
CDMTCS

Research

Report

Series

QUBO Formulations for

Arithmetic Progression

Graph Labeling Problems

C. S. Calude, M. J. Dinneen and

Y. Liu

School of Computer Science, University of
Auckland, New Zealand

CDMTCS-579
July 2024

Centre for Discrete Mathematics and
Theoretical Computer Science



QUBO Formulations for Arithmetic Progression

Graph Labeling Problems

Cristian S. Calude, Michael J. Dinneen, and Yitong Liu

School of Computer Science
University of Auckland, New Zealand

July 4, 2024

Abstract

The Arithmetic Progression Graph Labeling is an NP-complete problem with
various applications, including optimizing scheduling problems. This paper presents
Quadratic Unconstrained Boolean Optimization (QUBO) solutions for the version
with fixed vertex labels of this problem, then the original general problem. We use
and compare standard (D-Wave Advantage and Advantage 2 Prototype) and hy-
brid (D-Wave Leap Hybrid Solver Service) methods to solve these problems with
D-Wave quantum machines. Our experiments suggest that the hybrid methods
outperform the standard ones.

1 Introduction

The Arithmetic Progression Graph Labeling Problem (APGLP) consists of labeling the
edges of a graph with positive integers such that the sequence of the sums of incident edges
of each vertex makes a finite arithmetic progression. The APGLP is an NP-complete
problem [13, 10, 11], so the time needed to find a solution increases exponentially as the
problem’s size expands.

The Quadratic Unconstrained Binary Optimization (QUBO) problem is a combinatorial
NP-hard problem that encodes optimization problems from various areas. The solutions
of the QUBO problems are restricted to binary values of zero or one, which simplifies the
decision space while still allowing the representation of a wide array of problems, including
machine learning tasks [8], scheduling problems to optimize resource allocation [14, 4],
and many graph theory problems [23]. The binary aspect makes QUBO particularly
suitable for computational techniques such as quantum annealing and other heuristic
algorithms.

The D-Wave quantum computer uses a quantum annealing approach to generate the solu-
tions for QUBO problems. The first Advantage2 Prototype uses the Z4 Zephyr topology

1



and 500+ qubits [19]. Recently, D-Wave announced its new 1200+ qubits Advantage2
Prototype with the Z6 Zephyr topology that uses a new lower-noise fabrication stack [7].
We used the Advantage system and the new 1200+ qubits Advantage2 Prototype to
solve two problems: the Fixed Vertex Labeled APGLP and the general APGLP. Our
experiments were conducted on small graphs with various D-Wave solver parameters.
Furthermore, we compared the performance of the D-Wave hybrid solver and the Python
(Mixed Integer Programming) MIP solver for the APGLP. Advantage2 Prototype per-
formed better on the APGLP, while Advantage excelled in Fixed Vertex Labeled APGLP.
Advantage2 Prototype also required less QPU access time for processing and embedding
both problems. Although the Python MIP solver outperformed the D-Wave hybrid solver
in all cases, it is essential to note that the D-Wave hybrid solver, being a probabilistic
solver, has a chance of returning an optimal result in significantly less time than the
Python MIP solver typically requires when the problem gets larger.

In this paper, we formulate the APGLP as a QUBO problem, use classical algorithms
and quantum annealing to solve it, and compare the e�ciencies of these solutions.

2 D-Wave Systems

This section briefly presents the architecture and the computational models of the D-
Wave Systems.

2.1 D-Wave architecture

Founded in 1999, D-Wave uses a quantum annealing process to search for optimal so-
lutions to optimization problems [15]. The D-Wave quantum processing unit (QPU)
operates at temperatures about or below 15 milli-Kelvins, maintained in isolation from
the surrounding environment to behave quantum mechanically [16]. The qubits in the
D-Wave quantum processor encode information in the form of magnetic flux quantum,
the quantum of magnetic flux passing through a superconductor [9, 12].

The Advantage QPU [17] utilizes a P16 Pegasus graph topology for its lattice design,
featuring 5 000+ qubits. The number of couplers per qubit is 15, resulting in 35 000+
couplers. The expanded count of qubits and couplers, combined with the improved con-
nectivity o↵ered by the Pegasus design, allows the solving of larger application problems
directly on the Advantage QPUs. The next generation QPU Advantage2 uses the Zephyr
topology [2]. The Zephyr topology achieves a degree of 20 (each qubit is connected to
20 di↵erent qubits through couplers). The full Advantage2 [6, 19], yet to be released, is
expected to use a Z15 Zephyr graph topology with 7 000+ qubits and 60 000+ couplers.
However, D-Wave recently announced a new Advantage2 Prototype that uses Z6 Zephyr
graph topology with 1 200+ qubits and 10 000+ couplers [7]. The results in Section 5
have been obtained with the Advantage QPU and the 1 200+ qubits Advantage2 Proto-
type QPU; in this paper, we will refer to them as the Advantage and the Advantage2
Prototype, respectively.

2



2.2 D-Wave computations

To solve a problem with D-Wave, one must first formulate the problem as a QUBO
where the lowest values are the optimal solutions to the problem the objective function
represents.

A Quadratic Unconstrained Binary Optimization (QUBO) problem is defined using an
upper-diagonal matrix Q, which is an n⇥n upper-triangular matrix of real weights, and
a vector x of n binary variables. The problem is to minimize the following function:

F (x) = min
x2{0,1}n

 
X

i

Qi,ixi +
X

i

X

j>i

Qi,jxixj + c

!
,

where the variables xi take values of 1 and 0, and c is an o↵set constant value.

The D-Wave system computation starts with a collection of initially uncoupled qubits in
a superposition or ground state. Through the quantum annealing process, the qubits are
subjected to magnetic fields and entangled via couplers. As the problem Hamiltonian
is gradually introduced, excited states have the potential to approach the ground state.
The closer these states become, the greater the probability of the system transitioning
from the ground state to one of the excited states through tunneling. By the end of
the quantum annealing process, each qubit settles into a classical state that reflects the
problem’s lowest energy state or one close to it.

This objective function is then submitted to one of the quadratic computational models
that D-Wave solves.

2.3 The Leap Hybrid Solver Service

Hybrid solvers are used for large-scale problems that cannot be solved directly by the
quantum system. The Hybrid Solver Service (HSS) is a cloud-based resource providing a
collection of hybrid solvers that utilizes both classical and quantum computing methods
tailored for various inputs and applications scenarios [18].

The HSS has two versions of portfolio solvers: version 1 employs the 2000Q, and version 2,
used in this article, incorporates the Advantage. The front end of a portfolio solver
selects and runs multiple hybrid solvers in parallel and returns the optimal solution.
This approach frees users from guessing which solver will perform best for a given input.

The HSS Binary Quadratic Model (BQM) solver accepts a QUBO as input and an op-
tional maximum time limit. If no time limit is given, the HSS assesses the size and
structure of the input and then determines a minimum time limit to ensure that each
solver has su�cient time to execute the process at least once; it receives at least one re-
sponse from the Advantage. The time limit ranges from 3 seconds to 24 hours. Once the
HSS receives the input, the front end selects one or more hybrid solvers for the specific
input and runs them in parallel.

3



The hybrid solvers contain a query module (QM) communicating with the Advantage.
The QM formulates partial representations of the given input and sends the smaller
quantum queries, which the Advantage can directly solve. The QM gathers responses
from the Advantage and transforms the replies into suggestions for the hybrid solvers,
indicating promising areas of the solution space to be explored. Before reaching the time
limit, the hybrid solvers send their results to the front end, forwarding the lowest-cost
solution discovered to the user.

2.4 Minor embeddings

To solve a QUBO, represented as a matrix Q, we first need to map the qubit interactions
(represented by non-zero entries of Q) onto actual QPU hardware architecture. The
matrix Q can be viewed as an adjacency matrix of a graph, called the problem’s logical
graph. To solve a QUBO problem with quantum solvers, a minor embedding is essential
for mapping the logical graph of the problem into the physical topology of a system’s
QPU. Nodes in the logical graph are mapped to one or more physical qubits, and the
edges are mapped to physical couplers. Due to the sparse connectivity of QPU physical
topologies, it is not feasible to fully map a connected graph directly onto specific qubits
on a QPU. The challenge of sparse connectivity is mitigated by chaining qubits together
and mapping some nodes into chains (connected sets, not necessarily a path) of physical
qubits. Qubit chaining is achieved by setting the strength to su�ciently negative values
for the couplers connecting the physical qubits. This ensures a strong correlation between
the states of the qubits in the same chain. Therefore, chained qubits will likely result
in the same classical state when measured after annealing, representing the same binary
value: they collectively operate as if they were a single variable. (Note: if the physical
qubits corresponding to a logical qubit do not end up in the same state after annealing, we
often take the majority value of each chain for each logical qubit.) The general embedding
function find embedding() implements a heuristic algorithm [3] to find a minor logical
source graph’s embedding into a given target physical graph. One objective of the minor
embedding algorithms is to minimize the chain sizes to minimize potential entanglement
errors on the physical hardware, a↵ecting the results’ accuracy.

Note that some computational trade-o↵s need to be taken, as there is a limited set of
values of coupler strengths supported by the current D-Wave hardware. While embedding
a problem onto the QPU, the auto-scaling feature adjusts all the coupler strengths for
the problem to ensure they fall within the [�1,+1] range. The chain strengths, being
the maximum value, are set to one. As chain strengths increase, the relative strength of
couplers describing the logical problem diminishes. Consequently, with the continuous
increase in chain strength, each chain begins to separate, and the physical model may no
longer represent the original problem [5].

3 Arithmetic Progression Graphs

Given an undirected graph G = (V,E) with n vertices and m edges, an AP-labeling of G
is a labeling of the edges of G with positive integers that induce an arithmetic progression

4



of vertex labels.

A graph with such a labeling is called an AP-graph. An AP-labeling is defined with three
parameters: X, a, d, where X : E ! Z+ (Z+ is the set of positive integers) is a total
function to assign positive integers to edges, a 2 Z+ is the initial value, and d 2 Z+ is the
constant di↵erence of the arithmetic progression over the vertices labels. From an edge
labeling X, the (induced) vertex labels are defined by the function Y : V ! Z where
for v 2 V we have Y (v) =

P
u2N(v) X(uv). Here N(v) denotes the vertex neighbors of a

vertex v.

Formally, a graph is an AP-graph if there exist positive integer constants a and d, an
edge labeling X, and a permutation � over the set of vertex indices {0, 1, . . . , n�1}, such
that Y (vi) = a+ �id, for vi 2 V .

The input for the Arithmetic Progression Labeling Problem (APGLP) consists of a given
graph G with the initial value a and the constant di↵erence d. The problem is whether
an edge labeling X exists. To solve the APGLP, we must find (if possible) a set of edge
labels X such that the induced vertex labels Y form an arithmetic progression.

Figure 1 gives an example of edge/vertex labeling of an AP-graph.

Figure 1: An AP-labeling of a graph with five nodes and five edges, start value a = 2,
and a constant di↵erence d = 3. The vertex labels form the arithmetic progression (2, 5,
8, 11, 14).

3.1 Fixed Vertex Labeled APGLP

We first solve an easier version of the APGLP by fixing the vertex labels and a and d.
Given a graph G = (V,E) with n vertices and m edges. If V = {v0, v1, ..., vn�1}, and
E = {e0, e1, ..., em�1}, we construct the n⇥m incidence matrix M = Mi,j of G, such that
Mi,j equals to one if vertex vi is an incident with edge ej.

The highest possible label for an edge cannot be greater than z = a+(n�2)d, as the two
incident vertices attached to this edge would have labels that violate the target arithmetic
progression for a and d. Working with the upper bound for z we use the binary variables
yj,k to represent and encode edge labels. The edge label for ej is

Pdlog ze�1
k=0 2kyj,k + 1.

Note that the term +1 ensures that the edge labels must be positive integers. In this
particular form of APGLP we fix the vertex values Y (vi) of an arithmetic progression.

5



The QUBO objective function for this problem of APGLP is:

F1(x) =
n�1X

i=0

0

@
m�1X

j=0

0

@Mi,j(
dlog ze�1X

k=0

2kyj,k + 1)

1

A� Y (vi)

1

A
2

,

whereMi,j, and Y (vi) are given as inputs for the input variables x = (y0,0, . . . , ym�1,dlog ze�1).

As the function F1(x) is a sum of squares, the minimum value will be reached when the

value inside the outermost braces is zero. The expression
Pm�1

j=0 (Mi,j(
Pdlog ze�1

k=0 2kyj,k+1))
is the sum of all incidence edge labels for a vertex vi. Since Y (vi) is a fixed label for
vertex vi, the function F1(x) is minimized when the sum and Y (vi) are equal. As this
is the sole requirement that needs to be satisfied, no additional constraints are required.
The degree of a vertex vi, denoted as �(vi), is also expressed through the summation asPm�1

j=0 Mi,j.

The o↵set ensures that the smallest value is zero, hence we can expand the objective
function to the following:

F1(x) =
n�1X

i=0

0

@
m�1X

j=0

(Mi,j(
dlog ze�1X

k=0

2kyj,k)) +�(vi)� Y (vi)

1

A
2

,

where the o↵set value is
Pn�1

i=0 (�(vi)� Y (vi))2.

3.2 An example

Figure 2: Graph G with six vertices and eight edges with the fixed vertex labels indicated.

For illustration, we consider the input graph G = (V,E) with six nodes and eight edges
in Figure 2. The start value a and the constant di↵erence value d are set to 2. The upper
bound for edge labels z is a+ (n� 2)d = 2+ (6� 2) · 2 = 10 and the vertex labels Y for
V = {v0, v1, v2, v3, v4, v5} are {2, 12, 10, 4, 6, 8}.

The following matrix is the incidence matrix of graph G of Figure 2:

6



e0 e1 e2 e3 e4 e5 e6 e72

666664

3

777775

v0 1 1 0 0 0 0 0 0
v1 1 0 1 1 0 0 0 0
v2 0 0 1 0 1 0 0 0
v3 0 0 0 0 1 1 1 0
v4 0 0 0 0 0 1 0 1
v5 0 1 0 1 0 0 1 1

By expanding the objective function, we get:

F1(x) =
5X

i=0

0

@(
7X

j=0

(Mi,j

dlog 10e�1X

k=0

2kyj,k)) +�(vi)� Y (vi)

1

A
2

.

Below is a term of F1(x) for i = 2. Notice that, with the exception of yj,k, all remaining
terms are constants.

F1(x, 2) = (y2,0 + 2y2,1 + 4y2,2 + 8y2,3 + y4,0 + 2y4,1 + 4y4,2 + 8y4,3)
2 + 16(y2,0 + 2y2,1+

4y2,2 + 8y2,3 + y4,0 + 2y4,1 + 4y4,2 + 8y4,3) + 64.

F1(x, 2) = 17y22,0 + 36y22,1 + 80y22,2 + 192y22,3 + 17y24,0 + 36y24,1 + 80y24,2 + 192y24,3+

4y2,0y2,1 + 8y2,0y2,2 + 16y2,0y2,3 + 2y2,0y4,0 + 4y2,0y4,1 + 8y2,0y4,2+

16y2,0y4,3 + 16y2,1y2,2 + 32y2,1y2,3 + 4y2,1y4,0 + 8y2,1y4,1 + 16y2,1y4,2+

32y2,1y4,3 + 64y2,2y2,3 + 8y2,2y4,0 + 16y2,2y4,1 + 32y2,2y4,2 + 64y2,2y4,3+

16y2,3y4,0 + 32y2,3y4,1 + 64y2,3y4,2 + 128y2,3y4,3 + 4y4,0y4,1 + 8y4,0y4,2+

16y4,0y4,3 + 16y4,1y4,2 + 32y4,1y4,3 + 64y4,2y4,3.

By repeating this process for each value of i = 0, ..., 5 we complete the entire QUBO
matrix using F1(x). An optimal solution is shown in Table 1, where the coe�cients for
the binary variables y2,3, y3,0, y5,0, y7,0, y7,1, highlighted in the table, have been assigned the
value 1. The o↵set value is

Pn�1
i=0 (�(vi)�Y (vi))2 = 178. Optimal solutions are obtained

when the value of the objective function is 0. An example of optimal solution satisfies is:
�144y22,3 +16y2,3y3,0 � 24y23,0 +2y3,0y7,0 +4y3,0y7,1 � 8y25,0 +2y5,0y7,0 +4y5,0y7,1 � 14y27,0 +
8y7,0y7,1 � 24y27,1 equals to �178. The edge labels for E = {e0, e1, e2, e3, e4, e5, e6, e7} are

calculated from
Pdlog ze�1

k=0 2kyj,k + 1 for E = {1, 1, 9, 2, 1, 2, 1, 4}.

The complete QUBO matrix is shown in Table 1.

7



T
ab

le
1:

Q
U
B
O

m
at
ri
x
fo
r
th
e
ex
am

p
le

in
F
ig
u
re

2.

V
ar
ia
b
le
s

y0
,0

y0
,1

y0
,2

y0
,3

y1
,0

y1
,1

y1
,2

y1
,3

y2
,0

y2
,1

y2
,2

y2
,3

y3
,0

y3
,1

y3
,2

y3
,3

y4
0

y4
,1

y4
,2

y4
,3

y5
,0

y5
,1

y5
,2

y5
,3

y6
,0

y6
,1

y6
,2

y6
,3

y7
,0

y7
,1

y7
,2

y7
,3

y0
,0

-1
6

8
16

32
2

4
8

16
2

4
8

16
2

4
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

y0
,1

0
-2
8

32
64

4
8

16
32

4
8

16
32

4
8

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

y0
,2

0
0

-4
0

12
8

8
16

32
64

8
16

32
64

8
16

32
64

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

y0
,3

0
0

0
-1
6

16
32

64
12
8

16
32

64
12
8

16
32

64
12
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

y1
,0

0
0

0
0

-6
8

16
32

0
0

0
0

2
4

8
16

0
0

0
0

0
0

0
0

2
4

8
16

2
4

8
16

y1
,1

0
0

0
0

0
-8

32
64

0
0

0
0

4
8

16
32

0
0

0
0

0
0

0
0

4
8

16
32

4
8

16
32

y1
,2

0
0

0
0

0
0

0
12
8

0
0

0
0

8
16

32
64

0
0

0
0

0
0

0
0

8
16

32
64

8
16

32
64

y1
,3

0
0

0
0

0
0

0
64

0
0

0
0

16
32

64
12
8

0
0

0
0

0
0

0
0

16
32

64
12
8

16
32

64
12
8

y2
,0

0
0

0
0

0
0

0
0

-3
2

8
16

32
2

4
8

16
2

4
8

16
0

0
0

0
0

0
0

0
0

0
0

0

y2
,1

0
0

0
0

0
0

0
0

0
-6
0

32
64

4
8

16
32

4
8

16
32

0
0

0
0

0
0

0
0

0
0

0
0

y2
,2

0
0

0
0

0
0

0
0

0
0

-1
04

12
8

8
16

32
64

8
16

32
64

0
0

0
0

0
0

0
0

0
0

0
0

y2
,3

0
0

0
0

0
0

0
0

0
0

0
-1
44

16
32

64
12
8

16
32

64
12
8

0
0

0
0

0
0

0
0

0
0

0
0

y3
,0

0
0

0
0

0
0

0
0

0
0

0
0

-2
4

8
16

32
0

0
0

0
0

0
0

0
2

4
8

16
2

4
8

16

y3
,1

0
0

0
0

0
0

0
0

0
0

0
0

0
-4
4

32
64

0
0

0
0

0
0

0
0

4
8

16
32

4
8

16
32

y3
,2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-7
2

12
8

0
0

0
0

0
0

0
0

8
16

32
64

8
16

32
64

y3
,3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-8
0

0
0

0
0

0
0

0
0

16
32

64
12
8

16
32

64
12
8

y4
,0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
6

8
16

32
2

4
8

16
2

4
8

16
0

0
0

0

y4
,1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-2
8

32
64

4
8

16
32

4
8

16
32

0
0

0
0

y4
,2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-4
0

12
8

8
16

32
64

8
16

32
64

0
0

0
0

y4
,3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1
6

16
32

64
12
8

16
32

64
12
8

0
0

0
0

y5
,0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-8
8

16
32

2
4

8
16

2
4

8
16

y5
,1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1
2

32
64

4
8

16
32

4
8

16
32

y5
,2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-8
12
8

8
16

32
64

8
16

32
64

y5
,3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
48

16
32

64
12
8

16
32

64
12
8

y6
,0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-8
8

16
32

2
4

8
16

y6
,1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1
2

32
64

4
8

16
32

y6
,2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-8
12
8

8
16

32
64

y6
,3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
48

16
32

64
12
8

y7
,0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
4

8
16

32

y7
,1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-2
4

32
64

y7
,2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-3
2

12
8

y7
,3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8



3.3 The APGL Problem

We now solve the general version of APGLP for a graph G2 = (V,E) with n vertices and
m edges. V = {v0, v1, ..., vn�1} and E = {e0, e1, ..., em�1}. We construct the incidence
matrixM = Mi,j of G2 and note that the upper bound for an edge label is z = a+(n�2)d.

We use the binary variable yj,k to label the edge ej as
Pdlog ze�1

k=0 2kyj,k+1, where 0  k 
dlog(z)e � 1.

The binary variables Ti,h with 0  h < n label the vertices: Ti,h=1 if and only if vi=
a + hd. The constraint P (x) enforces that hTi,h in set {0, 1, ..., n � 1} represents a
permutation. As a result, only one value in {a + 0b, a + 1b, ..., a + (n � 1)b} is assigned
to each vertex, and each value can only be assigned once. The QUBO binary vector is
x = (y0,0, ..., ym�1,dlog ze�1, T0,0, ..., Tn�1,n�1) and the objective function to be minimized
is:

F2(x) =
n�1X

i=0

0

@
m�1X

j=0

(Mi,j(
dlogze�1X

k=0

2kyj,k + 1))� a�
n�1X

h=0

(hTi,h)d)

1

A
2

+ P (x),

subject to the constraint P (x) = C1(x) + C2(x),

C1(x) =
n�1X

i=0

 
(
n�1X

h=0

Ti,h)� 1

!2

= 0, C2(x) =
n�1X

h=0

 
(
n�1X

i=0

Ti,h)� 1

!2

= 0.

The constraints C1(x) and C2(x) can be reformulated in the slightly more e�cient
quadratic penalty, which achieves the minimum value �n (see [22]):

P (x) =
n�1X

i=0

X

h<h0

Ti,hTi,h0 +
n�1X

h=0

X

i<i0

Ti,hTi0,h �
n�1X

i=0

n�1X

h=0

Ti,h.

Theorem 1. The minimum value for the function F2(x) is �n, and any non-optimal
(i.e. not a valid AP-labeling) assignment of the edge and vertex labels will result in a
value greater than �n.

Proof.

Let G(x) =
Pn�1

i=0

⇣Pm�1
j=0 (Mi,j(

Pdlogze�1
k=0 2kyj,k + 1))� a�

Pn�1
h=0(hTi,h)d)

⌘2
. Since G(x)

is a sum of squares, its minimum value will be shown to be 0 exclusively when the edge
and vertex labels assigned are optimal. Given the knowledge that the constraint P (x)
possesses a minimum value of �n, the minimum value for the objective function F2(x)
is �n.

9



We first consider the function G(x). We now parametrize vertex vi and let:

G1(x, i) =
m�1X

j=0

(Mi,j(
dlogze�1X

k=0

2kyj,k + 1)),

G2(x, i) = a+
n�1X

h=0

(hTi,h)d.

G1(x, i) be the sum of all its incident edge labels of vi. The +1 is to ensure that no
edge label equals zero. And G2(x, i) is the vertex label a + �id for some permutation �

represented by the Ti,h variables.

Any non-optimal assignment would mean that G1(x, i) and G2(x, i) are unequal. And if
not equal we get (G1(x, i)�G2(x, i))2 bigger than 0. In this way, G(x) enforces that for
every vertex vi in graph G, its vertex label equals the sum of all its incident edge labels.

We next come to the constraint P (x) where we claim P (x) is minimized to �n only when
the set of all vertices V is some permutation � on S = {0, 1, . . . , n � 1}. We split P (x)
into three small functions where P (x) = P1(x) + P2(x) + P3(x):

P1(x) =
n�1X

i=0

X

h<h0

Ti,hTi,h0 , P2(x) =
n�1X

h=0

X

i<i0

Ti,hTi0,h, P3(x) = �
n�1X

i=0

n�1X

h=0

Ti,h.

P1(x) is minimized to zero only if, for each vertex vi, Ti,h and Ti,h0 are not both one for
any pair of h and h

0. P1(x) ensures that each vertex is assigned at most one value. P2(x)
is minimized to zero only if, for each value h, Ti,h and Ti0,h are not both one for any two
of vertices vi and vi0 . P2(x) ensures that each value is assigned to at most one vertex.
P3(x) is minimized to �n without violating P1(x) and P2(x). Any violation that reduces
P3(x) by one will increase the combined value of P1(x) and P2(x) by two. Therefore,
P (x) is minimized to �n.

Moreover, the objective function of a QUBO can only have quadratic terms. Removing
any constant term or simply squaring the linear terms so they are quadratic will not
influence the optimal solutions generated. Therefore, after expanding, converting linear
terms to quadratic terms by replacing all binary variables with their squares and deleting
the constant term a

2. The minimized value for the objective function is �
Pn�1

i=0 (�(vi)�
a)2 � n. The o↵set is

Pn�1
i=0 (�(vi)� a)2 + n.

3.4 An example

Figure 3: Graph G2 with four nodes and three edges.

10



Figure 3 presents an example of an input graph G2 = (V,E) for the AP-Labeling problem,
featuring four nodes and three edges. With the starting value a set to 2 and the di↵erence
d at 1, the value of z can be calculated as a+ (n� 2)d = 4.

Below is the incidence matrix for graph G2:

e0 e1 e22

64

3

75

v0 1 0 0
v1 1 1 0
v2 0 1 1
v3 0 0 1

By expanding and simplifying the objective function, we get:

F2(x) =H(x) + P (x)

=
3X

i=0

(
2X

j=0

(Mi,j(
1X

k=0

2kyj,k + 1))� 2�
3X

h=0

(hTi,h)))
2+

3X

i=0

X

h<h0

Ti,hTi,h0 +
3X

h=0

X

i<i0

Ti,hTi0,h �
3X

i=0

3X

h=0

Ti,h,

H(x) =
3X

i=0

(
2X

j=0

(Mi,j(
1X

k=0

2kyj,k + 1))� 2�
3X

h=0

(hTi,h)))
2

=
3X

i=0

((
2X

j=0

(Mi,j

1X

k=0

2kyj,k))
2 � (4� 2�(vi))

2X

j=0

(Mi,j

1X

k=0

2kyj,k) + (
3X

h=0

(hTi,h))
2+

(4� 2�(vi))(
3X

h=0

(hTi,h))� 2(
2X

j=0

(Mi,j

1X

k=0

2kyj,k))(
3X

h=0

(hTi,h))� 4�(vi)+

�(vi)
2).

Note that Mi,j is not a variable but a constant that can be calculated from the given
input. For example, when i = 0:

H(x, 0) = ((y0,0 + 2y0,1 + 4y0,2 + 1)� 2� (0T0,0 + T0,1 + 2T0,2 + 3T0,3))
2

= (y0,0 + 2y0,1 + 4y0,2)
2 + (0T0,0 + T0,1 + 2T0,2 + 3T0,3)

2 � 2(y0,0 + 2y0,1+

4y0,2)(0T0,0 + T0,1 + 2T0,2 + 3T0,3)� 2(y0,0 + 2y0,1 + 4y0,2) + 2(0T0,0+

T0,1 + 2T0,2 + 3T0,3)� 3

= �y
2
0,0 + 8y20,2 + 4y0,0y0,1 + 8y0,0y0,2 + 16y0,1y0,2 + 3T 2

0,1 + 8T 2
0,2 + 15T 2

0,3+

4T0,1T0,2 + 6T0,1T0,3 + 12T0,2T0,3 � 2y0,0T0,1 � 4y0,0T0,2 � 6y0,0T0,3�
4y0,1T0,1 � 8y0,1T0,2 � 12y0,1T0,3 � 8y0,2T0,1 � 16y0,2T0,2 � 24y0,2T0,3

11



Repeating this process for each value of i = 0, ..., 3 and adding P (x) we complete the
QUBO matrix using F2(x). The binary variables are yj,k and Ti,h.

An optimal solution is shown above in Table 2: the coe�cients for the binary variables
y0,0, y2,0, y2,1, T0,0, T1,1, T2,3, T3,2, highlighted in the table, have been assigned the value 1.

The o↵set value is
Pn�1

i=0 (�(vi) � a)2 + n = 6. Optimal solutions are obtained when
the value of the objective function is 0. An example of an optimal solution satisfies
as: �2y0,0T1,1 + 8y2,0y2,1 � 6y2,0y2,3 � 4y2,0T3,2 + 4y22,1 � 12y2,1T2,3 � 8y2,1T3,2 � T

2
0,0 +

8T 2
2,3 + 7T 2

3,2 equals to �6. The vertex labels for V = {v0, v1, v2, v3} are calculated from

a +
Pn�1

h=0(hTi,h)d for V = {2, 3, 5, 4}. And the edge labels for E = {e0, e1, e2} are

calculated from
Pdlog ze�1

k=0 2kyj,k + 1 for E = {2, 1, 4}, respectively.

Table 2: QUBO matrix for the example in Figure 3.

variables y00 y01 y02 y10 y11 y12 y20 y21 y22 T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23 T30 T31 T32 T33

y00 0 8 16 2 4 8 0 0 0 0 -2 -4 -6 0 -2 -4 -6 0 0 0 0 0 0 0 0

y01 0 4 32 4 8 16 0 0 0 0 -4 -8 -12 0 -4 -8 -12 0 0 0 0 0 0 0 0

y02 0 0 24 8 16 32 0 0 0 0 -8 -16 -24 0 -8 -16 -24 0 0 0 0 0 0 0 0

y10 0 0 0 2 8 16 2 4 8 0 0 0 0 0 -2 -4 -6 0 -2 -4 -6 0 0 0 0

y11 0 0 0 0 8 32 4 8 16 0 0 0 0 0 -4 -8 -12 0 -4 -8 -12 0 0 0 0

y12 0 0 0 0 0 32 8 16 32 0 0 0 0 0 -8 -16 -24 0 -8 -16 -24 0 0 0 0

y20 0 0 0 0 0 0 0 8 16 0 0 0 0 0 0 0 0 0 -2 -4 -6 0 -2 -4 -6

y21 0 0 0 0 0 0 0 4 32 0 0 0 0 0 0 0 0 0 -4 -8 -12 0 -4 -8 -12

y22 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 -8 -16 -24 0 -8 -16 -24

T00 0 0 0 0 0 0 0 0 0 -1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

T01 0 0 0 0 0 0 0 0 0 0 2 5 7 0 1 0 0 0 1 0 0 0 1 0 0

T02 0 0 0 0 0 0 0 0 0 0 0 7 13 0 0 1 0 0 0 1 0 0 0 1 0

T03 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 1 0 0 0 1 0 0 0 1

T10 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 1 0 0 0 1 0 0 0

T11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 1 0 0 0 1 0 0

T12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 13 0 0 1 0 0 0 1 0

T13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 1 0 0 0 1

T20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 1 0 0 0

T21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 1 0 0

T22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 13 0 0 1 0

T23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 1

T30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 1

T31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 7

T32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 13

T33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14

12



4 Methodology

To solve the Fixed Vertex Labeled APGLP, we translate the edge label variables into
binary, subject to constraints, as represented by the objective function F1, as given in
Section 3.1. For the general APGLP, we construct the objective function F2, as presented
in Section 3.3.

The obtained QUBOs have been solved using a D-Wave quantum annealer with three
samplers: two QPU solvers, Advantage system 6.3 and Advantage2 Prototype2.2, and
one hybrid solver, hybrid binary quadratic model version2 (HSS). We used the de-
fault parameters for HSS. Di↵erent numbers of reads and annealing times are applied to
both the Advantage and Advantage2 Prototype and compared to assess the performance
and accuracy of the solutions. The number of reads parameter specifies how many cy-
cles the QPU should run a problem. Annealing time sets the duration of each quantum
annealing cycle per sampling.

The examples of simple connected graphs have been taken from [20]: they have been
generated by geng in g6 format from nauty [21]. The APGs for these graphs have been
constructed with a starting value in the {2, 3} and a constant di↵erence in {1, 2, 3}.
All connected graphs with four to six nodes and ten randomly chosen graphs from all
connected graphs with seven to eight nodes have been used for the experiment set. The
Mixed-Integer Programming (MIP) code for verifying their APGs is adapted from [10].
The total time required to solve a problem with a QPU solver includes the sum of the
time spent formulating the QUBO from the input problem, the time spent embedding
the problem on the physical topology of the solver, and the QPU access time reported by
the solver. For a hybrid solver. This total time comprises the QUBO formulation time
and the runtime set by the user. Performance has been evaluated and compared with
four measures for the two QPU solvers: the percentage of optimal solutions, the total
runtime, the embedding time, and the QPU access time.

The Python code is provided in Appendix B.

Both solvers Advantage and Advantage2 Prototype have a maximum QPU access time of
1, 000, 000 microseconds. The problems submitted to the QPU with an estimated access
time exceeding this time limit resulted in an error.

5 Results

In this section, we present and discuss the experimental results. Time is measured in
microseconds (µs).

5.1 Fixed Vertex Labeled APGLP

The bar graph in Figure 4 compares the percentage of optimal solutions found by the
Advantage and the Advantage2 Prototype. Both solvers achieved optimal solutions for
problems with four nodes in over 90% of the cases with 1 000 reads and the default

13



Figure 4: Comparison of optimal solution percentages for the fixed APGLP with four,
five, and six nodes. The x-axis represents the number of reads and annealing times, and
the y-axis indicates the proportion of optimal solutions obtained.

annealing time of 20µs. With graphs of five nodes, the Advantage surpassed the Advan-
tage2 Prototype nearly every time. The Advantage failed to solve some problems with
graphs with five or six nodes, 3 000 reads, and an annealing time of 200µs. Despite these
limitations, the likelihood of obtaining optimal solutions for graphs with five nodes is
mostly above 70%. However, for six node graphs, a noticeable and rapid decline in per-
formance was recorded for both solvers, regardless of the sampling number or annealing
time. Increasing the annealing time did not show an increased proportion of optimal
solutions obtained.

Figure 5 shows the performance trend of the two solvers for graphs with five nodes and
constant annealing time. Both graphs show a gradual increase in the percentage of
optimal solutions as the number of reads grows.

Figure 6 shows that the runtime increases as the annealing time increases and the num-
ber of reads remains constant. The upper graph indicates that Advantage2 Prototype
generally achieves optimal results more quickly than Advantage for all tested conditions.
The lower graph also shows similar patterns, with Advantage2 Prototype typically op-
erating faster than Advantage when optimal solutions are not obtained. However, for
larger graphs, the di↵erences in runtime between these two are more significant when
optimal solutions are not reached than when the optimal solutions are reached. It is also
observed that non-optimal solutions tend to have a longer runtime than optimal ones.

In Figure 7, we compare average embedding times between the Advantage and the Advan-
tage2 Prototype for graph order ranging from four to eight. For graphs with four nodes,
the embedding times for both the Advantage and the Advantage2 Prototype are small
and marginally higher for Advantage. As the graph order increases to five, an increase

14



(a) The trend corresponding to an annealing time of 100µs

(b) The trend corresponding to an annealing time of 20µs

Figure 5: Comparative performance of the solvers for graphs with five nodes and fixed
annealing time.

in embedding time is noticeable, which is more significant for Advantage. A significant

15



(a) The average runtime of quantum solvers when optimal solutions are achieved.

(b) The average runtime of quantum solvers when optimal solutions are not received.

Figure 6: Runtime comparison for achieving optimal and non-optimal solutions.

increase in embedding time is also noted for graphs with seven and eight nodes.

Figure 8 shows that, generally, regardless of graph order, Advantage tends to have slightly
higher average QPU access times than Advantage2 Prototype. However, no significant
di↵erences in QPU access times have been observed with increases in either the number
of nodes or the number of reads.

16



Figure 7: Average times required for the minor embedding of QUBO graphs for Advan-
tage and Advantage2 Prototype.

Figure 8: Average QPU access time for quantum solvers with the Advantage and the
Advantage2 Prototype.

17



The average results for the APGLP with fixed vertex labels can be found in Table 5 in
Appendix A.

5.2 Unconstrained APGLP

Figure 9 shows the performance of the Advantage and Advantage2 Prototype for the
(general version of) APGLP. In all cases, the Advantage2 Prototype surpasses the Ad-
vantage, and most configurations’ performance gap between the solvers is significant. As
the graph order increases to six, the performance of both solvers substantially drops.
Advantage fails to find any optimal solutions. Advantage2 Prototype achieves a meager
percentage of optimal solutions for 1 000 reads with 700µs annealing time, 2 000 reads
with 300 annealing time, and 3 000 reads with 100µs annealing time. Advantage2 Pro-
totype fails to provide optimal solutions for 5 000 reads with 20µs annealing time.

Figure 9: Percentage of optimal solutions achieved by the Advantage and the Advantage2
Prototype for problem graphs with four and five nodes.

The two bar graphs in Figure 10 display the runtimes for graphs of four and five nodes.
In both charts, Advantage often requires more time than Advantage2 Prototype. The
Advantage system fails to provide optimal solutions for all five-node graphs, whereas the
Advantage2 Prototype succeeds in finding optimal results given a longer annealing time.

Figure 11 displays the embedding times of Advantage and Advantage2 Prototype for
problem graphs with four to eight nodes. The Advantage2 Prototype recorded shorter
embedding times for graphs with nodes less than seven, and both solvers recorded com-
parable embedding times for graphs with seven and eight nodes. For problem graphs
with eight nodes, the Advantage2 Prototype has a longer runtime than the Advantage.

18



(a) Runtimes for achieving optimal solutions with Advantages and Advantage2 Pro-
totype.

(b) Runtimes for obtaining non-optimal solutions with Advantages and Advantage2
Prototype.

Figure 10: Runtimes for problem graphs of four and five nodes, di↵erentiated by the
number of reads and annealing times.

19



The QPU access times for the Advantage and the Advantage2 Prototype for graphs
with four and five nodes are compared in Figure 12. The Advantage2 Prototype used
insignificantly shorter QPU access times than the Advantage for both graphs, with four
and five nodes for all sampling ranges.

Figure 11: Embedding times recorded by Advantage and Advantage2 Prototype for
graphs with four to eight nodes.

Table 3 compares the Hybrid solver and the MIP method. For graphs with four to
six nodes, the Hybrid solver found all optimal solutions within a time limit of 300 000
microseconds. For graphs with seven and eight nodes, the performance of the Hybrid
solver decreases to a range of 3.33% to 13.33% with time limits ranging from 6 000 000
to 18 000 000. The MIP method consistently achieves optimal solutions 100% of the time
for all node sizes. However, the runtime for the MIP method increases rapidly with the
increase in node size. Nevertheless, the Hybrid solver maintains a probability of obtaining
optimal solutions for some problems within shorter time frames than the time required
by the MIP method.

Table 4 displays the mean count of logical qubits for problem graphs with four to six
nodes. The calculation of logical qubits for the edge labeling problem involves multiplying
the number of binary variables needed to denote the maximum edge label by the total
number of graph edges. The average results showing the performance metrics for the
APGLP can be found in Table 6 in Appendix A.

20



Figure 12: QPU access times for the Advantage and the Advantage2 Prototype quantum
solvers for graphs with four and five nodes.

Table 3: A comparison of the Hybrid solver and the MIP method showing the percentage
of optimal solutions for graphs with four to eight nodes. This comparison includes the
performance of the Hybrid solver within its specified time limits and the average runtimes
of the MIP method to obtain optimal solutions.

Hybrid Hybrid MIP MIP
Number of
nodes

Time limit µs Percentage
optimal

MIP runtime µs Percentage
optimal

4 3 000 000 100.00% 4 848.96 100%
5 3 000 000 100.00% 19 087.90 100%
6 3 000 000 100.00% 91 204.77 100%
7 3 000 000 33.33% 864 160.38 100%
7 6 000 000 43.33%
8 6 000 000 3.33%
8 9 000 000 10.00%
8 12 000 000 13.33%
8 15 000 000 6.67%
8 18 000 000 6.67% 17 473 136 100%

21



Table 4: Average number of logical qubits required for formulating the QUBO graphs.

Graph order Fixed Vertex Labeled
APGLP

APGLP

4 15 31
5 22 47
6 35 71

6 Conclusions

The results presented in this paper show that the D-Wave Advantage and Advantage2
Prototype are highly e↵ective in solving the Fixed Vertex Labeled APGLP for small-
scale problems. Not unexpectedly, as the graph complexity increased, the performance
decreased.

The Advantage performed better than the Advantage2 for the Fixed Vertex Labeled
APGLP, while the Advantage2 outperformed the Advantage for the APGLP. The advan-
tages of HSS and MIP methods have been demonstrated for both runtime and quality of
solutions.

The performance of the HSS showed the potential of combining classical and quantum
computing, which seems to be an e�cient and promising use of quantum computers.
This approach could be done by developing Hybrid (quassical [1]) solutions for classes of
problems.

References

[1] Edward H. Allen and Cristian S. Calude. Quassical computing. International Journal
of Unconventional Computing, 14:43–57, 2018.

[2] Kelly Boothby, Andrew D. King, and Jack Raymond. Zephyr topology of D-Wave
quantum processors. Technical Report 14-1056A-A, D-Wave Systems Inc., Burnaby,
BC, Canada, 2021.

[3] Jun Cai, William G Macready, and Aidan Roy. A practical heuristic for finding
graph minors. arXiv preprint arXiv:1406.2741, 2014.

[4] Costantino Carugno, Maurizio Ferrari Dacrema, and Paolo Cremonesi. Evaluating
the job shop scheduling problem on a d-wave quantum annealer. Scientific Reports,
12(1):6539, 2022.

[5] D-Wave Systems Inc. Whitepaper: Programming the D-Wave QPU: Setting the
chain strength. Technical Report 14-1041A-A, Burnaby, BC, Canada, 2020.

[6] D-Wave Systems Inc. Whitepaper: Early progress on lower-noise fabrication devel-
opment for the future, full-scale advantage2 quantum computer. Technical Report
09-1287A-A, Burnaby, BC, Canada, 2022.

22



[7] D-Wave Systems Inc. D-Wave announces availability of 1,200+ qubit Advan-
tage2 prototype in the leap quantum cloud service, making its most performant
system available to customers today .
https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-
availability-of-1-200-qubit-advantage2-prototype/, Feb. 12, 2024.

[8] Prasanna Date, Davis Arthur, and Lauren Pusey-Nazzaro. QUBO formulations for
training machine learning models. Scientific reports, 11(1):10029, 2021.

[9] Bascom S Deaver Jr and William M Fairbank. Experimental evidence for quantized
flux in superconducting cylinders. Physical Review Letters, 7(2):43, 1961.

[10] Michael J Dinneen, Nan Rosemary Ke, and Masoud Khosravani. Arithmetic pro-
gression graphs. Technical Report CDMTCS-356, Department of Computer Science,
The University of Auckland, New Zealand, 2009.

[11] Michael J Dinneen, Nan Rosemary Ke, and Masoud Khosravani. Arithmetic pro-
gression graphs. Universal Journal of Applied Mathematics, 2(8):290 – 297, 2014.

[12] Robert Doll and Martin Näbauer. Experimental proof of magnetic flux quantization
in a superconducting ring. Physical Review Letters, 7(2):51, 1961.

[13] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.
H. Freeman, first edition, 1979.

[14] Kazuki Ikeda, Yuma Nakamura, and Travis S Humble. Application of quantum
annealing to nurse scheduling problem. Scientific reports, 9(1):12837, 2019.

[15] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Fi-
ras Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson, Paul
Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473(7346):194–
198, 2011.

[16] James King, Sheir Yarkoni, Mayssam M Nevisi, Jeremy P Hilton, and Catherine
McGeoch. Benchmarking a quantum annealing processor with the time-to-target
metric. arXiv preprint arXiv:1508.05087, 2015.

[17] Catherine McGeoch and Pau Farré. Advantage processor overview. Technical Report
14-1058A-A, D-Wave Systems Inc., Burnaby, BC, Canada, 2022.

[18] Catherine McGeoch, Pau Farré, and William Bernoudy. D-Wave hybrid solver ser-
vice + Advantage: Technology update. Technical Report 14-1048A-A, D-Wave Sys-
tems Inc., Burnaby, BC, Canada, 2020.

[19] Catherine McGeoch, Pau Farré, and Kelly Boothby. The d-wave advantage2 proto-
type. Technical Report 14-1063A-A, D-Wave Systems Inc., Burnaby, BC, Canada,
2022.

[20] Brendan D. McKay. Graphs. http://users.cecs.anu.edu.au/~bdm/data/
graphs.html.

23

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html


[21] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal
of Symbolic Computation, 60:94–112, 2014.

[22] Florian Richoux, Jean-François Ba�er, and Philippe Codognet. Learning QUBO
models for quantum annealing: A constraint-based approach. In International Con-
ference on Computational Science, Berlin, Heidelberg, 2023. Springer-Verlag.

[23] Hayato Ushijima-Mwesigwa, Christian FA Negre, and Susan M Mniszewski. Graph
partitioning using quantum annealing on the D-wave system. In Proceedings of the
Second International Workshop on Post Moores Era Supercomputing, pages 22–29.
Association for Computing Machinery, 2017.

24



A Average Results

Table 5: Average results for Fixed Vertex Labeled APGLP – Advantage Systems

Advantage Advantage2
Nodes Number of reads Annealing time optimal % optimal %
4 1 000 20 96.30% 92.59%
4 Total 96.30% 92.59%
5 1 000 20 76.19% 64.29%
5 1 000 100 78.57% 66.67%
5 1 000 300 78.57% 71.43%
5 1 000 500 69.05% 76.19%
5 1 000 700 73.81% 71.43%
5 SubTotal 1 000 75.24% 70.00%
5 2 000 20 76.19% 76.19%
5 2 000 100 76.19% 71.43%
5 2 000 200 83.33% 80.95%
5 2 000 300 80.95% 69.05%
5 SubTotal 2 000 79.17% 74.40%
5 3 000 20 80.95% 73.81%
5 3 000 100 83.33% 76.19%
5 3 000 200 N/A 71.43%
5 SubTotal 3 000 82.14% 73.81%
5 5 000 20 85.71% 78.57%
5 Total 78.57% 72.89%
6 1 000 20 10.00% 3.33%
6 1 000 100 0.00% 0.00%
6 1 000 300 3.33% 6.67%
6 1 000 500 3.33% 0.00%
6 1 000 700 3.33% 0.00%
6 SubTotal 1 000 4.00% 2.00%
6 2 000 20 10.00% 3.33%
6 2 000 100 0.00% 3.33%
6 2 000 200 6.67% 3.33%
6 2 000 300 3.33% 10.00%
6 SubTotal 2 000 5.00% 5.00%
6 3 000 20 13.33% 6.67%
6 3 000 100 3.33% 0.00%
6 3 000 200 N/A 10.00%
6 SubTotal 3 000 8.33% 5.56%
6 5 000 20 13.33% 0.00%
6 Total 5.83% 3.59%
Grand Total 49.72% 45.38%

25



Table 6: Average results for APGLP – Advantage Systems

Advantage Advantage2
Nodes Number of reads Annealing time optimal % optimal %
4 1 000 300 11.11% 14.81%
4 1 000 500 18.52% 22.22%
4 1 000 700 14.81% 29.63%
4 SubTotal 1 000 14.81% 22.22%
4 2 000 20 14.81% 25.93%
4 2 000 100 14.81% 33.33%
4 2 000 200 11.11% 33.33%
4 2 000 300 22.22% 25.93%
4 SubTotal 2 000 15.74% 29.63%
4 3 000 20 14.81% 25.93%
4 3 000 100 25.93% 37.04%
4 SubTotal 3 000 20.37% 31.48%
4 4 000 60 18.52% 40.74%
4 5 000 20 18.52% 29.63%
4 Total 16.84% 28.96%
5 1 000 500 0.00% 0.00%
5 1 000 700 0.00% 2.38%
5 SubTotal 1 000 0.00% 1.19%
5 2 000 200 0.00% 0.00%
5 2 000 300 0.00% 2.38%
5 SubTotal 2 000 0.00% 1.19%
5 3 000 20 0.00% 0.00%
5 3 000 100 0.00% 2.38%
5 SubTotal 3 000 0.00% 1.19%
5 5 000 20 0.00% 0.00%
5 Total 0.00% 1.02%
Grand Total 8.46% 15.06%

26



B Python codes

B.1 QUBO formulation for Fixed Vertex Labeled APGLP

1 de f qubo f o rmu la t i on f i x ed (G, a , d , v l a b e l s ) :
s t a r t t ime = time . p roc e s s t ime ( )
n = G. order ( )
m = G. s i z e ( )

5

#z2 i s the number o f b inary b i t s to
#repre s en t the maximum edge va lue p o s s i b l e
z = a + (n−2)∗d

9 z2 = math . c e i l (math . log2 ( z ) )

i m = nx . i n c i d ence mat r i x (G) . toar ray ( )
Q = {}

13 o f f s e t = 0
#F1ˆ2
#fo r each v e r t e x :
f o r i in range (n) :

17 #degree
de l t v = sum( i m [ i ] )
o f f s e t += ( d e l t v − v l a b e l s [ i ] ) ∗∗2
#F1ˆ2

21 f o r j in range (m) :
mij = i m [ i ] [ j ]
i f mij == 1 :

f o r k in range ( z2 ) :
25 #l i n e a r par t

i f Q. get ( ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ) == None :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ]= \
(2∗∗k ) ∗∗2+2∗( de l t v−v l a b e l s [ i ] ) ∗(2∗∗k )

29 e l s e :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ]+= \
(2∗∗k ) ∗∗2+2∗( de l t v−v l a b e l s [ i ] ) ∗(2∗∗k )

33 #quadra t i c par t
f o r j j in range ( j ,m) :

m i j j=i m [ i , j j ]
i f m i j j == 1 :

37 f o r kk in range ( z2 ) :
i f k<kk <= z2 or j<j j<=m:

i f Q. get ( ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ) == None :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ] = 2∗(2∗∗k ) ∗(2∗∗kk )

41 e l s e :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ] += 2∗(2∗∗k ) ∗(2∗∗kk )

#in microseconds
45 e l aps ed t ime = ( time . p roc e s s t ime ( ) − s t a r t t ime ) ∗(10∗∗6)

re turn Q, o f f s e t , e l ap s ed t ime

de f w r i t e qubo s f i x ed ( i n p u t f i l e , o u t p u t f i l e ) :
49 qubos = [ ]

f o rmu l a t i o n t im e l i s t = [ ]

27



o f f s e t s = [ ]
new df = pd . DataFrame ( )

53 #new df = pd . r ead c sv ( o u t p u t f i l e )
df = pd . r ead c sv ( i n p u t f i l e )
n = len ( df . index )
randomList = random . sample ( range (0 , n ) ,30)

57 randomList . s o r t ( )
f o r i in randomList :

a = df [ ’ a ’ ] [ i ]
d = df [ ’d ’ ] [ i ]

61 #a l i s t . append (a )
#d l i s t . append (d )
#ess . append ( d f [ ’ graph ’ ] [ i ] )
ad s t r = df [ ’ a d j a c e n c y l i s t ’ ] [ i ]

65 a d l i s t=j son . l oads ( ad s t r )
ad = pd . DataFrame ( a d l i s t )
G = nx . f rom pandas adjacency ( ad )
v l a b e l s = df [ ’ v l a b e l s ’ ] [ i ]

69 v l a b e l s = as t . l i t e r a l e v a l ( v l a b e l s )

#qubo formu la t ion 5 t imes to ge t the average time i t t a k e s
n = 5

73 t imes = 0
f o r i in range (n) :
Q, o f f s e t , f o rmu la t i on t ime = \
qubo f o rmu la t i on f i x ed (G, a , d , v l a b e l s )

77 t imes += formula t i on t ime

qubos . append (Q)
f o rmu l a t i o n t im e l i s t . append ( t imes /n)

81 o f f s e t s . append ( o f f s e t )
new df [ ’ graph num ’ ] = randomList
new df [ ’ qubo f ixed ’ ] = qubos
new df [ ’ o f f s e t ’ ] = o f f s e t s

85 new df [ ’ f o rmu la t i on t ime /microseconds ’ ] = f o rmu l a t i o n t im e l i s t
new df . t o c sv ( o u t p u t f i l e )

B.2 QUBO formulation for the APGLP

2 de f qubo formulat ion (G, a , d ) :
s t a r t t ime = time . p roc e s s t ime ( )
n = G. order ( )
m = G. s i z e ( )

6 #maximum number o f b inary b i t s needed to r ep r e s en t any edge
z = a + (n−2)∗d
z2 = math . c e i l (math . log2 ( z ) )

10 i m = nx . i n c i d ence mat r i x (G) . toar ray ( )

Q = {}
o f f s e t = n

14 #for each v e r t e x :

28



f o r i in range (n) :
#degree
degree = sum( i m [ i ] )

18 o f f s e t += ( degree − a ) ∗∗2
#F1ˆ2
f o r j in range (m) :

mij = i m [ i ] [ j ]
22 i f mij == 1 :

f o r k in range ( z2 ) :
#l i n e a r par t
i f Q. get ( ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ) == None :

26 Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ]= (2∗∗k )∗∗2−\
2∗a ∗(2∗∗k )+2∗degree ∗(2∗∗k )

e l s e :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j }{k} ’ ) ]+= (2∗∗k )∗∗2−\

30 2∗a ∗(2∗∗k )+2∗degree ∗(2∗∗k )

#quadra t i c par t
f o r j j in range ( j ,m) :

34 mi j j=i m [ i , j j ]
i f m i j j == 1 :

f o r kk in range ( z2 ) :
i f k<kk <= z2 or j<j j<=m:

38 i f Q. get ( ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ) == None :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ] = 2∗(2∗∗k ) ∗(2∗∗kk )

e l s e :
Q[ ( f ’ y{ j }{k} ’ , f ’ y{ j j }{kk} ’ ) ] += 2∗(2∗∗k ) ∗(2∗∗kk )

42

f o r h in range (n) :
#F2ˆ2
i f Q. get ( ( f ’T{ i }{h} ’ , f ’T{ i }{h} ’ ) ) == None :

46 Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h} ’ ) ] = d∗∗2∗h∗∗2 + 2∗a∗d∗h − 2∗h∗d∗ degree
f o r h2 in range (h+1,n) :
Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h2} ’ ) ] = 2∗d∗∗2∗h∗h2

50 #−2F1F2
f o r j in range (m) :

mij = i m [ i ] [ j ]
i f mij == 1 :

54 f o r k in range ( z2 ) :
Q[ ( f ’ y{ j }{k} ’ , f ’T{ i }{h} ’ ) ] = −2∗h∗2∗∗k∗d

#Cons t ra in t s P
58 f o r i in range (n) :

f o r h in range (n) :
f o r h2 in range (h+1,n) :

i f Q. get ( ( f ’T{ i }{h} ’ , f ’T{ i }{h2} ’ ) ) == None :
62 Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h2} ’ ) ] = 1

e l s e :
Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h2} ’ ) ] += 1

f o r i in range (n) :
66 f o r h in range (n) :

f o r i 2 in range ( i +1,n) :
i f Q. get ( ( f ’T{ i }{h} ’ , f ’T{ i 2 }{h} ’ ) ) == None :

29



Q[ ( f ’T{ i }{h} ’ , f ’T{ i 2 }{h} ’ ) ] = 1
70 e l s e :

Q[ ( f ’T{ i }{h} ’ , f ’T{ i 2 }{h} ’ ) ] += 1
f o r i in range (n) :

f o r h in range (n) :
74 i f Q. get ( ( f ’T{ i }{h} ’ , f ’T{ i }{h} ’ ) ) == None :

Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h} ’ ) ] = −1
e l s e :
Q[ ( f ’T{ i }{h} ’ , f ’T{ i }{h} ’ ) ] += −1

78 e l aps ed t ime = ( time . p roc e s s t ime ( ) − s t a r t t ime ) ∗(10∗∗6)
re turn Q, o f f s e t , e l ap s ed t ime

de f wr i t e qubos ( i n p u t f i l e , o u t p u t f i l e ) :
82 qubos = [ ]

o f f s e t s = [ ]
f o rmu l a t i o n t im e l i s t = [ ]
graph = [ ]

86 a l i s t =[ ]
d l i s t =[ ]
df = pd . r ead c sv ( i n p u t f i l e )
new df = pd . DataFrame ( )

90 n = len ( df . index )

f o r i in range (n) :
t imes = 0

94 a = df [ ’ a ’ ] [ i ]
d = df [ ’d ’ ] [ i ]
a d s t r = df [ ’ a d j a c e n c y l i s t ’ ] [ i ]
a d l i s t=j son . l oads ( ad s t r )

98 df ad = pd . DataFrame ( a d l i s t )
G = nx . f rom pandas adjacency ( d f ad )
#take the average time among 5 t imes o f f o rmu la t i ons
n = 5

102 f o r i in range (n) :
Q, o f f s e t , f o rmu la t i on t ime = qubo formulat ion (G, a , d )
t imes += formula t i on t ime

g = df [ ’ graph ’ ] [ i ]
106 qubos . append (Q)

o f f s e t s . append ( o f f s e t )
f o rmu l a t i o n t im e l i s t . append ( t imes /n)
graph . append ( g )

110 a l i s t . append ( a )
d l i s t . append (d)

new df [ ’ a ’ ] = a l i s t
114 new df [ ’d ’ ] = d l i s t

new df [ ’ graph ’ ] = graph
new df [ ’ qubo ’ ] = qubos
new df [ ’ o f f s e t ’ ] = o f f s e t s

118 new df [ ’ qubo formulat ion t ime /microseconds ’ ] = \
f o rmu l a t i o n t im e l i s t
new df . t o c sv ( o u t p u t f i l e )

30



B.3 Embedding QUBOs on D-Wave hardware

de f f ind embedding pegasus ( f i l e name , col name ) :
s o l v e r = DWaveSampler ( )
df = pd . r ead c sv ( f i l e name )

4 A pegasus = s o l v e r . e d g e l i s t
pegasus graph = dnx . pegasus graph (16 , e d g e l i s t=A pegasus )
embeddings = [ ]
t imes = [ ]

8 n = len ( df . index )
f o r i in range (n) :

qubo st r = df [ col name ] [ i ]
qubo = as t . l i t e r a l e v a l ( qubo st r )

12 s t a r t t ime = time . p roc e s s t ime ( )
embedding pegasus = minorminer . f ind embedding ( qubo , pegasus graph )
e l aps ed t ime = ( time . p roc e s s t ime ( ) − s t a r t t ime ) ∗(10∗∗6)
embeddings . append ( embedding pegasus )

16 t imes . append ( e l aps ed t ime )
#pr in t ( i , ’ / ’ , n)

df [ ’ pegasus embedding ’ ] = embeddings
df [ ’ pegasus embedding t ime ’ ] = times

20

df . t o c sv ( f i l e name )

de f f ind embedding zephyr ( f i l e name , col name ) :
24 s o l v e r = DWaveSampler ( )

df = pd . r ead c sv ( f i l e name )
A zephyr = s o l v e r . e d g e l i s t
zephyr graph = dnx . zephyr graph (6 , e d g e l i s t=A zephyr )

28 embeddings = [ ]
t imes = [ ]
n = len ( df . index )
f o r i in range (n) :

32 qubo st r = df [ col name ] [ i ]
qubo = as t . l i t e r a l e v a l ( qubo st r )
s t a r t t ime = time . p roc e s s t ime ( )
embedding zephyr = minorminer . f ind embedding ( qubo , zephyr graph )

36 e l aps ed t ime = ( time . p roc e s s t ime ( ) − s t a r t t ime ) ∗(10∗∗6)
embeddings . append ( embedding zephyr )
t imes . append ( e l aps ed t ime )
#pr in t ( i , ’ / ’ , n)

40 df [ ’ zephyr embedding ’ ] = embeddings
df [ ’ zephyr embedding time ’ ] = times
df . t o c sv ( f i l e name )

B.4 Python code for running on Advantage QPUs

1 de f create bqm (Q, o f f s e t ) :
BQM = dimod . BinaryQuadraticModel . empty ( dimod .BINARY)
f o r ( v1 , v2 ) , va lue in Q. items ( ) :

i f v1 == v2 :
5 BQM. add l i n e a r ( v1 , va lue )

e l s e :

31



BQM. add quadrat i c ( v1 , v2 , va lue )
BQM. o f f s e t += o f f s e t

9 r e turn BQM

def advantage ( i n p u t f i l e , o u t pu t f i l e , qubo col , embedding col ,
num reads , annea l ing t ime ) :

s o l v e r = DWaveSampler ( )
13 df = pd . r ead c sv ( i n p u t f i l e )

n = len ( df . index )
i f Path ( o u t p u t f i l e ) . i s f i l e ( ) :

new df = pd . r ead c sv ( o u t p u t f i l e )
17 n = len ( new df . index )

e l s e :
new df = pd . DataFrame ( )
i f n==30:

21 new df [ ’ graph num ’ ] = df [ ’ graph num ’ ]
sample = [ ]
qpu acce s s t ime = [ ]
opt imal = [ ]

25

count = 0

f o r i in range (n) :
29 opt = ’N ’

qubo st r = df [ qubo co l ] [ i ]
qubo = as t . l i t e r a l e v a l ( qubo st r )
embedding str = df [ embedding col ] [ i ]

33 embedding = ast . l i t e r a l e v a l ( embedding str )
o f f s e t = df [ ’ o f f s e t ’ ] [ i ]

BQM = create bqm (qubo , o f f s e t )
37

sampler = FixedEmbeddingComposite ( so lv e r , embedding )
sampleset = sampler . sample (BQM, num reads=num reads , annea l ing t ime=

annea l ing t ime )
qpu time = sampleset . i n f o [ ’ t iming ’ ] [ ’ qpu acce s s t ime ’ ]

41 s = sampleset . f i r s t [ 0 ]
qpu acce s s t ime . append ( qpu time )
sample . append ( s )
energy = sampleset . f i r s t [ 1 ]

45 i f energy == 0 :
opt = ’Y ’
count+=1

optimal . append ( opt )
49

new df [ f ’ sample {num reads} { annea l ing t ime } ’ ] = sample
new df [ f ’ qpu acc e s s t ime {num reads} { annea l ing t ime } ’ ] =

qpu acce s s t ime
new df [ f ’ opt imal {num reads} { annea l ing t ime } ’ ] = optimal

53 #pr in t ( count /n)
new df . t o c sv ( o u t p u t f i l e )

32



B.5 Python code to run on HSS

de f hybr id run (Q, o f f s e t ) :
2 r e s u l t = ’N ’

BQM = dimod . BinaryQuadraticModel ( dimod .BINARY)
f o r ( v1 , v2 ) , va lue in Q. items ( ) :

i f v1 == v2 :
6 BQM. add l i n e a r ( v1 , va lue )

e l s e :
BQM. add quadrat i c ( v1 , v2 , va lue )

BQM. o f f s e t += o f f s e t
10 sampler = LeapHybridSampler ( )

sampleset = sampler . sample (BQM)
run time = sampleset . i n f o [ ’ run t ime ’ ]
energy = sampleset . f i r s t [ 1 ]

14 qpu time = sampleset . i n f o [ ’ qpu acce s s t ime ’ ]
sample = sampleset . f i r s t [ 0 ]
i f energy == 0 :

r e s u l t = ’Y ’
18 r e turn r e su l t , run time , qpu time , sample

de f hybr id run qubo (Q, o f f s e t , t ime l im i t ) :
r e s u l t = ’N ’

22 sampleset = LeapHybridSampler ( ) . sample qubo (Q, t ime l im i t=t ime l im i t )
run t ime = sampleset . i n f o [ ’ run t ime ’ ]
energy = sampleset . f i r s t [ 1 ]
qpu time = sampleset . i n f o [ ’ qpu acce s s t ime ’ ]

26 sample = sampleset . f i r s t [ 0 ]
i f energy == −o f f s e t :

r e s u l t = ’Y ’
#pr in t ( r e s u l t )

30 r e turn r e su l t , run time , qpu time , sample

de f hybrid ( i n p u t f i l e , o u t pu t f i l e , qubo col , t ime l im i t ) :
d f = pd . r ead c sv ( i n p u t f i l e )

34 n = len ( df . index )
i f Path ( o u t p u t f i l e ) . i s f i l e ( ) :

new df = pd . r ead c sv ( o u t p u t f i l e )
n = len ( new df . index )

38 e l s e :
new df = pd . DataFrame ( )
i f n==30:

new df [ ’ graph num ’ ] = df [ ’ graph num ’ ]
42 hybr id opt imal = [ ]

hybr id runt ime = [ ]
hybr id qpu acce s s t ime = [ ]
samples = [ ]

46 f o r i in range ( l en ( df . index ) ) :
qubo st r = df [ qubo co l ] [ i ]
Q = ast . l i t e r a l e v a l ( qubo st r )
o f f s e t = df [ ’ o f f s e t ’ ] [ i ]

50 r e su l t , runtime , qpu time , sample = hybrid run qubo (Q, o f f s e t ,
t ime l im i t )

hybr id opt imal . append ( r e s u l t )

33



hybr id runt ime . append ( runtime )
hybr id qpu acce s s t ime . append ( qpu time )

54 samples . append ( sample )

new df [ f ’ opt imal { t ime l im i t } ’ ] = hybr id opt imal
new df [ f ’ t o t a l r un t ime { t ime l im i t } ’ ] = hybr id runt ime

58 new df [ f ’ qpu acc e s s t ime { t ime l im i t } ’ ] = hybr id qpu acce s s t ime
new df [ f ’ sample { t ime l im i t } ’ ] = samples
new df . t o c sv ( o u t p u t f i l e )

B.6 Python MIP code for APG graph generalizing from g6 file
de f read graphs f rom g6 ( graph name ) :

G l = nx . read graph6 ( graph name )
4 graphs = [ ]

i n t l i s t = random . sample ( range ( l en ( G l ) ) ,10)
f o r i i in i n t l i s t :

g = G l [ i i ]
8

i = True
#pr in t ( i i )
i f i i != 0 and l en ( graphs ) != 0 :

12 f o r g2 in graphs :
i f nx . i s i s omo rph i c ( g , g2 ) and l en ( graphs ) !=1:

i = Fal se
i f i :

16 s = g . adjacency ( )
l i s t l = [ ]
f o r node , ad in s :

l = [ ]
20 f o r i in range ( g . number of nodes ( ) ) :

i f i in l i s t ( ad . keys ( ) ) :
l . append (1)

e l s e :
24 l . append (0)

l i s t l . append ( l )
graphs . append ( g )

28 r e turn graphs

de f pythonmip (G, a , d , col name ) :

32 pr in t ( ’ f s d f d s ’ )
n=G. order ( )
m=G. s i z e ( )

36 const = a+(n−2)∗d
a l i s t = [ ]
l i s t 2 =[ ]

40 f o r i in range (n) :
a l i s t . append ( a + i ∗d)

34



l i s t 2 . append (0 )

44 #pr in t ( ’ running : ’ , a , d )
f o r p in permutat ions ( range (n) ) :
#ver t e x l a b e l s
B = [ a+(p [ i ] ) ∗d f o r i in range (n) ]

48 p=Model ( s ense=’MIN ’ , so lver name=’CBC’ )
b = { (u , v ) : p . add var ( var type=INTEGER, name= f ”b {u} {v}” ) \

f o r (u , v ) in G. edges ( ) }

52 f o r i in range (n) :
#sum of a l l edge o f v e r t e x i
edge sum = xsum(b [ ( u , v ) ] f o r (u , v ) in G. edges ( )
i f i == in t (u) or i == in t ( v ) )

56 #add cons t r a in s to model
p += edge sum == B[ i ]

p . o b j e c t i v e = xsum(b [ x ] f o r x in G. edges ( ) )
f o r e in G. edges ( ) :

60 p . add const r (b [ e ]>=1)

# Solve the model
p . verbose = 0

64 p . opt imize ( )

# Check i f a s o l u t i o n was found ’ ”
i f p . s t a tu s == Optimizat ionStatus .OPTIMAL:

68 s o l u t i o n = {var . name : var . x f o r var in b . va lue s ( ) }
f o r ( edge , va lue ) in s o l u t i o n . i tems ( ) :
# ver t e x 1
e1 = in t ( edge [ 2 ] )

72 # ver t e x 2
e2 = in t ( edge [ 4 ] )
# se t edge we igh t in G
G[ e1 ] [ e2 ] [ ’ weight ’ ] = value

76 a d l i s t = nx . adjacency matr ix (G, weight=None ) . toar ray ( ) . t o l i s t ( )
weight = nx . g e t e d g e a t t r i b u t e s (G, ’ weight ’ )
r e turn { col name [ 0 ] : a d l i s t , col name [ 1 ] : a , col name [ 2 ] : d , \

col name [ 3 ] : ’Y ’ , col name [ 4 ] : G, col name [ 5 ] : weight }
80 e l i f p . s t a tu s == Optimizat ionStatus .FEASIBLE :

# i f a s o l u t i o n e x i s t s
s o l u t i o n = {var . name : var . x f o r var in b . va lue s ( ) }
f o r ( edge , va lue ) in s o l u t i o n . i tems ( ) :

84 #ver t e x 1
e1 = in t ( edge [ 2 ] )
#ver t e x 2
e2 = in t ( edge [ 4 ] )

88 #se t edge we igh t in G
G[ e1 ] [ e2 ] [ ’ weight ’ ] = value
#a l l v e r t e x va l u e s in l i s t 2 by adding a l l i t s
#edges va l u e s

92 l i s t 2 [ e1 ] += value
l i s t 2 [ e2 ] += value

#check i f the v e r t e x va l u e s i l l e g a l
i f s o r t ed ( a l i s t ) == sor t ed ( l i s t 2 ) :

35



96 #pr in t ( ’ uuu ’)
a d l i s t=nx . adjacency matr ix (G, weight=None ) . toar ray ( ) . t o l i s t ( )
weight = nx . g e t e d g e a t t r i b u t e s (G, ’ weight ’ )
r e turn { col name [ 0 ] : a d l i s t , col name [ 1 ] : a , col name [ 2 ] : d ,\

100 col name [ 3 ] : ’Y ’ , col name [ 4 ] :G, col name [ 5 ] : weight }
r e turn 0

de f f i nd apg s ( a min , a max , d min , d max , graphs , df , col name ) :
104

a l l = l en ( graphs )
count = 0
f o r G in graphs :

108 count += 1
#pr in t ( count , ’ / ’ , a l l )
#pr i n t ( ’ graph ’ )
f o r aa in range ( a min , a max ) :

112 f o r dd in range ( d min , d max ) :
df2 = pythonmip (G, aa , dd , col name )
i f df2 != 0 and df2 != None :

df = pd . concat ( [ df , pd . DataFrame ( [ df2 ] ) ] , i gno r e i ndex=True )
116 r e turn df

de f mip f ind apgs ( graph f i l e name , d f f i l e n ame ) :
col name = [ ’ a d j a c e n c y l i s t ’ , ’ a ’ , ’ d ’ , ’ APG labe l ava i l ab i l i t y ’ , \

120 ’ graph ’ , ’ weight ’ ]
d i c t = { col name [ 0 ] : [ ] ,

col name [ 1 ] : [ ] ,
col name [ 2 ] : [ ] ,

124 col name [ 3 ] : [ ] ,
col name [ 4 ] : [ ] ,
col name [ 5 ] : [ ] }

df = pd . DataFrame ( d i c t )
128

# se t the range o f va lue a and d here
a min = 2
a max = 4

132 d min = 1
d max = 4

graphs = read graphs f rom g6 ( g raph f i l e name )
136 df = f i nd apg s ( a min , a max , d min , d max , graphs , df , col name )

df . t o c sv ( d f f i l e n ame )

B.7 Python MIP code for running APGLP
de f mip a d ( i n p u t f i l e , o u t p u t f i l e ) :

3 df = pd . r ead c sv ( i n p u t f i l e )
graphs = [ ]
opt imal = [ ]
a va lue = [ ]

7 d va lue = [ ]
weights = [ ]

36



runtime = [ ]
n=len ( df . index )

11 f o r i in range (n) :
a = df [ ’ a ’ ] [ i ]
d = df [ ’d ’ ] [ i ]
a d s t r = df [ ’ a d j a c e n c y l i s t ’ ] [ i ]

15 a d l i s t=j son . l oads ( ad s t r )
ad = pd . DataFrame ( a d l i s t )
graph = nx . f rom pandas adjacency ( ad )
r e s u l t = [ ]

19 r e s u l t = mip ( graph , a , d )
i f r e s u l t != 0 :

graph = r e s u l t [ 0 ]
a = r e s u l t [ 1 ]

23 d = r e s u l t [ 2 ]
weight = r e s u l t [ 3 ]
time = r e s u l t [ 4 ]
graphs . append ( a d l i s t )

27 a va lue . append ( a )
d va lue . append (d)
weights . append ( weight )
runtime . append ( time )

31 optimal . append ( ’Y ’ )
e l s e :

graphs . append (0)
a va lue . append (0 )

35 d va lue . append (0 )
weights . append (0)
runtime . append (0 )
opt imal . append ( ’N ’ )

39 new df = pd . DataFrame ( )
new df [ ’ graph num ’ ] = df [ ’ graph num ’ ]
new df [ ’ graph ’ ] = graphs
new df [ ’ a ’ ] = a va lue

43 new df [ ’d ’ ] = d va lue
new df [ ’ we ights ’ ] = weights
new df [ ’ runtime ’ ] = runtime
new df [ ’ opt imal ’ ] = optimal

47 new df . t o c sv ( o u t p u t f i l e )

37


