator nodes had
been disabled. Including small, random variations in the creature’s environment results in more consistent
EA behaviour, and appears to reduce the expected number of generations required to synthesise a
locomotion controller.

Figure 7-16. Gait comparison: Evolved over flat terrain / evolved over varying terrain.
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Chapter 8  Niching
In a Simple Evolutionary Algorithm (SEA) selection pressure exists over the entire population of solution
candidates; each candidate is in direct competition with every other candidate for the right to produce
offspring. This selection pressure is necessary to improve the optimality of the population, but has some
undesirable effects; the population tends to lose genetic diversity and the search algorithm may easily
become trapped in a local maximum.

Genetic diversity is lost as a consequence of the search algorithm finding a maximum in the search space
and a fit genotype repeatedly producing the bulk of the offspring. Some of the fit genotype’s offspring will
be very similar to their parent and will have similar fitness. Unless the local maximum lies near a region of
higher fitness in the search space, offspring that differ significantly from the candidate at the maximum are
highly unlikely to be fitter. On the other hand, offspring that are similar to the genotype at the maximum
are very likely to be of similar fitness, and so quickly dominate the upper end of the population. If this
occurs, the search algorithm has virtually ceased to explore, and is focusing all its energies upon exploiting
the local maximum.

Figure 8-1 illustrates a SEA that had become trapped in a local maximum of a simple one-dimensional
search space. The peak of the local maximum (left) is saturated with nearly identical solution candidates,
and very few candidates lie outside the slopes of the local maximum. For the algorithm to find the higher
maximum (right) it must instantaneously generate a candidate that falls within the region of the higher
maximum and is at least as fit as candidates upon the peak of the leftmost local maximum. If the distance
between the two maxima is high, this is statistically very unlikely to occur.

Gradient ascent is crippled once a local maximum has been found. It is possible or even likely that a
candidate may be generated that lies on the lower slopes of the rightmost maximum. Because selection
pressure ignores candidates’ location in the search space, this new explorer candidate will be in direct
competition with the many exploiter candidates on the peak of leftmost maximum. Even if the new
candidate’s descendants would be afforded a smooth and fast ascent to the higher peak it will probably not
be given the opportunity to reproduce. The new candidate’s potential will be lost, and the SEA will remain
in the local maximum.

8.1 Introduction to Niching Methods
The success or failure of a SEA is dependent on the topology of the search space. If the search space is
globally convex, a SEA should obviously find the global maximum. Real-world domains often contain
many local maxima, and the global maximum may be very localised in the search space. Domains
containing many local or global maxima are termed multimodal. It has been demonstrated that SEAs cannot
reliably solve such domains, and in practice perform poorly over them [Mahf_95].

Niching methods enable evolutionary algorithms to efficiently and reliably solve multimodal optimisation
problems by ensuring genetic diversity in the population and thereby encouraging exploration. The

Figure 8-1. Stuck in a local maxima.

Location of a solution candidate
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population is divided into multiple niches in the search space. A niche is a group of candidates that all share
a common characteristic, e.g. they all exist within a local region of the search space. Selection pressure
exists within each niche, but may not directly exist between candidates in different niches.

Borrowing a parallel from nature, niches can be thought of as populations of a single species existing in
different regions of space. Populations may or may not be in direct competition with each other for
resources. If two species do not compete for the same resource then for the purposes of survival and
reproduction the prowess of one species does not affect the other. If resource competition exists between
two species, selection pressure may exist between the two. In addition, candidates in different niches are
usually allowed to interbreed.

All niching methods use a differencing function: a metric used to determine the degree of dissimilarity
between two solution candidates. Differencing functions are based solely on the genetic composition of the
candidates and do not include lineage information. By applying the differencing function to a population of
candidates we can divide the population into a number of niches, where every candidate in niche ni is
within a certain distance ri of the fittest candidate in ni. We term ri the niche radius.

Figure 8-2 illustrates the effect of applying a niching method to the domain presented in Figure 8-1. Note
that in the case of overlapping niche-spaces a candidate in the overlap region belongs to the niche
containing the fittest candidate.

In this example the local maximum (left) has been found by the EA, and is being occupied by many
candidates. A niche, n0 is defined around this peak and contains all candidates within radius r0 of n0’s fittest
candidate according to our differencing function. Controller candidates have been dispersed throughout the
search space by reproduction methods such as mutation. Many of these candidates have difference values
greater than r0 with respect to n0, so are said to be outside n0.  Thus multiple niches exist within the search
space.

Some candidates have landed upon the slopes of the rightmost maximum. Assuming that selection pressure
between niches is low, the candidates in this rightmost niche will probably generate enough offspring to
afford good gradient ascent properties. It is highly likely that the rightmost niche will migrate over
subsequent generations to the peak of the maximum.

Choosing an appropriate selection pressure between niches is a trade-off between speed of convergence and
ability to escape local maxima (exploitation versus exploration). High inter-niche selection pressure results
in fit niches creating the most offspring and less fit niches creating fewer. This bias towards choosing
parents from fit niches may speed the convergence of fit niches to their maxima, but might cause the less fit
niches to lose their convergence properties and subsequently be destroyed. Recent work in niching methods
[Petro_97] has shown that in highly multimodal domains, direct selection pressure between niches is
inferior to unbiased selection in which all niches have the same expected number of offspring regardless of
niche fitness. By giving each niche the same expected number of offspring we strike a good balance
between exploration and exploitation.

Figure 8-2. Niches in a one-dimensional search space.
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8.1.1 Differencing Functions and the Niche Radius
The combination of a differencing function and a niche radius define the region of the search space
occupied by a particular niche. Ideally, this region should encompass a single maximum and any ascending
slopes that would guide a gradient ascent search method to that maximum. In other words, a niche’s region
should define the area that we need to look outside if we are to locate other maxima.

The choice of differencing function depends on the candidate representation. Genetic algorithms usually
represent candidates as bit-strings, so may choose to use the Hamming5 distance. Candidates represented as
n-tuples of real-valued variables might use the Euclidean distance in n-space. The size of the niche radius
will depend on the topology of the problem domain, and may be difficult to choose.

Figure 8-3 illustrates problems associated with a too-large or too-small niching radius. A too-large radius
encompasses more than one local peak. In this case, the niche is centred upon the lesser of the two peaks
and the higher peak can only be discovered by pure random search rather than gradient ascent. A too-small
radius results in inefficiency: slopes outside the niche’s region may direct the search straight back to the
niche.

Ideally, each niche’s radius should be chosen separately from all others and should reflect the topology of
the niche’s local region of the search space. We should make surveys of the search space surrounding the
niche’s fittest member and choose our radius accordingly. However, this survey process is computationally
infeasible for domains such as ours where the evaluation of a candidate may take 20 to 30 seconds CPU-
time (on a Pentium-II-400MHz machine).

8.1.2 Number of Niches
The number of niches required to solve a particular domain reflects the domain’s degree of multimodality.
Each local or global maximum can attract a single niche, so if all maxima must be concurrently located we
must maintain at least as many niches. Assuming a fixed population size, we are limited in the number of
niches we support in any particular generation. Each niche must create enough offspring to afford good
convergence properties. If a niche creates only a small number of offspring it becomes very possible that all
offspring will be less fit than their parents. Over successive generations, instead of converging to a
maximum the niche may actually become less fit. The number of offspring required to maintain a niche and
provide good convergence properties will be specific to the problem domain and the reproduction methods
used.

If after niche determination our population contains more niches than we are able to support, we keep only
the best niches. In this way there is an indirect selection pressure between niches - only the fitter niches
survive. If we know nothing about the topology of the search space we will usually try to support as many
niches as is computationally feasible.

                                                          
5 The Hamming distance between two bit-strings is the number of single-bit bit-flips required to transform
one bit-string to the other.

Figure 8-3. Problems with inappropriate niche radius size.
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Surprisingly, locating global maxima in the presence of large numbers of local maxima may only require a
relatively small number of niches. Petrowski [Petro_97] was successful in reliably and concurrently
locating all 32 global maxima of a massively multimodal function containing several million local maxima.
Global maxima were of value 5.0 and local maxima were in the range [3.203, 4.641]. A population size of
800 was used, implying that the number of niches present at any one time must be considerably less than
800.

Because we allow candidates from different niches to interbreed though multi-parent reproduction
operations, each niche has access to a diverse range of genetic material. This genetic diversity helps bias
the search towards exploration.

In summary, niching methods for evolutionary algorithms modify selection pressure in such a way that
exploration is encouraged, but exploitation of existing maxima is maintained. Niching methods can
dramatically improve the performance of a SEA over multimodal problem domains.

8.2 The ‘Clearing’ Niching Method
The Clearing Based Selection niching method [Petro_97] applies extreme selection pressure within each
niche. Only the single fittest candidate within each niche, the niche’s ‘winner’, is allowed to reproduce - all
other candidates are discarded. Selection pressure does not exist between different niches, so all niches
have the same expected number of offspring.

8.2.1 Algorithm Overview
Clearing Based Selection draws its name from the ‘clearing’ operation it performs each generation. After
we have evaluated the fitness of all candidates in the generation we use a differencing function to divide the
population into a number of niches. Within each niche there exists a single ‘winner’ whose fitness is greater
than or equal to that of all other candidates in its niche. We remove all non-winner candidates from the
population, and create the next generation from the set of winners. Figure 8-4 outlines the clearing
algorithm.

applyClearing(candidates)
sort(candidates) {Sorts into non-ascending order by fitness}

for i=0 to PopulationSize-1 do begin
if  (candidates[i].fitness > 0) then begin

for j=i+1 to PopulationSize-1 do begin
if (candidates[j].fitness > 0) and
(difference(candidates[i], candidates[j]) < ClearingRadius) then

candidates[j].fitness = 0
end for

end if
end for

sort(candidates)
end applyClearing

where:
PopulationSize denotes the number of candidates in a generation.
ClearingRadius is a real-valued constant defining the niche radius in controller-space.
candidates is an array[0..PopulationSize-1] containing the current generation of candidates.

sort(candidates) sorts the array of candidates into non-increasing order of fitness.
difference(candidate1, candidate2) is our differencing function.

Figure 8-4. The Clearing algorithm.
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After applying clearing, the only candidates with non-zero fitness are our ‘winners’. We then set our
survival proportion to include only the winners, or a subset of the winners. If there are more winners (and
therefore niches) than some specified maximum, the survival proportion includes only the fittest N winners.
Figure 8-5 outlines the post-clearing calculation of the survival proportion.

Selection for reproduction is unbiased. Each winner in the survival proportion has an equal probability of
being selected as any other.

8.2.2 A Differencing Function for Our Candidate Representation.
Our directed-graph controller candidate representation does not provide an obvious differencing measure.
Controller graphs may contain both topological differences and parameter/weight differences. We choose
to ignore changes in parameters/weights and define our differencing function in terms of controller graph
topology and node distribution throughout the creature’s genotype morphology graph.

Our differencing function is quite simplistic and makes some assumptions about the number and
distribution of controller nodes within the creature’s genotype morphology graph:
• It is rare for two or more controller nodes of exactly the same type (with the exception of constant

value nodes) to exist within the same part of the creature’s body.
• Effectors that are connected directly to a constant value node should not be considered to be part of the

controller, and should be ignored for the purpose of determining difference.
• Constant value nodes should be treated as less important than sensors, neurons or effectors.

The differencing function calculates its value for two controller candidates C1 and C2 by stepping through
each part of the creature’s body. For each body part Pi, C1’s controller nodes in Pi are compared to C2’s
nodes in Pi. Figures 8-6 and 8-7 outline the outer and inner loops of the differencing function respectively.

.

.
applyClearing(candidates)
i = 0
while (i < min(PopulationSize, MaxNiches)) and (candidates[i].fitness > 0) do

i = i + 1
survivalProportion = i/PopulationSize
.
.

where:
MaxNiches defines the maximum number of niches to maintain.

Figure 8-5. Calculating the survival proportion.

difference(candidate1, candidate2)

d = 0
for each body part i in candidate1 do begin

p1 = the ith body part of candidate1
p2 = the ith body part of candidate2
d = d + differenceBetweenParts(p1, p2)

end for

difference = d
end difference

Figure 8-6. The outer loop of the differencing function.
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Figure 8-8 demonstrates the calculation of the difference value for a pair of simple controller graphs. The
first controller is based around a wave generator unit that lies in the ‘unassociated’ part of the creature’s
genotype morphology graph. The second controller is based around a contact sensor in the first non-root
part of the creature’s genotype morphology graph.

differenceBetweenParts(part1, part2)

d = 0 {Differences found}
t = 0 {Total number of differences possible}
if part1 contains more controller nodes than part2 then

largerPart = part1; smallerPart = part2
else

largerPart = part2; smallerPart = part1

for each unit u1 in largerPart do begin
if (u1 is not a constant value node) and (u1 is not an effector node connected to a constant
value node) then begin

u2 = findSimilarUnit(u1, smallerPart)
|C| = u1’s input arity (the number of input connections of u1)
t = t + 1 + |C|

if (u2 = null) then
d = d + 1 + |C|

else
for each input connection Ci of u1 do begin

Di  = the ith input connection of u2
source1 = The controller node from which Ci draws its data.
source2 = The controller node from which Di draws its data.

if not sameType(source1, source2) then
d = d + 1

end for
end if
end for

differenceBetweenParts = d/t
end differenceBetweenParts

where:
findSimilarUnit(unit, part) returns a controller unit from the given part that is of the same type
as unit, or returns null if no such controller unit exists in part. The sameType(unit1, unit2)
method defined below is used in this method to determine similarity.

sameType(unit1, unit2) returns true if unit1 and unit2 are of matching classes and sub-types.
eg: if unit1 is a ‘product’ neuron and unit2 is a ‘sum’ neuron, sameType(unit1, unit2) will
return false.

Figure 8-7. The inner loop of the differencing function.
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The performance of a niching method is directly tied to the suitability of its differencing function. We have
introduced a simple differencing function highly specific to our controller representation that relies on
certain assumptions such as the sparseness of evolved controller graphs6. Our differencing function will fail
if these assumptions are false. A more elaborate differencing function that calculates the influence of each
controller node on effector output might provide a superior distance metric.

An alternative type of differencing function might be defined at the phenotype level; comparing gaits rather
than controller graphs. Quantifying differences in gait might involve spectral analysis of the controllers’
effector outputs coupled with a Euclidean distance calculation.

                                                          
6 See Figures 8-13 and 8-14 for examples of typical evolved controllers. Note the relatively few controller
nodes in each part of the genotype morphology graph.

Figure 8-8. Demonstration of the differencing function.
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8.3 An Experimental Comparison between Traditional
Selection and Clearing-based Niching.

  In this experiment we compare the performance of traditional selection to our clearing-based niching
method using our worm model. One trial parameter differs from those specified in chapter 6 – we use a
population size of 1000. For the niching trials we use a clearing radius of 15.0 and set our maximum
number of subpopulations (niches) to be 10. Our increased population size results in 100 expected offspring
for each niche’s winner, and thus should provide good convergence properties. Trials were stopped after
100 generations unless otherwise stated. We ran 10 trials for each selection method.

Figure 8-9 graphs the results of trials run using traditional selection. This set of trials has mean peak fitness
after 100 generations of 8.87 and a standard deviation of 2.48. In all cases all the evolved locomotion
controllers were open-loop, based upon wave-generator nodes. In seven trials the EA has discovered a
controller with peak fitness in the range [9, 11.5]. Of these seven trials, the EA has ascended to a

plateau/maximum at a variety of rates; the first three
trials appear to have reached a plateau after just 25
generations, whereas the other four trials ascended
at sometime between 35 and 80 generations.

In three trials the EA has encountered a local
maximum or near-plateau in the search space, and
has only obtained a peak value in the range [5, 7]
after 100 generations.

Figure 8-10 illustrates a typical non-niched
population after 100 generations. Again, the
population has become dominated by a single
genotype.

Figure 8-9. Evolution using traditional selection.
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Figure 8-10. Diversity after 100 generations.
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Figure 8-11 graphs the results of trials run using clearing-based selection. This set of trials has mean peak
fitness after 100 generations of 8.63 and a standard deviation of 0.92. Peak fitness values for the entire set
of trials fall in the approximate range [8, 11]. The EA is clearly able to escape the local maxima observed
in Figure 8-9, and thereby provide a more consistent peak fitness value after 100 generations. Note also that
the fitness curves are very similar over the hundred generations; The population experiences a period of
rapid improvement during the first 20 generations, usually followed by a more sedate improvement or
fitness plateau over the remaining generations.

Although the behaviour of the EA under clearing-based selection is more predictable and reproducible than
under traditional selection, some variation in performance is still apparent. In terms of search, this variation
equates to the discovery of different maxima over different trials; even with niching operating it appears
unlikely that our EA will discover exactly the same maximum on two separate trials. This behaviour may
be due to an insufficient number of niches, an inappropriate differencing function or a highly complex

search space.

Figure 8-12 illustrates the genetic diversity
present in a niched population after 100
generations. Note the obvious ‘winners’ made
visible by explosions of outgoing child-links.

In 9 of our 10 trials the fittest evolved controller
was open-loop, based upon one or more wave
generator nodes. Figure 8-13 presents an
interesting wave-generator based controller; the
main wave node’s frequency slowly oscillates
under the influence of a secondary wave node,
allowing the worm to overcome a wide range of
terrain.

In the remaining trial the fittest controller was
closed-loop, based around a vertical velocity
sensor. This closed-loop controller is displayed
in Figure 8-14.

Figure 8-11. Evolution using clearing-based selection.
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Figure 8-13. Evolved open-loop worm locomotion controller.
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Figure 8-14. Evolved closed-loop worm locomotion controller.
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8.3.1 Variation of Controller Type and Locomotion Gait
When using traditional selection the EA generates only one type of locomotion controller per trial. Unless
we disable wave generator nodes, this controller has always been open-loop.

The application of our niching method results in each evolution producing a range of locomotion
controllers; one for each niche. This behaviour is extremely desirable from an animation perspective – We
can obtain a palette of distinct and different locomotion controllers from a single controller-synthesis
process. This palette of controllers usually includes both open-loop and closed-loop controllers covering a
range of gaits and locomotion speeds. An animator might browse such a palette to select an appropriate
controller for a particular animation task.

Figure 8-15 contains a visualisation view of a niched population after 100 generations. The x-axis (blue)
has been set to indicate the candidate’s niche. Our candidates are arranged in 10 niche-planes in y-z space.
Note the very high degree of connectivity between niche planes. Inter-niche parent-child relationships have
a variety of causes:
• Two-parent reproduction operations may choose parents from different niches. Recall that our

selection method is unbiased with respect to niche fitness; we would expect 9/10 two-parent
reproduction operations to choose parents from different niches.

• A significant change in genotype between the child and the parent. If the child candidate is vastly
different from the parent it may fall outside the parent’s niche.

• Niche migration. Niches are sorted into non-increasing order of fitness. A niche, or genotype, may
migrate up the order by using gradient ascent to improve itself beyond the fitness of other niches.
Because we do not retrospectively reassign the parent’s niche, a child appearing to be in a different
niche to its parent may in fact be of very similar genotype to its parent.

Figure 8-16 displays the same view as Figure 8-15 with the exclusion of parent-child lines. This view
makes clear the relative fitness of the 10 niches.

Such a range of controllers may be very difficult to obtain with a SEA. As evidenced in the trials run with
traditional selection, the synthesis of closed-loop sensor-based controllers is highly unlikely in the presence
of wave nodes. We believe that this is symptomatic of the SEA’s inability to locate many such maxima in
controller-space, implying that a even very large number of SEA trials may not yield the same diversity of
controllers that a single niched trial may generate.

Figure 8-15. Interbreeding and migration
between niches.

Figure 8-16. Comparison of niche fitness.
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8.3.2 Computational Cost.
In our trials using the worm model a ‘good’ controller would typically lie in the fitness range [8, 11]. Using
traditional selection such a controller was often discovered and optimised in as little as 20-30 generations.
However, in three trials the SEA failed to locate a ‘good’ controller after 100 generations. With clearing-
based selection a ‘good’ controller typically required 40 to 50 generations to be discovered and optimised,
and the EA always produced such a controller after 100 generations.

It is intuitive that our EA is capable of converging more rapidly under traditional selection than under
niching. If the EA is fortunate enough to start its search on the slopes of a ‘good’ maximum, the heavy bias
towards exploitation will cause rapid ascent to the maximum. The best-case performance of our niching
method appears to be equal to that of traditional selection.

The worst-case performance of traditional selection is very bad indeed. In three trials the EA fails to
synthesise a ‘good’ controller after 100 generations. By comparison, the worst-case performance of the
niching method results in a ‘good’ controller after approximately 75 generations.

An average-case analysis must allow for restarting the EA if it becomes trapped in a local maximum under
traditional selection. Figure 8-9 implies that we should not restart the EA before at least 65 generations
have been evaluated. Reading from Figure 8-9, we obtain:

 Pgood ≈  0.6, the probability that any particular trial will produce a ‘good’ locomotion controller.
Ggood ≈ 31, the average number of generations required to synthesise a ‘good’ controller, given that

the trial produces such a controller within 65 generations.
Gbad = 65, the number of generations after which we restart the trial.

The expected number of generations required to synthesise a ‘good’ controller under traditional selection is
given by Equation 8.1:

Gexpected = ( ) ( )
0

1 ( )
i

good good good good bad

i

P P G  + 1-P G
∞

=

− × ×∑ (8.1)

≈  47 + 18.8 + 7.52 + 3.00 + 1.20 + 0.48 + …
≈  78

By comparison, trials run under clearing-based selection require an average of ≈  45 generations to
synthesise a ‘good’ locomotion controller.

8.4 Conclusions
Clearing-based selection clearly outperforms traditional selection in our controller synthesis EA. Although
niching has not resulted in the discovery of significantly fitter locomotion controllers, it has decreased the
expected number of generations required to synthesis a fit controller by improving the EA’s ability to
escape local maxima. Importantly, the subpopulations maintained by a niching method provide a range of
controller genotypes and locomotion styles. This incidental property of niching is extremely useful to an
animator; a single evolution may produce a palette of locomotion controllers.

We believe that our EA is not yet capable of reliably finding global maxima in the controller-space of the
worm model. Trials run using our niching method exhibit sensitivity to initial conditions and appear to
locate different approximately equal maxima each time the algorithm is run. We believe that a superior
differencing function and a larger number of niches would result in more consistent behaviour. We have
reason to believe that the search space is highly complex, containing hundreds or thousands of local
maxima. We hypothesise that higher maxima in this search space remain undiscovered.
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8.5 Summary
Simple evolutionary algorithms (SEAs) perform poorly over multimodal search spaces. By modifying with
the selection operator in such a way that candidates in different areas of the search space do not directly
compete for reproductive rights, we greatly enhance the EA’s ability to escape local maxima.

A niching method for an evolutionary algorithm maintains multiple subpopulations of candidates in the
search space. By lowering the selection pressure between candidates in different subpopulations, or niches,
we promote the existence of genetic diversity in the population and thereby increase our coverage of the
search space.

The extension of our EA by the inclusion of a niching method significantly improves its performance over
the locomotion-controller domain of our worm model. The most significant benefit of niching in our
problem domain is that it produces a palette of different locomotion controllers in each evolution.
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Chapter 9  Discussion and Conclusions

9.1 Evolving Locomotion Controllers: Conclusions
• Our evolutionary approach to controller-based animation has succeeded beyond our expectations. Our

niching EA is capable of automatically and reliably generating locomotion controllers for a variety of
mass-spring creatures. The main focus of this thesis has been on evolving locomotion controllers for a
worm model, for which we were able to synthesise both open-loop and closed-loop controllers. The
quality of our animations appears to be limited by the physical accuracy of the creature model, rather
than the controller.

• Applying small random variations to the environment in which a locomotion controller is being
evaluated results in improved EA performance by increasing its ability to escape local maxima. We
have applied these variations in the form of randomly generated terrain, which can be scaled smoothly
from totally flat to extremely rough. Rough terrain is a natural and attractive way of introducing
variation to the creature’s environment.

• Our master/slave distributed fitness evaluation architecture is robust, easy to implement and provides a
linear performance increase with the number of slave processes up to the population size. Given the
high computational cost of controller fitness evaluation, such an approach will probably be required for
any further non-trivial controller synthesis.

• Implementation of a niching method has decreased the expected running time of our EA and provided
an efficient way of obtaining a range of qualitatively different gaits for each creature model. Although
our differencing function performs adequately, we believe that better functions exist and would
provide superior EA performance. Our niching method has not exhibited any disadvantages with
respect to traditional selection in our problem domains, and we believe that any future evolutionary
approach to controller synthesis should include a niching method.

9.2 Knowledge Obtained
• A Simple Evolutionary Algorithm (SEA) can succeed in generating locomotion controllers for

physically-based virtual creatures. However, the controller search space is often complex and a SEA
may perform unpredictably over repeated trials.

• Most virtual creatures have multimodal locomotion controller search spaces; i.e. the creature’s body is
capable of many different forms of locomotion. The extension of an EA by a niching method can
considerably improve performance over such multimodal domains. Niching methods are particularly
suited to locomotion controller synthesis because they allow efficient location of multiple maxima,
each of which results in a different type of controller or locomotion style.

• Visualisation techniques can be applied to the evolution process and can provide an intuitive, flexible
and user-friendly method of data investigation. Benefits from visualisation include the encouragement
of data exploration, leading to increased understanding of the EA’s operation and increased probability
of bug discovery.
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9.3 Future Directions
• An obvious and straightforward enhancement would be to extend our system to evolve controllers for

3D mass-spring creatures. A 3D environment would provide a much more exciting and challenging
control problem.

• Grouping in our genotype morphology graph allows us to create creatures of easily adjustable size. For
example, we could add two more links to our octagonal creature’s grouped genotype to create a
decagonal creature. Could controllers evolved for an octagonal creature be successfully applied to
creatures of fewer or greater sides? As another example, we could define a worm creature using a
recursive genotype. By adjusting the recursive limit we could generate worms of arbitrary length.
Could a controller evolved for a small worm be successful in controlling a larger worm? If so,
significant savings in simulation computation could be made.

• Given that our controller representation has its origins in the articulated rigid-body virtual creatures of
Sims [Sims_94], we believe that our EA would be very successful in generating controllers for rigid-
body models. Skeletal animation by rigid-body modelling could be used in virtual creatures of high
aesthetic quality.

• A high-level animation controller could take advantage of our evolved low-level controllers to
autonomously perform complex animation tasks. Virtual creatures could then be used as virtual actors
for animation tasks, or be used to populate interactive virtual worlds.

• An improved differencing function for our niching method will provide a more accurate metric for the
degree of difference between two solution candidates. Would a better differencing function improve
the performance of the niching method and should lessen its observed sensitivity to initial conditions?

• Extensions to our visualisation tool could increase its utility in investigating the evolution process. We
suggest:
- A facility to trace a candidate’s ancestry.
- More flexible control of data-selection.
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