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Abstract

The Kolmogorov complexity function of an infinite word ξ maps
a natural number to the complexity K(ξ�n) of the n-length prefix
of ξ. We investigate the maximally achievable complexity function
if ξ is taken from a constructively describable set of infinite words.
Here we are interested in linear upper bounds where the slope is
the Hausdorff dimension of the set.

As sets we consider Π1-definable sets obtained by dilution and
sets obtained from constructively describable infinite iterated func-
tion systems. In these cases, for a priori and monotone complexity,
the upper bound coincides (up to an additive constant) with the
lower bound, thus verifying the existence of oscillation-free maxi-
mally complex infinite words.
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1 Introduction
The Kolmogorov complexity of a finite word w, K(w), is, roughly speak-
ing, the length of a shortest input (program) π for which a universal
algorithm prints w.1 For infinite words (ω-words) its asymptotic Kol-
mogorov complexity might be thought of as

lim
n→∞

K(ξ�n)
n

, (1)

where ξ�n denotes the prefix of length n of ξ.
Since this limit need not exist, the quantities

κ(ξ) := liminf
n→∞

K(ξ�n)
n

and κ(ξ) := limsup
n→∞

K(ξ�n)
n

.

1We require that w and π be words over the same finite (not necessarily binary)
alphabet X of cardinality ≥ 2.
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were considered (see [Rya86, Sta93, CH94, Sta98]).
These limits are also known as constructive dimension or constructive
strong dimension, respectively, introduced in [Lut03] and [AHLM07],
respectively. For more details about this see [Sta05a].

In these papers mainly the following approach was pursued: Given
a set of infinite words (a so-called ω-language) F , bound the maximum
possible Kolmogorov complexity κ(ξ) or κ(ξ) for ξ ∈ F . In the present
paper we are not only interested in this asymptotic case but also in
bounds on the Kolmogorov complexity function K(ξ�n) of maximally
complex infinite words (ω-words) ξ ∈ F .

In this asymptotic case, Ryabko [Rya86] showed that for arbitrary
ω-languages F the Hausdorff dimension, dimF , is a lower bound to
κ(F) := sup{κ(ξ) : ξ∈F}, but Example 3.18 of [Sta93] shows that already
for simple computable ω-languages the Hausdorff dimension is not an
upper bound to κ(F) := sup{κ(ξ) : ξ∈F} in general. In [Sta93, Sta98], we
showed that for restricted classes of computably definable ω-languages
F its Hausdorff dimension is also an upper bound to κ(F), thus giving
a partial completion to Ryabko’s lower bound.

The present paper focuses on a more detailed consideration of the
Kolmogorov complexity function K(ξ�n) of infinite words in ω-languages
F . Thus, in contrast to the asymptotic case where it is not relevant
which kind of complexity is used, in the case of the Kolmogorov com-
plexity function it matters which one of the complexities we consider.

Lower and upper bounds on the Kolmogorov complexity function are
closely related to partial randomness. Partial randomness was investi-
gated in the papers [Tad02] and [CST06]. It is a linear generalisation
of the concept of random sequences (see the textbooks [Cal02, DH10]).
The concept of partial randomness tries to specify sequences as random
to some degree ε, 0 < ε ≤ 1, where the case ε = 1 coincides with usual
randomness. In [Tad02] and [CST06] several different generalisations
of the concepts for partially random sequences were given.

A simple idea what could be an example of a binary 1
2 -random in-

finite word is the following. Take ξ = x1x2 · · ·xi · · · to be a (1-)random
infinite word and dilute it by inserting zeros at every other position to
obtain ξ′ = x10x20 · · ·xi0 · · · (cf. [Sta93]).

As one observes easily the description complexity of the n-length
prefix of a diluted word ξ′ is about the complexity of the ε ·n-length pre-
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fix of the original word ξ where ε is the dilution coefficient (e.g. ε = 1
2 in

the above example). This was a motivation to consider the asymptotic
complexity of an infinite word as the the limit of the quotient of the
complexity of the n-length prefix and the length n (see [Rya86, Sta93]).

The aim of our paper is to survey several results concerning the
Kolmogorov complexity function K(ξ�n) of infinite words contained in
computably describable ω-languages. Here we investigate under which
conditions certain simple construction principles yield ω-languages hav-
ing maximally complex elements ξ with a linear complexity slope, that
is, K(ξ�n) = γ · n+O(1). As complexities we consider besides the usual
plain complexity also variants like a priori complexity and monotone
complexity. The construction principles presented here are dilution,
e.g. as described above and infinite concatenation. Infinite concatena-
tion is closely related to self-similarity. Instead of producing infinite
words as products of finite ones (taken from a fixed language) one may
regard this also as a process of shrinking the set of all infinite words
successively by application of metric similitudes related to the words
in the fixed language. This brings into play as a second dimension the
similarity dimension known from Fractal Geometry. It turns out that
under certain conditions – like in Fractal Geometry – similarity dimen-
sion and Hausdorff dimension coincide.

The paper is organised as follows. After introducing some notation,
Cantor space and Hausdorff dimension the subsequent Section 3 in-
troduces the plain, a priori and monotone complexity of finite words.
The last part of this section presents the concept of lower bounding the
slope of the Kolmogorov complexity functions by Hausdorff dimension.
The fourth section deals with dilution. As a preparation we investigate
expansive prefix-monotone functions (see [CH94]) and connect them to
Hölder conditions known from Fractal geometry (see [Fal90]). The last
section is devoted to self-similar sets of infinite words and maximally
achievable complexity functions of their elements. Here we present
mainly results from [MS09] which show tight linear upper bounds on
these complexity functions.
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2 Notation and Preliminary Results
Next we introduce the notation used throughout the paper. By IN =

{0,1,2, . . .}we denote the set of natural numbers, Q is the set of rational
numbers and IR+ is the set of non-negative reals. Let X ,Y be alphabets
of cardinality |X |, |Y | ≥ 2. Usually we will denote the cardinality of X by
|X |= r. X∗ is the set (monoid) of words on X , including the empty word
e, and Xω is the set of infinite sequences (ω-words) over X . |w| is the
length2 of the word w ∈ X∗ and pref(B) is the set of all finite prefixes of
strings in B⊆ X∗∪Xω. We shall abbreviate w ∈ pref(η) (η ∈ X∗∪Xω) by
wv η.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This
concatenation product extends in an obvious way to subsets W ⊆ X∗

and B ⊆ X∗ ∪Xω. Thus Xn is the set of words of length n over X , and
we use X≤c as an abbreviation for {w : w ∈ X∗ ∧ |w| ≤ c}. For a lan-
guage W let W ∗ :=

⋃
i∈INW i be the submonoid of X∗ generated by W , and

W ω := {w1 · · ·wi · · · : wi ∈W \ {e}} is the set of infinite strings formed by
concatenating words in W .

A language V ⊆ X∗ is called prefix-free provided for arbitrary w,v ∈V
the relation wv v implies w = v.

We consider the set Xω as a metric space (Cantor space) (Xω,ρ) of
all ω-words over the alphabet X , |X | = r, where the metric ρ is defined
as follows.

ρ(ξ,η) := inf{r−|w| : w@ ξ∧w@ η}

The open balls in this space are sets of the form w ·Xω, their diameter
is diam(w ·Xω) = r−|w|, and C (F) := {ξ : pref(ξ)⊆ pref(F)} is the closure of
the set F (smallest closed subset containing F) in (Xω,ρ).

Another way to describe ω-languages (sets of infinite words) by lan-
guages W ⊆ X∗ is the δ-limit W δ := {ξ : ξ ∈ Xω ∧ |pref(ξ)∩W | = ∞} (see
[Sta87, Sta07]).

The mapping Φw(ξ) := w · ξ is a contracting similitude if only w 6= e.
Thus a language W ⊆ X∗ \ {e} defines a possibly infinite IFS (IIFS)
in (Xω,ρ). Its (maximal) fixed point is the ω-power W ω of the lan-
guage W . It was observed in [Sta97] that, in general, the IIFS (Φw)w∈W
has a great variety of fixed points, that is, solutions of the equation

2If there is no danger of confusion, for a set M we use the same notation |M| to
denote its cardinality.
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⋃
w∈W Φw(F) = F . All of these fixed points are contained in W ω, and,

except for the empty set /0, their closure equals C (W ω), which is the
attractor of (Φw)w∈W .

Next we recall the definition of the Hausdorff measure and Haus-
dorff dimension of a subset of (Xω,ρ) (see [Edg08, Fal90]). In the setting
of languages and ω-languages this can be read as follows (see [Sta93]).
For F ⊆ Xω and 0≤ α≤ 1 the equation

ILα (F) := lim
l→∞

inf
{

∑
w∈W

r−α·|w| : F ⊆W ·Xω∧∀w(w ∈W → |w| ≥ l)
}

(2)

defines the α-dimensional metric outer measure on Xω. The measure
ILα satisfies the following.

Corollary 1 If ILα (F)< ∞ then ILα+ε (F) = 0 for all ε > 0.

Then the Hausdorff dimension of F is defined as

dimF := sup{α : α = 0∨ ILα (F) = ∞}= inf{α : ILα (F) = 0} .

It should be mentioned that dim is countably stable and shift invariant,
that is,

dim
⋃

i∈IN Fi = sup{dimFi : i ∈ IN} and dimw ·F = dimF . (3)

3 Description Complexity of Finite Words
In this section we briefly recall the concept of description complexity
of finite words. For a more comprehensive introduction see the text-
books [Cal02, DH10, Nie09] and the paper [US96]. We start with plain
complexity.

3.1 Plain Complexity
Recall that the plain complexity (Kolmogorov) of a string w ∈ X∗ w.r.t.
a partial computable function ϕ : X∗→ X∗ is Kϕ(w) = inf{|π| : ϕ(π) = w}.
It is well-known that there is a universal partial computable function
U : X∗→ X∗ such that

KU(w)≤ Kϕ(w)+ cϕ
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holds for all strings w∈ X∗. Here the constant cϕ depends only on U and
ϕ but not on the particular string w∈ X∗. We will denote the complexity
KU simply by K.

Plain complexity satisfies the following property.

Proposition 1 If ϕ : X∗ → X∗ is a partial computable function then
there is a constant c such that

K(ϕ(w))≤ K(w)+ c for all w ∈ X∗ . (4)

We conclude this section by a generalisation of Theorem 2.9 of [Sta93].

Theorem 1 Let W ⊆ X∗ or X∗ \W be computably enumerable, ε, 0 < ε <

1, be a computable real number and let ∑
m
i=0 |W ∩X i| ≤ c · rε·m for some

constant c > 0 and all m ∈ IN. Then

∃c′
(
c′ > 0∧∀w(w ∈W → K(w)≤ ε · |w|+ c′)

)
Proof. Let c≤ rε·m0. Then ∑

m
i=0 |W ∩X i| ≤ |X l| for l ≥ ε · (m+m0).

If W is computably enumerable define a partial computable function
ϕ : X∗→ X∗ as follows.

ϕ(π) := the πth word of length ≤ d |π|−m0
ε
e in the enumeration of W .

(5)
Here we interpret a word π ∈ Xn as a number between 0 and rn−1.

If w ∈ X∗, |w|= m, choose the smallest l ∈ IN, lmin say, such that |X l| ≥
|W ∩X≤m|. This lmin satisfies b lmin

ε
c−m0 =m and thus lmin≤ ε ·(m+m0)+1.

By the above remark there is a π ∈ X lmin such that ϕ(π) = w. Conse-
quently, Kϕ(w)≤ lmin ≤ ε · |w|+ ε ·m0 +1.

If X∗ \W is computably enumerable define a partial computable
function ψ : X∗→ X∗ as follows.

Set m := b |π|
ε
c−m0 and enumerate X∗ \W until ∑

m
i=0 ri− r|π| elements

of length ≤m are enumerated. Then take from the rest the πth word of
length ≤ m as ψ(π).

If w∈W, |w|=m, again choose the smallest lmin ∈ IN such that |X lmin | ≥
∑

m
i=0 |W ∩X i|. Observe that in view of |W ∩X≤m| ≤ |X lmin | this rest contains

W ∩X≤m. As in the above case when W was assumed to be computably
enumerable we obtain that for w ∈W there is a π such that ψ(π) = w
and |π|= lmin. Then the proof proceeds as above. o
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3.2 Monotone and a priori Complexity

In this section we consider a priori and monotone complexity. We derive
some elementary properties needed in the sequel.

We start with the notion of a continuous (cylindrical) semi-measure
on X∗. A continuous (cylindrical) semi-measure on X∗ is a function m :
X∗→ IR+ which satisfies m(e) ≤ 1 and m(w) ≥ ∑x∈X m(wx), for w ∈ X∗. If
there is no danger of confusion, in the sequel we will refer to continuous
(semi)-measures simply as measures.

If m(w) = ∑x∈X m(wx) the function m is called a measure. A semi-
measure m has the following property.

Proposition 2 If C ⊆ w ·X∗ is prefix-free then m(w)≥ ∑v∈C m(v).

Thus, if C⊆ X∗ is infinite and prefix-free, for every ε > 0, there is a word
v ∈C such that m(v)< ε.

A function m : X∗→ IR+ is referred to as left-computable or approx-
imable from below, provided the set {(w,q) : w ∈ X∗ ∧Q ∈ Q∧ 0 ≤ q <

m(w)} is computably enumerable. Right-computability is defined anal-
ogously, and m is referred to as computable if it is right- and left-
computable.

In [ZL70] the existence of a universal left-computable semi-measure
M is proved: There is a left-computable semi-measure M which satis-
fies

∃cm > 0∀w ∈ X∗ : m(w)≤ cm ·M(w), (6)

for all left-computable semi-measures m. M has the following property.

Proposition 3 If ξ ∈ Xω is a computable ω-word then there is a con-
stant cξ > 0 such that M(w)≥ cξ, for all w ∈ pref(ξ).

Proof. If ξ ∈ Xω is a computable ω-word then pref(ξ) is a computable
subset of X∗. Construct a semi-measure mξ such that

mξ(w) =
{

1, if w ∈ pref(ξ) and
0, otherwise.

Then mξ is a computable cylindrical measure and the assertion follows
from Eq. (6). o
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3.2.1 a priori complexity

The a priori complexity of a word w ∈ X∗ is defined as

KA(w) :=
⌈
− log|X |M(w)

⌉
. (7)

The properties of the semi-measure M imply KA(w) ≤ KA(w · v) and
∑v∈C |X |−KA(v) ≤M(e) when C ⊆ X∗ is prefix-free.

From Proposition 3 we obtain that KA does not satisfy the property
of usual plain or prefix complexity that for arbitrary partial computable
functions ϕ : X∗→ X∗ it holds KA(ϕ(w))≤ KA(w)+O(1).

Example 1 Let X = {0,1} and define ϕ(w) := w · 1. We consider the
set 0∗ = pref(0ω) ⊆ X∗. Then, in view of Proposition 3 KA(w) ≤ c for
all w ∈ 0∗ and some constant c. Now, the set ϕ(0∗) = 0∗ · 1 is prefix-
free and according to Proposition 2 the complexity KA(ϕ(v)), v ∈ 0∗, is
unbounded. o

The aim of this section is to prove the fact that a property analogous
to Proposition 1 holds for a subclass of partial computable functions.

Definition 1 A partial mapping ϕ : ⊆X∗→ Y ∗ is referred to as prefix-
monotone (or sequential) provided w,v ∈ dom(ϕ) and wv v imply ϕ(w)v
ϕ(v).

Let Uϕ(w) := Minv{v : v ∈ dom(ϕ)∧wv ϕ(v)} be the upper quasi-inverse
for ϕ (see [Sta87]). Here MinvW is the set of all minimal elements
w.r.t. the prefix ordering v in the language W ⊆ X∗. Then Uϕ has the
following properties.

Lemma 1 Let ϕ be a prefix-monotone partial function mapping dom(ϕ)⊆
X∗ to Y ∗. Then for w ∈ Y ∗,y,y′ ∈ Y and y 6= y′ the following hold.

1. Uϕ(wy)∩Uϕ(wy′) = /0.

2.
⋃

y∈Y Uϕ(wy) is prefix-free, and if v′ ∈ Uϕ(wy) then there is a v ∈
Uϕ(w) such that vv v′.

3. If µ is a cylindrical semi-measure on X∗ then µ(Uϕ(w))≥ ∑
y∈Y

µ(Uϕ(wy)).
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Proof.

1. holds, since wy,wy′ v ϕ(v) implies y = y′.

2. According the definition of Uϕ and to 1.
⋃

y∈Y Uϕ(wy) is a union
of pairwise disjoint prefix-free sets. Assume u ∈ Uϕ(wy) and v ∈
Uϕ(wy′) where u@ v. Then y 6= y′ and wy,wy′ v ϕ(v) which is impos-
sible.

3. follows from 2. and Proposition 2.
o

Lemma 2 If ϕ is a prefix-monotone mapping and µ is a semi-measure
then µϕ : X∗→ R+ defined by the equation

µϕ(w) := ∑v∈Uϕ(w)
µ(v) (8)

is also a semi-measure.

Proof. We use from Lemma 1 the fact that the sets Uϕ(w) are prefix-
free and that for y,y′ ∈Y, y 6= y′ no pair words v ∈Uϕ(wy) and u ∈Uϕ(wy′)
satisfies vv u or uv v. According to Lemma 1.2

⋃
y∈Y Uϕ(wy) is a disjoint

union and prefix-free.
Moreover, for every v′ ∈ Uϕ(wy) there is a v ∈ Uϕ(w) such that v v v′,

and since µ is a semi-measure, µ(v) ≥ ∑v′∈C µ(v′) whenever C ⊆ v ·X∗ is
prefix-free.

Consequently,
µϕ(w) = ∑v∈Uϕ(w) µ(v)≥ ∑x∈X ∑v∈Uϕ(wx) = ∑x∈X µϕ(wx). o

This will allow us to prove the following.

Theorem 2 If µ : X∗ → R+ is a left computable semi-measure and ϕ :
X∗→X∗ is a partial computable prefix-monotone mapping then µϕ : X∗→
R+ defined by Eq. (8) is a left-computable semi-measure.

Proof. By Lemma 2 µϕ is a semi-measure. It remains to show that µϕ

is left computable.
To this end we start with a computable monotone approximation

m(w,s) of µ satisfying (cf. the proof of Theorem 3.16.2 of [DH10])

1. µ(w)≥ m(w,s+1)≥ m(w,s) and

2. for all w ∈ X∗, we have m(w, t)≥ ∑x∈X m(wx, t).
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It is obvious that every mapping m(·,s) is a computable semi-measure.
Moreover, we consider the partially defined prefix-monotone map-

ping ϕt(w) := ϕ(w) if w ∈ dom(t)(ϕ) where dom(t)(ϕ) is the set consisting
of the first t elements in a computable enumeration of dom(ϕ).3

Define µ(t)ϕ (w) := ∑v∈Uϕt
m(v, t) as in Lemma 2. Then µ(t)ϕ is a com-

putable semi-measure.
Since for every v′ ∈Uϕt (w) there is a vv v′ such that v ∈Uϕt+1(w) and

t for v ∈Uϕt+1(w) the set {v′ : vv v′∧v′ ∈Uϕt (w)} is prefix-free, we obtain
µ(t)ϕ (w)≤ µ(t+1)

ϕ (w) for t ∈ N and w ∈ X∗ from Proposition 2.
Finally, we prove lim

t→∞
µ(t)ϕ (w)= µϕ(w)=∑v∈Uϕ(w) µ(v). To this end choose,

for ε > 0, a finite subset {v1, . . . ,v`} ⊆ Uϕ(w) with ∑
`
i=1 µ(vi) ≥ µϕ(w)− ε a

t ∈ IN such that {v1, . . . ,v`} ⊆ dom(t)(ϕ) and m(vi, t) ≥ µ(vi)− ε ·2−i. Then,
clearly, µ(t)ϕ (w)≥ µϕ(w)−2ε. o

As a corollary we obtain the required inequality.

Corollary 2 Let ϕ : X∗ → X∗ be a partial computable prefix-monotone
function. Then there is a constant cϕ such that KA(ϕ(w)) ≤ KA(w)+ cϕ

for all w ∈ X∗.

Proof. Let µ := Mϕ. Then µ is a left-computable semi-measure. Thus
µ(w) = M(ϕ(w))≤ c ·M(w) for some constant c and all w ∈ X∗. o

3.2.2 Monotone complexity

In this section we introduce the monotone complexity along the lines of
[She84] (see [US96]). To this end let E ⊆ X∗×X∗ be a description mode
(a computably enumerable set) universal among all description modes
which satisfy the condition.

(π,w),(π′,v) ∈ E ∧πv π
′→ wv v∨ vv w (9)

Then KE(w) := inf{|π| : ∃u(wv u∧ (π,u) ∈ E)} is the monotone complexity
of the word w. In the sequel we use the term Km(w).

Similar to KA the monotone complexity satisfies also an inequality
involving partial computable sequential functions.

3If |dom(ϕ)|< t set dom(t)(ϕ) := dom(ϕ)
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Corollary 3 Let ϕ : X∗ → X∗ be a partial computable prefix-monotone
function. Then there is a constant cϕ such that Km(ϕ(w)) ≤ Km(w)+ cϕ

for all w ∈ X∗.

Proof. Define Eϕ := {(π′,ϕ(w)) : ∃π(π v π′ ∧ (π,w) ∈ E)}. Then Eϕ is
computably enumerable and satisfies Eq. (9).

Since E is a universal description mode satisfying Eq. (9), we have
KEϕ

(ϕ(w))≤ KE(w)+ cϕ. o

Like a priori complexity monotone complexity has also relations to
semi-measures [USS90, US96].

Proposition 4 Let µ : X∗→ IR+ be a computable continuous semi-mea-
sure. Then Km(w)≤− logµ(w)+O(1).

Finally we mention some relations between the complexities K,KA
and Km (see [DH10, US96]).

KA(w) ≤ Km(w)+O(1), (10)
|K1(w)−K2(w)| ≤ O(log |w|) for Ki ∈ {K,KA,Km} (11)

3.3 Bounds via Hausdorff Dimension

In this section two bounds on the Kolmogorov complexity function from
[Sta93] and [Mie08] are presented. Both are lower bounds which il-
lustrate the principle that large sets contain complex elements. The
first bound is for plain complexity K. Moreover, in Proposition 5 we
present an asymptotic upper bound for some computably describable
ω-languages from [Sta98].

Lemma 3 ([Sta93, Lemma 3.13]) Let F ⊆ Xω and ILα(F)> 0. Then for
every f : IN→ IN satisfying ∑n∈IN r− f (n) < ∞ there is a ξ ∈ F such that
K(ξ�n)≥ae α ·n− f (n).

As a consequence we obtain Ryabko’s bound [Rya86].

κ(F)≥ dimF (12)

For the next lemma we mention that ∑v∈C r−KA(v)≤M(e) for every prefix-
free language C ⊆ X∗.



Bounds on the Kolmogorov complexity function 13

Lemma 4 ([Mie08, Theorem 4.6]) Let F ⊆ Xω and ILα(F)> r−c ·M(e).
Then there is a ξ ∈ F such that KA(ξ�n)≥ae α ·n− c.

Proof. It is readily seen that the set of infinite words not fulfilling the
asserted inequality is the δ-limit of Wc = {w : KA(w)≤ α ·n− c}.

Let Vm = Minv(Wc ∩Xm ·X∗). Then Vm is prefix-free and W δ
c ⊆ VmXω

for all m ∈ IN. Consequently, ILα(W δ
c ) ≤ ∑v∈Vm r−α·|v| ≤ ∑v∈Vm r−KA(v)−c ≤

r−c ·M(e). Then the inequality ILα(F) > ILα(W δ
c ) shows the assertion

F 6⊆W δ
c . o

Proposition 5 If Fi ⊆ Xω,F = {ξ : pref(ξ)⊆ pref(F)}, and X∗ \pref(Fi) is
computably enumerable then κ(

⋃
i∈IN Fi) = dim

⋃
i∈IN Fi.

4 Dilution
It is evident that inserting fixed letters, e.g. zeroes in a computable way
into complex infinite words results in infinite words of lower complexity
(see [Dal74]). This effect – called dilution – was used to obtain partially
random infinite words (see [Sta93, CST06]). Here we are interested in
the result of diluting sets of infinite words via computable mappings.
Dilution can be seen locally as the application of a (computable) prefix-
monotone mapping ϕ : X∗→ X∗ to (the prefixes of) an infinite word.

The extension of this mapping to a partial mapping ϕ : dom(ϕ)→ Xω

is given by a limit process: ϕ(ξ) is the infinite word having infinitely
many prefixes of the form ϕ(w),w @ ξ. If the set {ϕ(w) : w @ ξ} is fi-
nite we say that ϕ(ξ) is not defined, otherwise the identity pref(ϕ(ξ)) =
pref(ϕ(pref(ξ))) holds.

Using the δ-limit this process can be formulated as {ϕ(ξ)}= {ϕ(w) :
w@ ξ}δ (see [Sta87]). The mapping ϕ(ξ), however, need not be continu-
ous on dom(ϕ). For more detailed results on the extension ϕ of (partially
defined) prefix-monotone mappings ϕ : X∗→Y ∗ see [Sta87]. We mention
here only the following.

ϕ(W δ)⊆ ϕ(W )δ if W ⊆ dom(ϕ) (13)

Proof. It is readily seen that {ϕ(ξ)}= ϕ(Vξ)
δ where Vξ ⊆ dom(ϕ) is any

infinite subset of pref(ξ). Thus choose Vξ := pref(ξ)∩W for ξ ∈W δ. Then
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⋃
ξ∈W δ

Vξ ⊆W implies ϕ(W δ) =
⋃

ξ∈W δ

{ϕ(ξ)}=
⋃

ξ∈W δ

ϕ(Vξ)
δ ⊆ ϕ(W )δ. o

4.1 Expansiveness and Hausdorff Dimension
In an addendum to Section 3 of [CH94] a relation between the growth of
the quotient |w|

|ϕ(w)| on the prefixes of ξ ∈ F and the Hausdorff dimension
of the image ϕ(F),F ⊆ Xω, was established. To this end we introduce
the following.

Definition 2 ([CH94, Rei04]) A prefix-monotone mapping ϕ : X∗→Y ∗

is called γ-expansive on ξ ∈ Xω provided liminfw→ξ

|ϕ(w)|
|w| ≥ γ.

We say that ϕ : X∗→ Y ∗ is γ-expansive on F ⊆ Xω if it is γ-expansive
on every ξ ∈ F .

Remark 1 Cai and Hartmanis [CH94] used limsupw→ξ

|w|
|ϕ(w)| = γ as defin-

ing equation. This results in replacing γ by γ−1.

Then Conjecture C of [CH94] claims the following.

Claim 1 Let dimF = α and let ϕ satisfy limsupw→ξ

|w|
|ϕ(w)| = γ for all ξ ∈ F .

Then dimϕ(F)≤ α · γ.
Moreover, if ϕ and ϕ are one-one functions then dimϕ(F) = α · γ.

We can prove here only the first part of this conjecture, for the second
part we derive a counter-example.

Example 2 Let X = {0,1}, mi := ∑
2i
j=0 j! a sequence of rapidly growing

natural numbers and define the prefix-monotone mapping ϕ : {0,1}∗→
{0,1}∗ as follows (w ∈ {0,1}∗,x ∈ {0,1}).

ϕ(e) := e

ϕ(wx) :=
{

ϕ(w)x , if |ϕ(w)x| /∈ {mi : i ∈ IN} and
ϕ(w)x0(2i+1)! , if |ϕ(w)x|= mi.

,

that is ϕ dilutes the input by inserting sparsely long blocks of zeros.
Then ϕ({0,1}ω) = ∏

∞
i=0{0,1}(2i)! ·0(2i+1)! whence dimϕ({0,1}ω) = 0 (cf. Ex-

ample 3.18 of [Sta93]).
On the other hand, limsupw→ξ

|w|
|ϕ(w)| ≤ γ implies γ≥ 1. o
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For a proof of the first part we derive several auxiliary lemmas.

Lemma 5 Let ϕ : X∗→Y ∗ be a prefix-monotone mapping and let V ⊆ X∗.
If c> 0 and for almost all v∈V the relation |v| ≤ c · |ϕ(v)| holds then there
is an n0 ∈ IN such that for all n≥ n0 we have ϕ

(
V ∩X≤c·n)⊇ ϕ(V )∩Y≤n.

Proof. Let v0 ∈ V be a longest word such that |v0| > c · |ϕ(v0)|, and let
n≥ |v0|

c .
Let w ∈ ϕ(V ) and |w| ≤ n. Then there is a v ∈V such that ϕ(v) = w. If

|v| ≤ |v0| then |v| ≤ c · n and if |v| > |v0| then |v| ≤ c · |ϕ(v)| ≤ c · n. In both
cases w ∈ ϕ

(
V ∩X≤c·n). o

Moreover, we use the fact that the Hausdorff dimension of an ω-language
F ⊆ Xω can be described via the entropy of languages W ⊆ X∗. Here for
a language W ⊆ X∗ we define its entropy as usual4 (cf. [Kui70, Sta93]).

HW = limsup
n→∞

logr(|W∩Xn|+1)
n = limsup

n→∞

logr(|W∩X≤n|+1)
n (14)

The following identity gives a relation between Hausdorff dimension
and entropy of languages (see [Sta93, Eq. (3.11)]).

dimF = inf{HW : W ⊆ X∗∧W δ ⊇ F} (15)

Lemma 6 Let ϕ : X∗→Y ∗ be a prefix-monotone mapping which satisfies
ϕ
(
V ∩X≤c·n)⊇ ϕ(V )∩Y≤n for almost all n ∈ IN. Then Hϕ(V ) ≤ c · log|Y ||X | ·

HV .

Proof. If ϕ(V ) is finite the inequality is obvious. Let ϕ(V ) be infinite.
Then using Lemma 5 we obtain

Hϕ(V ) = limsup
n→∞

log|Y ||ϕ(V )∩Y≤n|
n ≤ limsup

n→∞

log|Y ||ϕ(V∩X≤c·n)|
n

≤ limsup
n→∞

log|Y ||V∩X≤c·n|
n = c · log|Y ||X | · limsup

n→∞

log|X ||V∩X≤c·n|
c·n

≤ c · log|Y ||X | · limsup
n→∞

log|X ||V∩X≤n|
n .

o

Then it holds (see also [CH94, Conjecture C] and [Rei04, Proposition
1.19]).

4The +1 in the numerator is added to avoid HW =−∞ for finite W .
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Theorem 3 Let ϕ : X∗ → Y ∗ be a prefix-monotone mapping such that
for all ξ ∈ F the inequality liminf

w→ξ

|ϕ(w)|
|w| ≥ γ is true. Then dimϕ(F) ≤ 1

γ
·

log|Y | |X | ·dimF .

Proof. Using Eq. (15) it suffices to show that for every c > 1
γ

the in-
equality dimϕ(F)≤ c · log|Y | |X | ·dimF holds true.

Let Wc :=
{

w : |ϕ(w)||w| ≥
1
c

}
. Since c > 1

γ
, for every ξ ∈ F the set pref(ξ)\

Wc is finite. Now, consider a W ⊆ X∗ such that W δ ⊇ F . Then for ζ ∈ F
the set (pref(ζ)∩W ) \Wc is finite, too, whereas (pref(ζ)∩W ) is infinite.
Hence F ⊆ (W ∩Wc)

δ.
Now Eq. (13) implies ϕ(F)⊆ ϕ((W ∩Wc)

δ)⊆ ϕ(W ∩Wc)
δ.

Then Lemma 6 yields Hϕ(W∩Wc) ≤ c · log|Y | |X | ·HW∩Wc and thus we ob-
tain dimϕ(F) ≤ Hϕ(W∩Wc) ≤ c · log|Y | |X | ·HW∩Wc. Taking the infimum on
the right hand side yields the assertion. o

4.2 Uniform Dilution and Hölder Condition

Our Theorem 3 is closely related to the Hölder condition (see [Fal90,
Prop. 2.2 and 2.3]). Whereas Theorem 3 holds also for not necessar-
ily continuous mappings ϕ : dom(ϕ)→ Y ω the Hölder condition implies
continuity but yields also bounds on Hausdorff measure.

Theorem 4 Let F ⊆ Xω and Φ : F → Y ω be a mapping such that for
c > 0 and γ > 0 the condition ∀ξ∀η(ξ,η ∈ F → ρ(Φ(ξ),Φ(η)) ≤ c ·ρ(ξ,η)γ)

is fulfilled. Then ILα/γ(Φ(F))≤ cα/γ · ILα(F) for all α ∈ [0,1].

The condition ∃c
(
c > 0∧∀ξ∀η(ξ,η ∈ F → ρ(Φ(ξ),Φ(η)) ≤ c · ρ(ξ,η)γ)

)
is

also known as Hölder condition of exponent γ. The following lemma
gives a connection between Hölder condition of exponent γ and γ-expan-
sive prefix-monotone mappings5.

Lemma 7 Let F ⊆ Xω and Φ : F → Y ω be a mapping such that for c >

0 and γ > 0 the condition ∀ξ∀η(ξ,η ∈ F → ρ(Φ(ξ),Φ(η)) ≤ c · ρ(ξ,η)γ) is
fulfilled.

5This is also the reason why we altered the definition of [CH94].
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Then there is a γ-expansive prefix-monotone mapping ϕ : X∗ → Y ∗

such that ϕ(ξ) = Φ(ξ) for all ξ ∈ F .

Proof. Let m ∈ IN be chosen such that c ≤ rm. Then in view of ρ(Φ(w ·
ξ),Φ(w ·η))≤ c · r−γ·|w| ≤ r−γ·|w|+m for w ·ξ,w ·η ∈ F , every ζ ∈Φ(w ·Xω∩F)

has the same word vw of length dγ · |w|−me as prefix. Thus define ϕ(w) :=
vw for w ∈ pref(F) and ϕ is γ-expansive. o

From the proof of Lemma 7 we see that a Hölder condition of exponent
γ puts a more restrictive requirement on a prefix-monotone mapping
than the mere γ-expansiveness.

If, for some strictly increasing function g : IN→ IN, the prefix-mono-
tone mapping ϕ : X∗→ X∗ satisfies the conditions |ϕ(w)|= g(|w|) and for
every v ∈ pref(ϕ(X∗)) there are wv ∈ X∗ and xv ∈ X such that

ϕ(wv)@ vv ϕ(wv · xv)∧∀y
(
y ∈ X ∧ y 6= xv→ v 6v ϕ(wv · y)

)
(16)

then we call ϕ a dilution function with modulus g. If ϕ is a dilution
function then ϕ is a one-to-one mapping. The condition of Eq. (16) is
equivalent to the fact that for every w∈X∗ and every pair of letters x,y∈
X ,x 6= y, the words ϕ(w · x) and ϕ(w · y) differ in the letter immediately
after ϕ(w), in particular, the words ϕ(w ·x) and ϕ(w ·y) are incomparable
w.r.t. v.

As an illustration we consider the following dilution functions. Let
0 < γ < 1 and define g(n) := dn/γe and ϕ : X∗→ X∗ via (w ∈ X∗,x ∈ X)

ϕ(e) := e, and
ϕ(wx) := ϕ(w) · xg(n+1)−g(n) .

Since g(n)− 1 < n
γ
≤ g(n) < n

γ
+ 1 and, consequently, γ · g(n)− γ < n ≤ γ ·

g(n) < n+ γ, the dilution function ϕ satisfies ρ(ϕ(ξ),ϕ(η)) = r−g(n) ⇐⇒
ρ(ξ,η) = r−n, that is, ϕ and ϕ

−1 satisfy the following Hölder conditions
on Xω or ϕ(Xω), respectively.

ρ(ϕ(ξ),ϕ(η)) ≤ r−n/γ = ρ(ξ,η)1/γ, and
ρ(ξ,η) ≤ r−γ·n+γ = rγ ·ρ(ϕ(ξ),ϕ(η))γ .

As a consequence we obtain ILγ(ϕ(Xω))≤ IL1(Xω) = 1≤ r · ILγ(ϕ(Xω)) set-
ting α = 1 or α = γ in Theorem 4.

Thus we can state the following properties of computably diluted
ω-languages.
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Proposition 6 Let 1 > γ > 0 be a computable real number, g(n) := dn
γ
e

and ϕ : X∗ → X∗ a computable dilution function with with modulus g.
Then dimϕ(Xω) = γ, ILγ(ϕ(Xω)) > 0 and there is a ξ ∈ ϕ(Xω) such that
KA(ξ�n)≥ γ ·n− c for some constant c.

Moreover, for K ∈ {K,KA,Km} the complexity functions K(ξ�n) are
bounded by γ ·n+ c′ for some constant c′.

Proof. The first assertion is shown above, and the lower bound follows
from Lemma 4.

Using Proposition 1 and Corollaries 2 and 3 we have the bounds
K(ϕ(w)) ≤ γ · |w|+ c. Since the differences |ϕ(wx)| − |ϕ(w)| are bounded
by 1+γ

γ
, the intermediate values K(v),wv vvwx, cannot exceed the value

γ · |v| too much. o

The most complex ω-words in ϕ(Xω) satisfy |KA(ξ�n)− γ · n| = O(1), a
behaviour which for γ = 1 characterises random ω-words. Thus their
behaviour might be seen as a scaled down by factor γ randomness, a
case of partial randomness. Partial randomness allows for oscillations
above the slope γ · n (see [CST06, Tad02]). The partially random ω-
words in ϕ(Xω), however, exhibit an oscillation-free randomness (see
also [Sta08, MS09]).

5 Infinite Products and Self-Similarity

Another way to describe sets of infinite words is to concatenate them
as infinite products with factors chosen from a given set of finite words
V . This resembles one of defining a subset F ⊆ Xω via the recurrence
F =V ·F . Since the mappings Φw(ξ) :=w ·ξ of the space (Xω,ρ) into itself
are metric similarities, the sets

F =V ·F =
⋃

w∈V

Φw(F) (17)

are self-similar sets in the space (Xω,ρ). An equation like Eq. (17) may,
however, have a great variety of solutions (see [Sta97]). Fortunately,
there is a unique maximal w.r.t. set inclusion solution which is the
ω-power V ω of the language V . Relations between self-similarity and
ω-power languages were investigated e.g. in [FS01, Sta96, Tad02].
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In this section we focus on iterated function systems (Φv)v∈V where
V ⊆ X∗ is prefix-free. Thus the mappings Φv map the space (Xω,ρ) into
pairwise disjoint parts. A special rôle here plays the similarity dimen-
sion of the system (Φv)v∈V . It turns out that it coincides with the Haus-
dorff dimension of the infinite product V ω.

5.1 Dimension and Asymptotic Complexity
In this part we review some results on the Hausdorff dimension of ω-
power languages and their asymptotic complexities.

We start with some results on the Hausdorff dimension of ω-power
languages W ω (see [Sta93] or, in a more general setting [FS01]).

Eq. (6.2) of [Sta93] yields the following connection between the en-
tropy of W ∗ and the Hausdorff dimension of W ω.

dimW ω = HW ∗ (18)

Next we review some results on the upper and lower asymptotic com-
plexity for ω-power languages W ω.

Proposition 7 ([Sta93, Lemma 6.7]) If the language W ∗ ⊆ X∗ or its
complement X∗\W ∗ are computably enumerable then κ(W ω)= κ

(
(W ∗)δ

)
=

dimW ω.

Moreover W ω contains always an ω-word of highest upper asymptotic
complexity (see [Sta93]) and, moreover, its closure C (W ω) in (Xω,ρ) has
the same upper bound (see Corollary 6.11 and Eq (6.13) of [Sta93]).

Lemma 8 κ(W ω) = κ(C (W ω)) = max{κ(ξ) : ξ ∈W ω} ≥Hpref(W ∗).

For computably enumerable languages W we have the following exact
bound.

Proposition 8 ([Sta93, Proposition 6.15]) If W ⊆ X∗ is computably
enumerable then κ(W ω) = Hpref(W ∗)

5.2 Similarity Dimension
Let V ⊆ X∗ and t1(V ) := sup{t : t ≥ 0∧∑i∈IN |V ∩X i| · t i ≤ 1}. Then the pa-
rameter − logr t1(V ) is the similarity dimension of the system (Φv)v∈V .
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If V is finite (Φv)v∈V is a usual IFS and − logr t1(V ) is the (unique) solu-
tion of the equation ∑v∈V r−α·|v| = 1, so one may replace ≤ by = in the
definition of t1(V ).

The value t1(V ) fulfils the following (see [Kui70, Sta93]).

Lemma 9 If V ⊆ X∗ is prefix-free then − logr t1(V ) = HV ∗ .

Thus, for prefix-free languages V ⊆ X∗ Eq. (18) and Lemma 9 imply
∑v∈V r−α·|v| ≤ 1 for α = dimV ω.

In [Sta05b] for certain ω-power languages a necessary and sufficient
condition to be of non-null α-dimensional Hausdorff measure was de-
rived. In this respect, for a language V ⊆ X∗, the α-residue of V derived
by w, the value resα(V,w) := r−α|w|

∑v∈V r−α|v| = ∑wv∈V r−α|v| for w ∈ pref(V )

plays a special rôle.

Theorem 5 ([Sta05b]) Let V ⊆ X∗ be prefix-free and ∑v∈V r−α|v| = 1.
Then α = dimV ω, and, moreover ILα(V ω)> 0 if and only if the α-residues
resα(V,w) of V are bounded from above.

Thus in view of Lemma 4 such V ω contain sequences ξ having a
linear lower complexity bound α · n− c for a priori complexity. It is
interesting to observe that bounding the α-residues of V from below
yields a linear upper bound on the slope α on the complexity of ω-words
in the closure C (V ω).

5.3 Plain Complexity

First we show that bounding the α-residues of V from below results
in an upper bound on the number of prefixes of V ω. Then we apply
Theorem 1 to computably enumerable prefix-free languages V to show
that a positive lower bound to the α-residues of V implies a linear upper
bound on the complexity function K(ξ�n) for ξ ∈ C (V ω).

Lemma 10 Let V ⊆ X∗ be prefix-free, ∑v∈V r−α|v| ≤ 1 and ∑wv∈V r−α|v| ≥
c′ > 0 for all w ∈ pref(V ). Then |pref(V ∗)∩X l| ≤ c · rα·l for some constant
c > 0 and all l ∈ IN.

Proof. We have pref(V ∗)∩X l = pref(V l)∩X l for l ∈ IN. Let a :=∑v∈V r−α|v|.
Since V is prefix-free, al =∑v∈V l r−α|v|=∑|w|=l,w∈pref(V ∗)

(
r−α·l ·∑wv∈V l r−α|v|).
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If w = v1 · · ·viw−1 ·w′ with v j ∈ V and w′ ∈ pref(V ) then {v : wv ∈ V l} ⊇
{v : w′v ∈V l−iw+1} ⊇ {v : w′v ∈V} ·V l−iw.

Thus, ∑wv∈V l r−α|v|≥∑w′v∈V r−α|v| ·al−iw ≥ c′ ·al−iw ≥ c′ ·al and we obtain
al ≥ r−α·l · |pref(V ∗)∩X l| · c′ ·al which proves our assertion. o

Now, the fact that pref(V ∗) is computably enumerable if only V is com-
putably enumerable yields our result.

Lemma 11 ([MS09, Lemma 7]) Let V ⊆X∗ be computably enumerable
and prefix-free, α be right-computable and ∑v∈V r−α·|v| = a ≤ 1.

If there is a c > 0 such that ∑wv∈V r−α·|v| ≥ c for all w ∈ pref(V ) then
there is a constant c such that

K(ξ�n)≤ α ·n+ c for every ξ ∈ C (V ω) .

5.4 A priori and Monotone Complexity
Lemma 10, however is not applicable to a priori and monotone com-
plexity. To this end we construct, for prefix-free languages V ⊆ X∗ and
values α ∈ IR+ such that ∑v∈V r−α·|v| ≤ 1 a continuous semi-measure µ
satisfying µ(w) = r−α·|w| for w∈V ∗ (see the proof of [Sta08, Lemma 3.9]).

Proposition 9 Let V ⊆ X∗ be prefix-free, α > 0 and ∑v∈V r−α·|v|≤ 1. Then
µ : X∗→ IR+ where

µ(w) =



0 , if w /∈ pref(V ∗)
r−α·|w| , if w ∈V ∗

∑wv∈V r−α|wv| , if w ∈ pref(V )\{e}

µ(u) ·µ(v) , if w = u · v
with u ∈V ·V ∗∧ v ∈ pref(V )\V

(19)

is a continuous semi-measure on X∗. If, moreover, ∑v∈V r−α·|v| = 1 then µ
is a continuous measure.

Proof. We have to show that µ(w)≥∑x∈X µ(wx). We prove this by induc-
tion.

The equation µ(w) ≥ ∑x∈X µ(wx) for w ∈ pref(V ) \V follows directly
from the requirement ∑v∈V r−α·|v| ≤ 1 and the third line of the construc-
tion. Observe that µ(e)> ∑x∈X µ(x) = ∑v∈V r−α·|v| if ∑v∈V r−α·|v| < 1.
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Let w ∈ V ·pref(V ∗). Since V is prefix-free, the decomposition in the
last line of the construction is unique. Thus w = u · v where u ∈ V ·V ∗
and v ∈ pref(V ) \V . Consequently, µ(w) = µ(u) · µ(v) ≥ µ(u) ·∑x∈X µ(vx) =
∑x∈X µ(wx).

Finally, if w /∈V ·pref(V ∗)∪pref(V ) = pref(V ∗) then also wx /∈ pref(V ∗),
and the inequality is trivially satisfied.

If ∑v∈V r−α·|v| = 1 then µ(w) = ∑x∈X µ(wx) for w ∈ pref(V ) \V and the
identity µ(w) = ∑x∈X µ(wx) follows by induction. o

Now we can prove the announced bounds.

Lemma 12 ([MS09, Lemma 3]) Let V ⊆ X∗ be a computably enumer-
able and prefix-free, α be right-computable such that ∑v∈V r−α·|v| = a ≤ 1
and the α-residues resα(V,w) := ∑wv∈V r−α|v| of V derived by w ∈ pref(V )

be bounded from below. Then there is a constant c such that for every
ξ ∈ C (V ω)

KA(ξ�n)≤ α ·n+ c .

Proof. First we show that the semi-measure µ constructed in the
previous proposition is left-computable.

To show that µ is left-computable we successively approximate the
value µ(w) from below. Let Vi be the set of the first i elements in the
enumeration of V and αi the ith approximation of α from the right.
We start with µ( j)(e) = 1 for j > 0 and µ(0)(w) := 0 for w 6= e. Suppose
that the jth approximation µ( j) for all words shorter than w is already
computed. If there is a v ∈ Vj with w = v ·w′, w′ 6= e, then µ( j)(w′) is
defined and we set µ( j)(w) = µ( j)(v) · µ( j)(w′). Otherwise, if w ∈ pref(Vj)

we set µ( j)(w) = ∑v∈V j∧wvv r−α j·|v|. If w /∈ pref(Vj)∪Vj ·X∗ then µ( j)(w) = 0.
From the construction in Proposition 9 we obtain that µ(w) = r−α|u| ·

∑vv′∈V r−α|vv′|= r−α|w| ·resα(V,v) when w= u ·v is the unique decomposition
of w ∈ pref(V ∗) into factors u ∈V ∗ and v ∈ pref(V )\V .

Let cinf := inf{resα(V,v) : v ∈ pref(V )}. Since µ is a left-computable
semi-measure, the following inequality holds true.

M(w) · cµ ≥ µ(w) ≥ r−α|w| · cinf

Taking the negative logarithm on both sides of the inequality we obtain
KA(w)≤ α · |w|+ log cµ

cinf
for every w ∈ pref(V ∗). o
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The following example shows, that in Lemma 12 we cannot omit the
condition that the α-residues are bounded from below. To this end we
use a computable prefix-free language constructed in Example (6.4) of
[Sta93].

Example 3 Let X={0,1} and consider W :=
⋃

i∈IN 0i+1 ·1 ·X i+1 ·04·i+3. The
language W is a prefix-free. Its ω-power, W ω, satisfies α = dimW ω =

dimC (W ω) = 1
3 and ILα(W ω) = ILα(C (W ω)). For every w ∈

⋃
i∈IN 0i+1 · 1 ·

X i+1 we have W ∩w ·X∗ = w · {04·i+3}. Thus ∑wv∈W r−α·|v| = r−α·(4·i+3) and,
consequently, inf{∑wv∈W r−α·|v| : w ∈ pref(W )}= 0.

Since pref(W )⊇
⋃

i∈IN 0i+1 ·1 ·X i+1, we have Hpref(W )∗ ≥ 1
2 . Now Propo-

sition 8 shows sup
ξ∈W ω

limsup
n→∞

KA(ξ�n)
n = κ(W ω)≥ 1

2 > 1
3 = dimW ω. o

In connection with Theorem 5 our Lemma 12 yields a sufficient condi-
tion for ω-powers V ω to contain ω-words ξ satisfying |KA(ξ�n)−α ·n|=
O(1).

Corollary 4 Let V ⊆ X∗ be a computably enumerable prefix-free lan-
guage and α right-computable such that ∑v∈V r−α·|v| = 1 and the α-resi-
dues resα(V,w) of V derived by w ∈ pref(V ) are bounded from above and
below. Then there is a ξ ∈V ω such that |KA(ξ�n)−α ·n|= O(1).

The results of Section 3.2 of [Sta08] show that Corollary 4 is valid for
prefix-free languages definable by finite automata. The subsequent
example verifies that there are also non-regular prefix-free languages
which satisfy the hypotheses of Corollary 4.

Example 4 Let X = {0,1} and consider the Łukasiewicz language L
defined by the identity L = 0∪ 1 · L2. This language is prefix-free and
Kuich [Kui70] showed that ∑w∈L 2−|w| = 1. Thus the language V defined
by V = 00∪ 11 ·V 2 is also prefix-free and satisfies ∑v∈V 2−

1
2 ·|w| = 1. By

induction one shows that for v∈ pref(V ) we have V/v=w′ ·V k for suitable
k ∈ IN and |w′| ≤ 1. Therefore the α-residues of V derived by v ∈ pref(V )

are bounded from above and below. o

For the monotone complexity Km a result similar to Lemma 12 can be
obtained for a smaller class of ω-languages. We start with an auxiliary
result.
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Proposition 10 Let V ⊆ X∗ be computably enumerable.

1. If ∑v∈V r−α|v| = 1 then α is left-computable.

2. If ∑v∈V r−α|v| = 1 and α is right-computable then V is computable.

Proof. The proof of part 1 is obvious. To prove part 2 we present an
algorithm to decide whether a word w is in V or not.

Let Vj be the set of the first j elements in the enumeration of V and
α j the j th approximation of α from the right.

Input w
j := 0
repeat

j := j+1
if w ∈Vj then accept and exit

until r−α j|w|+∑v∈V j r−α j|v| > 1
reject

If w /∈ V then the repeat until loop terminates as soon as ∑v∈V j r−α j|v| >

1− r−α j|w| ≥ 1− r−α|w| because ∑v∈V j r−α j|v|→ 1 for j→ ∞. o

Now we can prove our result on monotone complexity.

Lemma 13 ([MS09, Lemma 4]) Let V ⊆ X∗ be a computably enumer-
able prefix-free language. If α is right-computable such that ∑v∈V r−α·|v|=

1 and the α-residues resα(V,w) derived by w ∈ pref(V ) are bounded from
below then there is a constant c such that Km(ξ�n) ≤ α · n+ c for every
ξ ∈ C (V ω).

Proof. We construct µ as in Proposition 9. Then ∑v∈V r−α·|v| = 1 implies
that µ is a measure and Lemma 12 shows that µ is left-computable.

Because of Proposition 10 we can assume that α is a computable
real number and V is computable. Then for every v ∈ V ∗ the number
µ(v) = is computable. Since V is a computable prefix-free language, for
every w ∈ X∗ we can compute the unique decomposition w = v ·w′ with
v ∈V ∗ and w′ /∈V ·X∗. Now

µ(w) = µ(v) ·
(

1−∑v′∈V∧w 6vvv′ r
−α|v′|

)
shows that µ is also right-computable. If w′ /∈ pref(V ) then the last factor
is zero.
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Again let cinf := inf
{

∑wv∈V r−α·|v| : w ∈ pref(V )
}

. In view of Proposi-
tion 4 we get the bound

Km(w)≤− logµ(w)+ cµ ≤ α · |w|+ cµ− logcinf

for every w ∈ pref(V ∗). o

As for Lemma 12 we obtain a sufficient condition for ω-powers V ω to
contain ω-words ξ satisfying |Km(ξ�n)−α ·n|= O(1).

Corollary 5 Let V ⊆ X∗ be a computably enumerable prefix-free lan-
guage and α right-computable such that ∑v∈V r−α·|v| = 1 and the α-resi-
dues resα(V,w) of V derived by w ∈ pref(V ) are bounded from above and
below. Then there is a ξ ∈V ω such that |Km(ξ�n)−α ·n|= O(1).

Concluding Remark

Proposition 6 and the Lemmata 12 and 13 show that in certain com-
putably describable ω-languages the maximally complex strings have
(up to an additive constant) linear oscillation-free complexity functions
w.r.t. a priori and monotone complexity. Though in the case of plain
complexity we have also linear upper bounds Theorems 4.8 and 4.12 of
[Sta93] show that maximally complex infinite strings in ω-languages
definable by finite automata (in particular, those of the form V ω with V
definable by a finite automaton) exhibit complexity oscillations similar
to random infinite strings (cf. Theorem 6.10 of [Cal02] or Lemma 3.11.1
in [DH10]).

For prefix complexity (see [Cal02, Section 4.2], [DH10, Section 3.5]
or [Nie09, Section 2.2]), however, it seems to be not as simple to obtain
linear upper bounds on the complexity function (see [CHS11, Tad10])
let alone to detect an oscillation-free behaviour as mentioned above.
In fact, Theorem 5 of [Sta12] shows that the oscillation-free behaviour
w.r.t. to prefix complexity differs substantially from the one of a priori
complexity.
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[Nie09] André Nies. Computability and randomness, volume 51
of Oxford Logic Guides. Oxford University Press, Oxford,
2009.

[Rei04] Jan Reimann. Computability and Fractal Dimension. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2004.

[Rya86] Boris Ya. Ryabko. Noise-free coding of combinatorial
sources, Hausdorff dimension and Kolmogorov complexity.
Problemy Peredachi Informatsii, 22(3):16–26, 1986.

[She84] Aleksander Kh. Shen´. Algorithmic variants of the notion
of entropy. Dokl. Akad. Nauk SSSR, 276(3):563–566, 1984.

[Sta87] Ludwig Staiger. Sequential mappings of ω-languages.
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