
CDMTCS

Research

Report

Series

Randomness and One-way

Functions

José Manuel Agüero Trejo and

Cristian S. Calude

School of Computer Science, University of
Auckland, New Zealand

CDMTCS-581
November 2024

Centre for Discrete Mathematics and
Theoretical Computer Science

Randomness and One-way Functions

José Manuel AGÜERO TREJO1 and Cristian S. CALUDE2, *

1School of Computer Science, University of Auckland, New Zealand
2School of Computer Science, University of Auckland, New Zealand

Email:jagu688@aucklanduni.ac.nz, cristian@cs.auckland.ac.nz→

→ Corresponding author

Abstract. This paper proposes a method using high-quality randomness for inverting a
class of one-way functions in a pre-given time. Experimental results suggest that the method
is better than the lexicographic search.

Key-words: algorithmic random string; program-size complexity, Borel normality, ran-
domised search, experiment

1. Introduction

Primality testing is “theoretically easy” because, in 2002, M. Agrawal, N. Kayal, and N. Sax-
ena discovered a deterministic polynomial time solution for it [1]; the best primality test works
in O((log n)6). To date, deterministic primality tests are impractical, so in many applications,
probabilistic tests of primality, as Solovay-Strassen algorithm [2, 3], are used instead. These al-
gorithms work with the tested number and other numbers chosen randomly from a sample space.
Randomised tests never report a prime number as a composite. However, a composite number
can be reported as prime with a probability of error, which can be made arbitrarily small by
repeating the test with several independently chosen random values.

Inspired by this analogy, we explore the use of high-quality random numbers in tasks in-
volving functions believed to be one-way functions. In particular, we look at the task of finding
inputs (for this type of function) that produce output strings sharing at least one pattern of in-
terest. Moreover, we have a time restriction for completing this task. It is commonly assumed
that one can do no better than trying all possible input strings (in lexicographic order) until the
desired result is obtained. In this paper, we use high-quality randomness to reduce the search
space, which provides a more efficient algorithm.

The article is structured as follows. In the next section we present a few results from Algorith-
mic Information Theory, [4]; Section 3. is dedicated to Borel normality, a computable symptom
of randomness; the main Section 4. is dedicated to the randomised search; Section 5. presents

2 J. M. Agüero Trejo, C. S. Calude

one-way functions; the last Section 6. described an experiment which illustrates the superiority
of the randomise method compared with the lexicographic one.

2. Program-size complexity

Consider the alphabet Ab = {0, 1, 2, . . . , b→1} for b ↑ 2. We work with strings x ↓ A
→
b and

Turing Machines (TMs) M to perform computations [5]. The length of the string x is denoted by
|x|b or simply |x|. A description of a pair of two strings, x = x1 . . . xn and y = y1 . . . ym is the
string ↔x, y↗ = x10 . . . xn↑10xn1y. The length of ↔x, y↗ is |↔x, y↗| = 2|x|+ |y|. Two computable
functions can retrieve the components x, y of ↔x, y↗.

Strings are described by TM computations. A description of the string x is given by a pair
(M,w) where M is a string representing a TM and w is an input string to M such that M(w) =
x. The length of the description of the string x given by M and w is |↔M,w↗| = 2|↔M↗|+ |w|.

A minimal description of x, written d(x), is the shortest description ↔M,w↗ for x. The

Kolmogorov-Chaitin complexity of x, written K(x), is K(x) = |d(x)|.

The complexity K is incomputable and grows linearly: there exists a positive integer c such
that every string x ↓ A

→
b , K(x) ↘ |x|+ c, that is, K(x) is not much larger than the x. Of course,

the complexity of some strings can be much shorter than the lengths of the strings. For example,

A = 01,

B = 0101101010100101010110101010010101011010101001010101101010100101.

appears to be shorter than their lengths.

Is this case for all strings? Can the strings generated with a 3D QRNG [6] using the method
developed in [7] be compressed:

A = 0110110010101001001100100101111100011111010110011011000010100001,

B = 0011101101010001110010111110100111100100001000000101001001011011.

Each description is a string in A
→
b , so the number of descriptions of length less than n is

at most the sum of the numbers of strings length 0, 1, . . . ,n → 1: 1 + b + b
2 + · · · + b

n↑1 =
(bn → 1)/(b → 1), which is less than b

n, the number of strings of length n; so at least one string
of length n has to have the complexity K(x) ↑ n = |x|.

We say that a string x is c-compressible (1 ↘ c < |x|) if K(x) ↘ |x| → c. If x is not
c-compressible, then x is c-incompressible. Incompressible strings of every length c > 0 exist:

#{x ↓ A
n
b | K(x) > |x|→ c} = b

n →#{x ↓ A
n
b | K(x) > |x|→ c} ↑ b

n → b
n↑c↑1

b→ 1
> 0.

Which set is larger: {x ↓ A
n
b | K(x) > |x|→ c} or {x ↓ A

n
b | K(x) ↘ |x|→ c}?

3

#{x ↓ A
n
b | K(x) > |x|→ c} = b

n →#{x ↓ A
n
b | K(x) ↘ n→ c}

= b
n → (1 + 2 + · · ·+ b

n↑c)

> #{x ↓ A
n
b | K(x) ↘ |x|→ c}.

The probability that a string x ↓ A
n
b is c-compressible is

#{x ↓ A
n
b | K(x) ↘ |x|→ c}

bn
<

1

(b→ 1)b1↑c
, (1)

while the probability that a string x ↓ A
n
b is c-incompressible is

#{x ↓ A
n
b | K(x) ↘ |x|→ c}

bn
< 1→ 1

(b→ 1)b1↑c
.

Hence, these probabilities are not equal to 2↑n as the classical probability asserts.

Take now c = n/2, a mild compression degree and b = 2, i.e. strings are binary. Then we
have:

#{|x| = n | K(x) ↘ n→ n/2} · 2↑n = #{|x| = n | K(x) ↘ n/2} · 2↑n

↘ 21↑n/2 →≃n↓↔ 0,

while the probability that a string x of length n is not n/2-compressible is

#{|x| = n | K(x) ↑ n→ n/2} · 2↑n = #{|x| = nemphasize ↑ n/2} · 2↑n

↑ 1→ 21↑n/2 →≃n↓↔ 1.

3. Borel normality

Fix an integer m > 1 and consider the alphabet Am
b = {a1, . . . , abm} of all strings x ↓ A

→
b

with |x|b = m, ordered lexicographically. A string x ↓ A
→
b will be denoted by x

m when we
emphasise that it belongs to (Am

b)→. By A
ω
b we denote the set of all infinite sequences x =

x1x2 · · · with xi ↓ A
→
b .

Take for example, for A2 = {0, 1},m = 2, A2
2 = {00, 01, 10, 11}; the string x = 10110100 ↓

A
→
2 will be denoted by x

2 = (10)(11)(01)(00) when considered in A
2
2. Clearly, |x|2 = 8 and

|x2|4 = 4. In the same way a sequence x ↓ A
ω
b will be written as xm when considered in

(Am
b)ω .

Let Ni(x) be the number of occurrences of i ↓ Ab in the string x ↓ A
→
b and for every u ↓ A

m
b

let Nm
u (xm) be the number of occurrences of u in the string x

m ↓ (Am
b)→. In the example above

N
1
0 (x) = N

1
1 (x) = 4 and N

2
11(x

2) = N
2
10(x

2) = N
2
01(x

2) = N
2
00 = 1.

For x ↓ A
ω
b and n ↑ 1, x(n) = x1x2 . . . xn ↓ A

→
b . The sequence x is called Borel-m

normal (m ↑ 1) if for every u ↓ (Am
b)→ one has:

4 J. M. Agüero Trejo, C. S. Calude

lim
n↓↔

N
m
u (xm(⇐ n

m⇒))
⇐ n
m⇒ =

1

bm
.

The sequence x ↓ A
ω
b is called Borel normal if it is Borel-m normal, for every natural

number. In particular, a sequence x is Borel-1 normal when for every a ↓ Ab we have:

lim
n↓↔

Na(x(n))

n
=

1

b
.

This definition is the “conventional” notion of normality.

The Borel Law of Large Numbers [8] shows that with probability one every sequence is
Borel normal. This result is asymptotic; in a practical scenario, we do not have infinite bit-
strings; hence to analyse this property for prefixes of an arbitrary bit-string we use the finite
version of Borel normality [9].

For every ω > 0 and integer m > 1 we say that a string x ↓ A
→
2 is Borel normal with

accuracy (m, ω) if

∣∣∣∣∣
N

m
u (xm(⇐ |x|2

m ⇒))
⇐ |x|2

m ⇒
→ 2↑m

∣∣∣∣∣ ↘ ω, (2)

for each u ↓ A
m
2 and 1 ↘ m ↘ log2 log2 |x|2.

Almost all algorithmic random strings of any length are Borel normal with these accura-
cies [4, 9]. Furthermore, if all prefixes of a bit sequence are Borel normal, then the sequence

itself is also Borel normal.

When only finitely many bits of a sequence can be computed, we can test its prefixes for
Borel normality corresponding to the allowable values of m, [10–12]).

Borel normality of prefixes is a computable property which does not guarantee that a string is
incomputable. For example, for any b, the computable Champernowne number 0.012345678910 . . .
is normal in base b.

4. Randomised search

In this section we present the Randomised search.

Let A = {0, 1}n and B = {0, 1}m for fixed m,n ↓ N and n ↑ m ↑ 32. Let f : A ≃ B be
a computable function with a normal distribution of outputs, that is, for an every x ↓ A, f(x) is
Borel-1 normal. The task is to find a string a ↓ A such that f(a) ↓ T within a given number of

calls to f .

Let x = x1x2 . . . xk be a binary string. A pattern p = p
i1
1 . . . p

il
l consists of pj ↓ {0, 1} and

a set of indices I(p) = {i1, . . . , il|0 < ij ↘ k}. The pattern p appears in the string x if for every
index ij ↓ I(p) we have that pijj = xij For example, the pattern p = 110204 appears in each
element of the set {10000,10001,10100,10101}.

5

Let P = {p1, . . . ,pr} be a set of r patterns and let T ⇑ B be such that every string in
T has at least one pattern in P. Let L = {l1, . . . lr} be the set of base two expansions of the
lengths of the patterns in P. For example, for P = {110204, 0203} we have that |I(p1)| = 3 and
|I(p2)| = 2, so L = {11, 10}

We say that the function P : B ≃ B applies the pattern p = p
i1
1 . . . p

il
l on the string x if it

replaces its characters at positions i1, i2, . . . , il by p1, . . . , pl. For example, for x = 10110100
and p = 110304 we have P(x) = 111000100.

Let p = p
i1
1 . . . p

ir
r be the longest contiguous pattern in P. That is, the longest pattern p ↓ P

such that, for ij ↓ I(p) with 1 < j ↘ r, we have that |ij → ij↑1| = 1. We do the following
if there are no contiguous patterns in P. Let r be the length of the longest pattern in P. Now,
for every pattern p ↓ P, we look at the longest contiguous sub-pattern in p and pick one of the
largest.

For example, in the pattern 08018108218301000101, the bold elements correspond to the
longest contiguous sub-pattern.

We then concatenate it to itself until it has length r and discard any leftover bits. We set
pc to be the resulting string with corresponding index set I(pc) = {1, 2, 3 . . . , r}, to obtain a
contiguous pattern. For example, for

P = {11110020130040150, 08018108218301000101},

the longest pattern is p1 with length r = 6 but it is not contiguous. So we take the longest
contiguous sub-pattern instead, which in this example is 080181082183 in p2. Thus we set pc :=
011203140516.

We now present in detail the Randomised search algorithm. First, we set p to be the longest
contiguous pattern pc as defined above. Then, as a measure of time, we set a limit t ↓ N to the
number of calls to f . Finally, in some cases we may have access to a subset T ↗ ⇑ T of strings
generated through the function f . If this is not the case, we set T ↗ = ⇓.

Randomised search (n, f, T, T ↗
, L,p, t):

1. Use the lengths of strings in T to estimate the largest value k for which we conduct a Borel-
k normality test. If T ↗ ⇔= ⇓, test the Borel-k normality of the strings in T

↗(this process is
presented in detail in [12].) Let ε be the average Borel-k normality of those strings.

2. Generate a string a of length n using a genuine random number generator (GRNG1) and
set j := 1.

3. If f(a) ↓ T , stop and return a.
Else, find the first string l ↓ L that appears in a after the index j.
If no such l is found, go to Step 2.

4. Let j↗ be the index of the first character following l.
Set p := p

(i1↑i1)+j
1 . . . , p

(ir↑i1)+j
r , a := P(a) and j := j

↗.

5. Repeat Step 4 until one of the following occurs:
1That is, a random number generator provably better than any pseudo-random number generator, e.g. the 3D quantum

number generator [13].

6 J. M. Agüero Trejo, C. S. Calude

• f(a) ↓ T : stop and return a.

• Testing a for Borel-k normality results in a higher value than ε, if ε is known.

• More than k repetitions have been performed.

• The limit t has been reached: stop.

6. Go to Step 2.

For example, consider the cryptographic hash function SHA-512, [14], a computable func-
tion with Borel-1 normal 512-bit long outputs. We fix the length of the inputs to n = 600 bits.
Suppose we are interested in finding a pattern consisting of 5 or 7 alternating 1’s and 0’s in the
middle of the outputs strings, that is, P = {p1,p2} with

p1 = 11280129113001311132,p2 = 0128112901301131013211330134.

The lengths of these patterns are 5 and 7, respectively, so we have that L = {101, 111}. Finally,
since the outputs are 512 bits long and log2 log2(512) = 3.17, we can test for Borel-k normality
for 1 ↘ k ↘ 3.

We can now start the Randomised search: Step 1: We test for Borel-3 normality; in Step 2
we use a GRNG to generate a string of 600 bits and set our index j to 1; in Step 3 with the string
a = 10001010110111010 . . . with |a| = 600 such that f(a) does not have either of the patterns
in P, that is, f(a) /↓ T , we find the first occurrence of any l ↓ L. Note that l1 with corresponding
pattern p1 occurs at the beginning of the string a = 10001010110111010 . . . ending at position
7. In Step 4 we set j↗ = 8. Then, we set

p := 1102130415

and a := P(a) = 10101010110111010 . . ., and we update j = j
↗.

If none of the conditions in Step 5 are fulfilled, we repeat Step 4, but since j = 8, we start
looking, from the 8th index onwards, for an element of the set of L. We now find l2 starting at
the 12th index (a = 10101010110111010 . . .). Then, j↗ = 15,

p := 0819010111012113014

and a := P(a) = 10101010101010010 . . .

Since k ↘ 3 we may only repeat Step 4 one more time before generating a new string a with
the GRNG.

5. One-way functions

A function f : A→ ≃ B
→ is one-way if it can be computed by a polynomial-time algorithm,

but any polynomial-time randomized algorithm F that attempts to compute a pseudo-inverse for
f succeeds with negligible probability. Several candidates have withstood decades of intense
scrutiny, hence the existence of one-way functions is an open question. The existence of a one-
way function implies the existence of minimize-key encryption schemes secure against adaptive
chosen-ciphertext attacks, message authentication codes, digital signature schemes.

7

The family of cryptographically secure hashing functions SHA is an example of possible one-
way functions. To express the unpredictability of the outcomes, these types of functions often
rely on Shannon entropy. As a smaller entropy is a symptom of less randomness, these functions
aim to minimise the loss of entropy of their inputs. This is often realized by ensuring a normal
distribution of outputs, that is, Borel-1 normality.

According to classical probability theory, if we toss a fair coin m times, we will draw any
string in B with the same probability. However, for c compressible bit-string, by (1) we have

{|x| = n : K(x) ↘ n→ c} · 2↑n ↘ (2n↑c+1 → 1) · 2↑n} < 21↑c

That is, not all strings are equally probable since for large n, very few strings of length n are
compressible. Also, note that the more a string deviates from the Borel-k normality bound, the
more compressible it is.

Let x, y be two bit-strings of length m, let p ↓ P and let x↗ = P(x), y↗ = P(y). That is,
the function P applies the pattern p, of length r, to x and y by replacing only r bits. If x is more
“random” than y, then x is less compressible than y. Moreover, x↗ and y

↗ have the same bits
replaced by the pattern p, but the rest of the original bits were left untouched. For example, if
p = 120405 then

x
↗ = x11x300x6x7 . . . xm and y

↗ = y11y300y6y7 . . . ym.

Thus, with high probability, x↗ is less compressible than y
↗. As a consequence, x↗ is more

likely to appear in the set of all strings of length m. In particular, it is more likely to appear in
the set of all c-compressible strings of length m than y

↗.

Unfortunately, since K(x) is incomputable [5], we cannot search through the set of c-compre-
ssible strings, even this set is very small. However, we can approximate the degree of randomness
of a string by looking at computable symptoms of randomness properties such as Borel normality.
In this context, we refer to strings with a similar degree of randomness as being in the same band

of randomness. For example, all Borel-2 normal strings that are not Borel-3 normal, are in a
different band of randomness than those that are Borel-3 normal.

For our task, we do not know what band of randomness the strings in T belong to. Nonethe-
less, for a randomized function such as those belonging to the SHA family, we know that given a
highly random string as input, the output will be less random since some entropy will unavoidably
be lost because we admit inputs larger than the output length, and cryptographic hash functions
that are not surjective cannot maintain their input entropy. In addition, collision resistance only
states that it is hard to find a collision, not that one does not exist.2 However, this type of function
aims to minimise entropy loss, allowing the use of the results above in the Randomised search,
as illustrated

Consider the example at the end of Section 4.. Suppose that after Step 1, we see that with
high probability a string in T is close to be Borel-2 normal. If f is entropy preserving, we only
need to try input strings in the same band of randomness, i.e. strings close to Borel-2 normality.
However, as discussed above, it is very likely that f will lose some entropy. So, we start with a

2https://doi.org/10.6028/NIST.SP.800-175Br1.

8 J. M. Agüero Trejo, C. S. Calude

Borel-2 normal string and increasingly deviate from its normality bound to find the desired band

of randomness. For instance, if a = 10001010110111010 . . . is Borel-2 normal, then the first
iteration increases the number of occurrences of “10” in the above prefix from 3 to 4, and by
the second iteration, we get the string a = 10101010101010010 . . ., so “10” appears 7 times.
Recalling that a string is Borel normal if all of its prefixes are Borel normal, we can see that
this operation makes the input a deviate Borel-2 normality by a small margin; thus f(a) is more
likely to be in the same band of randomness as the strings in T . In contrast, we would need to try
many more strings generated in lexicographic order to achieve the same result. If f is a function
in the SHA family, then the first strings in lexicographic ordering have a lower entropy than the
outputs since the function has a normal distribution of outputs. For example, a = 000 . . . 010 is
far from being Borel-2 normal or even Borel-1 normal, but f(a) would likely be at least Borel-1
normal.

If we enumerate strings in lexicographic order, strings with high entropy will appear sparsely.
However, GRNGs generate provably unpredictable strings, so by using them as inputs, we obtain
highly random samples with high entropy. Note that PRNGs, which are computable, cannot
guarantee the unpredictability of their generated strings, increasing the likelihood of having an
output that is more random than the input. Consequently, if f : A ≃ B minimises the loss of
entropy and x, y are two strings of length n such that x is more random than y, then we expect
f(x) to be more likely to appear than f(y) in the set of all strings of length m. Note that given
highly random strings as inputs (such as the ones generated by a GRNG), we know that the
outputs are in a lower band of randomness, due to the unavoidable loss of randomness applying
f entails (potentially undetectable by statistical means).3 Nonetheless, we do not know to what
extent the quality of randomness is lost nor which bands of randomness the strings in T belong
to.

6. An experiment

We use the Randomness search to explore the search space by consistently manipulating the
degrees of randomness of the inputs and outputs through the controlled application of a relevant
pattern. Each iteration reduces the randomness of the input in a controlled manner in order to
search the target strings in a different band of randomness. If we go past the average Borel-k
normality of the samples from T we are unlikely to be successful, so we stop and sample a new
string. In this way we reduce the search space by sampling strings representative of a certain
amount of randomness, controlled through the introduction of patterns and monitored via Borel
normality.

To demonstrate we conducted the experiment described below using the function SHA-512.

Consider the following patterns:

p1 = 11501151115211530154015501560157115811591160116111620163016401650166116711681169,
p2 = 155156057058059060061062063064165066167068169070171072073074075,
p3 = 01200121012211231124012501261127112801290130113111320133013401351136113701380139

11401141,

3This is not always the case: consider a highly compressible string as input, such as the string of all 1’s and look at
the output after going through a hashing function.

9

p4 = 12002112202308518618718808904000401040214031404,
p5 = 02002112208518608618804000401140204031404,
p6 = 132013211322034003501351035213530354.

Let P1 = {p1}, P2 = {p2,p3}, P3 = {p4}, P4 = {p5,p6}. Let Ti ⇑ {0, 1}512
be such that that every string in Ti has at least one pattern in Pi. For each Pi we want to
find the largest number of bit-strings a with |a| = 512, such that SHA-512(a) ↓ Ti, without
exceeding 5, 000, 000 calls to SHA-512 (acting as the time limit). We call a string a satisfying
these requirements a valid string.

We compare the performance of conducting a Randomised search in finding valid strings
against trying strings in lexicographic order. The metric is the number of unique valid strings
that each method is able to find within the time limit. In this experiment, we apply a minor
modification to the Randomised search: instead of returning the first valid string found, we add

it to the count and continue until the time limit has been reached. Finally, we return the total
amount of valid strings found. In the unlikely event that the same valid string appears again in a
later iteration, we ignore it and continue the search.

Table 1. Experimental results for finding bit-strings a with |a| = 512, such that SHA-512(a) ↓
Ti. The last two columns represent the number of valid strings by each method.

Pattern set Binary representation of Lexicographic order Randomised search
lengths of patterns (L)

T1 L = {10100} 4 10
T2 L = {10101, 10110} 3 6
T3 L = {1110} 314 361
T4 L = {1100, 1001} 10,652 11,236

Table 1 shows that the Randomised search is more efficient than the lexicographic order
search because it can find more valid strings within the same number of calls to SHA-512.

Note that shorter patterns appear more frequently than longer ones: for example, for a string
starting with a 1, it is natural to expect more valid strings if the patterns we look for are short.
Consequently, we see a smaller amount of valid strings found for T1 and T2 compared to T3 and
T4, but in all instances, we find more valid strings via Randomised search. In applications where
each valid string found is noteworthy, this is a non-trivial advantage representing a significant
reduction of the search space.

10 J. M. Agüero Trejo, C. S. Calude

References

[1] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in P,” Annals of Mathematics, vol. 160, pp. 781–793,
2004.

[2] R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,” SIAM Journal on Computing,
vol. 6, no. 1, pp. 84–85, 1977. [Online]. Available: dx.doi.org/10.1137/0206006

[3] ——, “Erratum: A fast Monte-Carlo test for primality,” SIAM Journal on Computing, vol. 7, no. 1, p.
118, 1978. [Online]. Available: dx.doi.org/10.1137/0207009

[4] C. Calude, Information and Randomness—An Algorithmic Perspective. Berlin: Springer, 2002 (2nd
ed.).

[5] C. S. Calude, To Halt or Not to Halt? That Is the Question. World Scientific Publishing Co., Inc.,
Singapore, 2024.

[6] A. Kulikov, M. Jerger, A. Potočnik, A. Wallraff, and A. Fedorov, “Realization of a quantum random
generator certified with the Kochen-Specker theorem,” Phys. Rev. Lett., vol. 119, p. 240501, Dec
2017. [Online]. Available: link.aps.org/doi/10.1103/PhysRevLett.119.240501

[7] J. M. Agüero Trejo and C. S. Calude, “A new quantum random number generator certified by value
indefiniteness,” Theoretical Computer Science, vol. 862, pp. 3–13, Mar. 2021. [Online]. Available:
linkinghub.elsevier.com/retrieve/pii/S0304397520304679

[8] É. Borel, “Les probabilités dénombrables et leurs applications arithmétiques,” Rendiconti del

Circolo Matematico di Palermo (1884 - 1940), vol. 27, pp. 247–271, 1909. [Online]. Available:
dx.doi.org/10.1007/BF03019651

[9] C. Calude, “Borel normality and algorithmic randomness,” in Developments in Language Theory,
G. Rozenberg and A. Salomaa, Eds. Singapore: World Scientific, 1994, pp. 113–129.

[10] C. S. Calude, M. J. Dinneen, M. Dumitrescu, and K. Svozil, “Experimental evidence of quantum
randomness incomputability,” Phys. Rev. A, vol. 82, no. 2, p. 022102, Aug 2010. [Online]. Available:
dx.doi.org/10.1103/PhysRevA.82.022102

[11] A. C. Martı́nez, A. Solı́s, R. D. H. Rojas, A. B. U’Ren, J. G. Hirsch, and I. P. Castillo,
“Testing randomness in quantum mechanics,” CoRR, vol. abs/1810.08718, 2018. [Online]. Available:
arxiv.org/abs/1810.08718

[12] A. A. Abbott, C. S. Calude, M. J. Dinneen, and N. Huang, “Experimentally probing the algorithmic
randomness and incomputability of quantum randomness,” Physica Scripta, vol. 94, p. 045103, 2019.

[13] J. M. Agüero Trejo and C. S. Calude, “Photonic ternary quantum random number generators,” Proc.

R. Soc. A, vol. 479, pp. 1–16, 2023. [Online]. Available: doi.org/10.1098/rspa.2022.0543

[14] E. Barker, “Guideline for using cryptographic standards in the federal government: Cryptographic
mechanisms,” NIST Special Publication 800-175B Revision 1, Tech. Rep., Mach, 2020. [Online].
Available: https://doi.org/10.6028/NIST.SP.800-175Br1

