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We present a class of hybrid classical systems using quantum co-
processors and point out that unlike purely quantum computers, such
hybrids can be both universal and Turing complete; we introduce such
quantum-classical hybrids as “quassical.” We discuss the benefits of
quassical architectures from a theoretical point of view: for some classes
of problems they achieve computational supremacy. From a practical
point of view, quassical architectures can also reduce the overhead bur-
den imposed by most error correction schemes and minimize the chal-
lenges of interconnecting qubits in a usefully large connection graph.
All quantum computing systems are cyber-physical machines and thus
quassical to at least a trivial degree but only the more profoundly quas-
sical hybrids can exhibit an optimum problem-solving capability for
the amount of quantum resources deployed. Most significantly, quas-
sical architectures advance our thinking past that of seeing quantum
machines as simply quantum embodiments of classical ones and can
enliven whole new fields of analytical thinking that takes us beyond
quantum information science per se into a deeper understanding of the
duality between quantum information and fundamental thermodynam-
ics, possibly suggesting unexpectedly useful new technologies.

1 QUANTUM VS. CLASSICAL COMPUTING

Lockheed Martin (LM) pioneered the use of quantum computing in an indus-
trial environment in 2010 with the acquisition jointly with the University of
Southern California of a D-Wave adiabatic quantum computer. In spite of a
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2 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

decade’s effort by a moderately sized team at LM, USC and elsewhere, we
are still maturing quite juvenile initiatives around the few applications we’ve
identified as quantum computing’s “sweet spots”. Perhaps the main lesson is
that while quantum computing has advanced tremendously in nearly every
respect (hardware, software, algorithms, and application concepts), the scale
of available quantum computers is inadequate for many applications and still
facing a stiff headwind growing the capability sufficient to pose an alternative
to massively parallel high performance classical systems.
Furthermore, we know that quantum systems cannot do anything classi-

cal systems cannot also do – the quantum advantage, if any, is solely one of
more efficient algorithms – sometimes called ‘quantum speedup’ or ‘quan-
tum supremacy’, [7], and of representation of engineering problems in a
more natural way. Of course, there is great interest in problems that are so
intractable that no classical machine could solve with practical resources of
time and size. Moreover, quantum computation, though universal, is signif-
icantly restricted in terms of “Turing completeness” compared to classical
computers.
The two classical notions of universality and Turing completeness are not

equivalent – a fact which explains some wrong claims. Turing constructed a
universal Turing machine capable of simulating any other Turing machine.
His result when transformed into a definition1reveals that some classes of
computing machines have universal machines, while others do not. The class
of quantum gate-based machines, [18], the most studied architecture of quan-
tum computing, has no universal machine in the sense of Turing, as the
required equality cannot be satisfied, but a weak form of universality is true
when the equality is replaced with an arbitrary close approximation:

Solovay-Kitaev theorem. Every quantum gate operation can be approxi-
mated with arbitrary precision by a finite sequence of quantum gates from a
finite set of quantum gates, like {Ising gate and the phase-shift gate} or the
set {Hadamard gate, the π/8 gate, the controlled-NOT gate}.

1A class of (computing) machines M = (mi ) has a universal machine if there exists a machine u ∈ M
such that for every m ∈ M there (effectively) exists an i such that m(x) = mi (x) and u(0i1x) = mi (x),
for all bit strings x . The input 0i1x for u codes the machine index i and the input x . Some classes of
computing machines have universal machines, others do not. Here are some examples:

! Turing theorem. The class of Turing machines has a universal Turing machine.! Chaitin theorem. The class of self-delimiting Turing machines (machines having prefix-free
domains) has a universal self-delimiting Turing machine.! Reversibility theorem. The class of reversible Turing machines (machines whose computations
can be fully undone) has a universal reversible Turing machine, [5].! Folklore theorem. The class of finite state transducers has no universal finite state transducer.
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QUASSICAL COMPUTING 3

The second concept derived from Turing’s analysis is completeness. A
class of (computational) machines C is Turing complete if for every Turing
machine m there exists a machine c in C such that m(x) = c(x), for all bit
strings x. Informally, every Turing machine can be (exactly) simulated by
some machine in the class C.
This definition can be used to show that some classes of powerful

machines have severe restricted computational capacity, which, in particular,
colors our view of the potential future for quantum computer:

! The class of self-delimiting Turing machines is not Turing complete.
(Reason: every self-delimiting Turing machine computes only strictly
partial functions, i.e. functions which are not defined everywhere.)! The class of reversible Turing machines is not Turing complete. (Rea-
son: every reversible Turing machine computes only injective func-
tions.)! The quantum computing gate model is not Turing complete. (Reason:
quantum gates compute only total functions, functions defined every-
where.)

Thus, there are large classes of problems that may not be modelled by
injective functions or functions at all, but that map the physical world effi-
ciently and yet are not accessible to quantum computers, or to important
classes of classical ones either, but may be amenable to the more elaborate
quassical architectures we envision here. The most important such class we
suspect is the class of pedagogical problems – problems that can be solved
with some form of machine learning but are difficult to reduce to functional
mathematics otherwise.
There appear to be two primary obstacles facing those seeking to render

quantum computers useful. First, the decoherence problem2 3 – when con-
sidered as state machines at useful scales, today’s quantum models of com-
puting and their corresponding hardware implementations are quite fragile
with respect to data integrity; coherence durations are typically but a few
milliseconds or micro-seconds and circuit depths are therefore shallow.4 The
startlingly unexpected finding over the past two decades that error correction
is possible in quantum computing even allowing for the prohibition against
copying an unknown quantum state, while rejuvenating enthusiasm for

2That is, the process whereby quantum superposition decays into mutually exclusive classical alterna-
tives, a mixed state, that results in loss of information from a system into the environment and “robs”
the quantum computer of its power.
3Symptomatically, a form of quassicality can produce qubits with long coherence times, see [23].
4Some results suggest that the Adiabatic Quantum Computing model is more robust against decoher-
ence than the Quantum Gate model. See also [25].
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4 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

quantum computing, threatens a huge increase in overhead. Microsoft may
have the best idea with their topological approach, which encodes informa-
tion in topologically protected states of qubit arrays via braiding Majorana
quasiparticles, thus never allowing the errors to get into the calculation rather
than correcting it after they do – but they are behind the others in demon-
strating the achievable validity of their ideas in hardware (though catching
up now with encouraging speed).
Second, the challenge of tying clusters of qubits together with appropri-

ate channels to form mathematically useful gates has turned out to be much
more difficult than originally thought – perhaps due to the grossly impossi-
ble simplifying assumptions one can get away with in mathematics compared
to what is realizable in practical and affordable engineering. Like the human
brain, quantum computing systems benefit as much, or perhaps more so, from
connections as from the multiplicity identity of the qubit. And designing,
building and managing communication lines between qubits has turned out to
be as hard as or harder than building good qubits. While there are theoretical
proposals for quantum architectures using all-to-all connectivity, [14, 22], so
far only a small portion of a complete graph is offered. We fear that to accom-
modate larger problems, heroically elaborate networks of quantum channels
will be required to significantly improve connectivity and they’ll be much
slower at communicating than one would desire.5 So, the first, though tenta-
tive, insight we can offer is that Hight Performance Computing (HPC) is not
threatened, at all, by quantum computing – at least not yet, and maybe never.

2 QUANTUM NUMBER CRUNCHING OR INSIGHT?

Some have said that our difficulties in finding productive applications for the
D-Wave machine6 were due to the poor quality of the machine, its qubits
not having long coherence times, the adiabatic algorithm being too narrow
to be useful mathematically, the chimera graph connection scheme of the D-
Wave designs being too sparse, and that the machine is not actually making
use of quantum effects after all. We have watched and helped as our part-
ners at D-Wave, USC and NASA-Ames have addressed each one of those
objections over the years and have been able, more or less, to set each aside –
not that the D-Wave products cannot be improved, but they are, we’ve con-
cluded, genuine quantum computers. Moreover, the putative weaknesses of
any particular model of quantum computer is a red herring. All flavors of the
universal quantum computer, as Feynman believed, will be equally capable at
5But one cannot exclude that the connectivity problem may turn out to be yet another practical trade-
off, not a fundamental limitation.
6For more information about this approach to quantum computing see [16].
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QUASSICAL COMPUTING 5

their foundations. The controversies over which is better may be misguided.
While there is some truth to each view, the current arguments do not cap-
ture the real weakness or the real benefit of any design. The valid concerns
are and should be how the discovery of the underlying quantum logic and
its embodiment in realizable quantum computing hardware is changing and
will change our way of thinking about and analyzing truly relevant problems.
This “representation” goal of ours is quite a different end than the search
for quantum speedup or quantum supremacy, which may nonetheless come
along as a welcome side-effect.

3 QUANTUM VS. DIGITAL THINKING

That said, we now turn to what we’ve found quantum computers can do and
do so well that it is hard to see how classical computing, even HPC’s, could
ever catch up to them in spite of the validity of John Preskill’s assertion that
though it may operate according to different physical principles than a clas-
sical computer, [a quantum computer] cannot do anything that a classical
computer can’t do, [21] – and most experts would agree with John . . . as we
do.
We start with an analogy: while all number systems can be mapped into

the decimal positional one we all use today, non-positional ones, like Roman
numerals, are much harder to write algorithms for. This highlights the critical
advantages of having the right “representation” for any problem: the best rep-
resentations foster deep insight into how to solve it and moreover, the wrong
representation may block any solution whatsoever. We are increasingly con-
fident that the real value of quantum computing lies not in quantum speedup,
or supremacy, but in the profound appropriateness of the quantum insight for
guiding us toward solutions to our most important problems. Feynman cap-
tured it in his 1982 talk [9]: I’m not happy [he wrote] with all the analyses
that go with just the classical theory, because nature isn’t classical, dammit,
and if you want to make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because it doesn’t look
so easy. Feynman never mentions quantum speed-up in his talk because it
wasn’t so clear at that time that there’d be any – the fabulous quantum Fourier
algorithms of Peter Shor did not appear till more than a decade later. Rather
what Feynman was concerned about was the basic inadequacy of classical
algorithms in quantum physics, whatever their completeness or precision.
His example was that of calculating the probabilities that John Bell’s the-
orizing and Alan Aspect’s experiments revealed about the nature of quantum
entanglement. Feynman generalized from them: the discovery of comput-
ers and the thinking about computers has turned out to be extremely useful
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6 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

in many branches of human reasoning. There are interesting philosophical
questions about reasoning, and relationship, observation, and measurement
and so on, which computers have stimulated us to think about anew, with new
types of thinking. And computer-type of thinking [when extended to quan-
tum computing] would give us some new ideas At first, one might conclude
that Feynman was talking about simple analog computing. Quantum com-
puters are analog machines after all because they operate analogously to the
interactions of quantum particles. But in the years since it has become clear
that there’s a profound relationship, an intrinsic duality of sorts, between the
seemingly continuous-time analogs of physics and the definitively discrete
arithmetic of computational analysis when it comes to quantum computing.
Because of the quantization of physics, quantum computers have theoreti-
cally the precision of digital classical ones7 and yet behave analogically with
respect to quantum physics – so they are especially suited to simulations of
physics – but their suitability goes well beyond that – this suggests there is a
continuous-discrete duality of sorts to quantum computing. That notion is not
well laid out in either computer science or mathematics (though Robinson’s
non-standard analysis offers a place to start, a better framework, for it seems
to presage the suggestively continuous dualities undergirding the Solovay-
Kitaev theorem8 – see for example the Michael Nielsen and Chris Dawson
paper on the theorem). Maybe the physicists, or the neurobiologists have an
inkling, but no one seems focused on it.
For quantum computing, digital thinking – meaning formulating the prob-

lem in terms of classical gates, transforming a classical formulation into a
quantum equivalent, and then running the program on a quantum computer –
will not lead to efficient quantum solutions and likely will not see any speed
up or representational benefit. Most programs for the D-Wave machine were
obtained via this simplistic approach. A better approach, though, is to think
from the very beginning of the problem in analogous quantum terms and then
naturally solve it on a quantum machine. We have seen this same scenario in
the history of molecular computing: reformulating arithmetic operations in
terms of molecular operations was abandoned to a direct molecular approach,
e.g. using and programming directly a biological transistor and DNA chips.
While the initial interest in this field was to tackle NP-hard problems, it was
soon realized that they may not be best suited for this type of computation.
This insight seems also valid for quantum computing.

7There are substantial engineering challenges in realizing adequate levels of precision in controlling
the quantum computation, a problem potentially as important as decoherence.
8“In the case of quantum computers . . . The set of possible quantum gates forms a continuum, and it’s
not necessarily possible to use one gate set to simulate another exactly. Instead, some approximation
may be necessary.” See [20].
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QUASSICAL COMPUTING 7

4 QUASSICAL COMPUTING

This quantum analog-discrete duality, we have concluded, is best exploited
for practical applications by conjoining quantum with classical computers in
a profoundly intimate way we’ve called the “quassical computer”, a term the
first author coined [8]. From the very first, at LMwe tied the D-Wave machine
into our engineering network so that any one of our engineers could call it up
from her workstation in MatLab as if it were a MatLab function or script. We
did this because our D-Wave, like all QCs being developed today, requires
some preliminary classical pre-processing to shape the problem into one the
quantum computer can recognize and then to receive the data returned by the
D-Wave and shape it into the answer the engineer needs. Many QC offerors
will, of course, provide this pre- and post-processing as part of their operating
systems so it will be invisible to the user but it’s still there of course, visible or
not. And, of course, all the quantum computers we’ve heard of are designed
as cyber-physical systems, quantum mechanical systems controlled by digital
controllers. So we expect all these new offerings to be quassical in this trivial
sense.
At an intermediate level, a quassical machine might need a fundamentally

richer/more expressible language than a classical programming language (as
MatLab) to program it.9 But there is a much more profound sense in which
the principle of quassicality can greatly strengthen the quantum computing
vision and we will describe that principle now.
Consider a simple Cartesian lattice or matrix. Tracing a path from cell to

cell to the right (as in reading a line of text in a Western book) is classical
computing, a classical Turing Machine with each cell being a ‘step’ along
the tape of a Turing machine, a Turing step. Also going from classical state
to classical state implies a measurement and thus any quantum information
that might have been present in the cell is collapsed into a single classical
state in the ambulatory process. Typically, in real classical computers, such
a progression of classical states is not reversible, but that is not fundamen-
tally so, it is so simply because classical computer designers have elected to
design them that way. Thus adding two numbers together to get one cannot
be reversed if we lose track of how the sum was originally partitioned. But
using techniques invented and perfected by Landauer [12] and Bennett [6],
classical computing can be made fully reversible by keeping a complete his-
torical accounting of how all the partitions are collapsed. And so, following
the notion that irreversible computing is merely a special case of reversible
computing where the accounting is ignored or discarded (uses less memory

9Being stuck with classical programming languages could be an obstacle in using a quassical computer
to its full power even if we had one.
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8 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

of course and speeds things up as complete accounting is intensive work), we
elect to do our classical computing reversibly so that one may read a line of
classical argument either right to left or left to right – doing a calculation or
undoing it precisely. This decision is not so arbitrary either, for if information
is physical, as most have argued since the seminal papers of Landauer and
Bennet, discarding complexity must at least partially collapse phase space
and thus increase entropy and hence incur an energy cost. So, it necessarily
generates heat whereas reversible computing is or can be fully adiabatic.
We define traveling downward (upward) from one line of cells to the line

below (above) in our Cartesian lattice as a unitary quantum evolution which is
always reversible, so no ‘measurement’ takes place when reading downward
(upward) through the cells. Accordingly, any cell in the lattice may be inter-
preted (reinterpreted) as a quantum or a classical datum: we can reinterpret
the classical state (described by some vector) as a quantum state (typically
a superposition of some of quantum states, but also described by a vector);
reinterpretation takes place wholly in the mind – there is no experimental
counterpart, so there is no wave function collapse into classical informa-
tion. We can do this because classical information is merely a special case of
quantum information, a projection of quantum information onto a less com-
plex thermodynamic space. Both are vectors existing in the same vast Hilbert
space but the classical vector is merely an irreversible (and hence exother-
mic) compression in complexity of the quantum one, a lower dimensional
slice through Hilbert space. Heat emission is intrinsic to quantum measure-
ment processes; when measured data is funnelled down in complexity into
whatever the measuring instrument can handle (within the quantum rules,
e.g., the uncertainty principles, the no-cloning theorem, the Holevo bound,
etc.), entropy is increased, heat is generated. But in our quassical model, the
additional data is not lost just stored elsewhere so the process can be adia-
batic, [10].

5 TRAJECTORY LENGTH AND SLOPE THROUGH THE
QUASSICAL CUBE

Using this Cartesian lattice as a sketch pad, one can draw trajectories for
computation using hybrid quantum-classical circuits, that is, quassical cir-
cuits. And most significantly, one can measure the distance between states
that can be reached by combinations of traversing between states quantumly
(upward or downward in direction) and classically (sideways in direction) –
contracting the complexity from quantum to classical, and then re-expanding
it back to quantum as required – no information is lost, no heat rejected. In
order to assure reversibility, of course, one must always keep the information
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QUASSICAL COMPUTING 9

put aside each time a step is taken to the right and reabsorb that information
each time a step is taken to the left. Likewise, each time a qubit is measured,
collapsing its information content down to a classical bit, the information not
embedded in the classical bit must be accounted for and stored off-line so it
can be restored in the reverse operation – reinterpreting a bit as a qubit. This
is an imagined reversal of the quantum measurement process. ‘Off-line’ here
means in a cell or cells not part of the two dimensional pathway through the
lattice – thus implying the existence of a third dimension (which, of course,
may be merely a remote and unused portion elsewhere on the same lattice).
And the stored data must be stored in the correct order according to the way
it was generated as is required to achieve the reversal (or tagged so that the
correct sequence can be reconstructed when re-expanding it to its unrecon-
structed status). Thus, the complete embodiment of the idealized quassical
computer is a three dimensional volume, a cubical information structure each
slice of which contains quassical information. A ‘circuit’ in this embodiment
is any pathway from cell to adjacent cell to adjacent cell, etc., traced through
the quassical cube, making use of an orthogonal dimension storehouse as nec-
essary. Consequently, the third dimension, meaning the order, structure, and,
thus, entropy of the storehouse is determined by the history of calculation
because it must contain all data required to render the calculation reversible –
so it is not unconstrained and thus not a true “degree of freedom” in the strict
sense of the phrase.
Now we define the length of any pathway through the quassical cube, for

in that definition lies one of the fundamental aspects of the quassical insight.
It is related to the circuit depth: “the depth of a circuit” through a computer, as
Preskill writes, is the number of time-steps required, assuming that gates act-
ing on distinct bits can operate simultaneously (that is, the depth is the maxi-
mum length of a directed path from the input to the output of the circuit). The
“width of a circuit”, the maximum number of gates (including identity gates
acting on “resting” bits) that act in any one time step, quantifies the storage
space used to execute the computation.10 We can take a 2-dimensional slice
through our quassical cube of cells and each cell of that slice is a special gate,
a quassical gate (one that exhibits quantum-classical duality).
There are some obvious things to say about a quassical cube: first, it can

contain all meaningful data11 and thus all physical states (implied to include
10In a very nice and clear lecture on topological quantum computing delivered by Microsoft Sta-
tion Q scientist Dr. R. Lutchyn [15] it is suggested that an attractive quassical architecture might use
“conventional quantum computing circuits” to perform calculations while topological qubits would be
employed to store quantum information. Thus a physical realization of a profoundly quassical system
might be one in which the topological qubits form a new “third” dimension above the “conventional
qubits” in our quassical cube.
11The meaning of “meaningful” here stems from the physics of the process which must remain fully
adiabatic in the sense that all information is conserved and in accordance with Landauer law, i.e., just
as energy is conserved, so must be information.
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10 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

any associated data, their ‘quassical meanings’) have a home somewhere
in the cubic volume. Second, each datum in a quassical cube has the dual
quantum-classical character (so each unit “cell” is really at least a column of
cells storing both the state itself and data above and below that cell that is
required to traverse it in any of the four possible directions: up, down, right,
left (recall this “additional dimension” is not independent) so each is a “slice”
through a qubit. It may, of course, be better understood if each cell is con-
sidered a quassical unit computer, a universal quassical gate, containing the
minimum functionality to serve both its local and its system-level purpose.
Is the model of quassicality described above equivalent with adiabatic

quantum computing? [17]. The answer is negative: quassical computing
is more powerful than quantum annealing/adiabatic quantum computing
because it is Turing complete, whereas the latter is not by a well-known
equivalence [4].
Could the model of quassicality described above lead to quantum

supremacy? [24]. A quantum computational supremacy experiment has to
prove both a lower bound and an upper bound. The upper bound comes from
from the running time of a quassical algorithm and the lower bound is nec-
essary for proving that no classical computer can match it. Proving lower
bounds is notoriously more difficult to prove than upper bounds; verifying
them experimentally is even more demanding1.
One of the first non-trivial examples of quassical algorithms is related to

Grover’s quantum algorithm (which, we recall, solves the following problem:
access to an unsorted quantum database that can be queried with a quantum
input is given and asked if it contains a specific entry). Grover’s algorithm
offers a provable speedup, though not an exponential one and, more impor-
tantly, the problem it solves is far from being realistic: the cost of construct-
ing the quantum database could negate any advantage of the algorithm, and
in many classical scenarios one could do much better by simply creating (and
maintaining) an ordered database. In 2005 Lanzagorta and Uhlmann [13]
used Grover’s algorithm as a quantum subroutine of a classical algorithm
for solving problems in image processing. This quassical approach is prov-
ably more efficient than the direct use of Grover’s algorithm because the cost
of preparing the quantum “database” can be spread out over several calls.
Abbott at al. [2] describe a quassical algorithm for quantum annealers

that mitigates the need to embed problem instances within the (often highly
restricted) connectivity graph of the annealer. More precisely, the paper
shows how a raw speedup that is negated by the embedding time can nonethe-
less be exploited to give a practical speedup in solving certain computational
problems, like the maximum weight independent set problem. When applied
to a large enough batch of instances of such a problem, the quassical algo-
rithm theoretically outperforms any classical algorithm solving the problem.

IJUC˙011018˙Calude˙V2 10



QUASSICAL COMPUTING 11

While an experimental in-depth study on the D-Wave 2X machine of such
a problem was not able to confirm a quantum speedup, the advantage of the
hybrid approach was robustly verified.
Now imagine that we are able to refine our theory to the point where each

quassical cell of the cube is made so finely that the process of stepping from
one cell to the next can be considered a continuous one defining a pathway
that is a continuous process i.e., drawn as a continuous line – not a discrete
walk of many steps. Then it becomes clear that, in general, the shortest dis-
tance between any two locations in the cube (between, that is, an input prob-
lem statement and its answer output) must be along a diagonal, cutting across
quantum and classical evolutions alike and thus must include both quantum-
like and classical-like operations, for it is only in rare and improbable cases
that a purely classical route or a purely quantum route will be optimal. In a
perfect world this shortest distance is akin to the algorithmic complexity of
the problem (as proposed by Chaitin and Kolmogorov). This, then is the first
fundamental aspect of the quassical architecture: it realizes the least circuit
depth, the least complex pathway for executing calculation.

6 THE JOZSA CONJECTURE

A conjecture posed by Richard Jozsa, noted that measurement-based models
of quantum computing [11] gives two examples of measurement based QC:
“one way quantum computing”, and “teleportation quantum computing”. See
also [19]. It can provide a natural formalism for separating a quantum algo-
rithm into classical parts and quantum parts In [the measurement based]
formalism any quantum computation is viewed as a sequence of classical
and quantum layers. The total quantum state is passed from one quantum
layer to the next [this is the vertical traverse in our quassical lattice] and
the quantum actions carried out in the next layer are determined by clas-
sical computations on measurement outcomes from previous layers [this is
the horizontal traverse across our lattice]. He goes on then to his important
conjecture that any polynomial time quantum algorithm can be implemented
with only O(log n) quantum layers interspersed with polynomial time clas-
sical computations. This conjecture, asserting an exponential reduction in
the essential “quantum content” of any quantum algorithm, has no analogue
in classical complexity theory Intuitively we are conjecturing that polyno-
mial time classical computation needs relatively little “quantum assistance”
to achieve the full power of polynomial time quantum computation.We note
that all quantum computing models can be rewritten or reinterpreted as mea-
surement based systems, so his conjecture has wider implications than his
paper asserts.

IJUC˙011018˙Calude˙V2 11



12 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

Applying his conjecture to our quassical lattice implies that the full power
realizable from quantum computing (that is, the vertical distance from an
input point in the quassical cube to an output point that is precisely below
or precisely above it) can be achieved by a diagonal line that also traverses
many classical states. Diagonals will have more depth (more time steps) than
either vertical or horizontal lines but they also have two critical features that
render them especially appealing: they greatly extend the utility of circuits
fashioned from qubits with limited coherence time, and they substantially
reduce the difficulties of achieving more complete connection graphs.
The ‘coherence time’ advantage stems from the potential for limiting the

amount of time the computer’s state must be represented by purely quan-
tum data. All manifestations of the qubit (ion traps, superconducting circuits,
polarized photons, even topological braids of Majorana fermions, etc.) suffer
decoherence to some extent and require error correction in the form of addi-
tional overhead to achieve acceptable levels of fault tolerance.12 These error
correction circuits pose what can become an unbearable burden by increas-
ing the number of physical qubits and qubit-to-qubit communication chan-
nels required to form a single, fault-tolerant “logical qubit” (tens, hundreds,
or even thousands of physical qubits and connections per logical qubit up to
a limit posed by the threshold theorem). The quassical architecture would,
in principle, allow the design of pathways through the system that shortened
the amount of time the information must remain in its quantum state and that
could maintain the state of the computer in classical vectors transmuting them
back into quantum vectors only for the purpose of performing a portion of the
calculation that is best done in the Hilbert space of quantum computing (e.g.,
the quantum Fourier transform, quantum amplification, etc.). The coherence
time through a quassical lattice is proportional to the slope of the diagonal –
so that reducing the amount of time the computer’s executive spends in quan-
tum space necessarily entails spending more time in classical space and rotat-
ing the diagonal trajectory toward the classical limit and implying more time
steps. This may or may not be advantageous from a quantum speedup point
of view, but it is certainly advantageous from a decoherence point of view.
Another advantage of the quassical architecture relates to interconnec-

tions between qubits. The seriousness of the interconnection challenge has
been truly recognized only recently as more engineering groups are attempt-
ing to create useful systems of many qubits. In the D-Wave designs, all the
qubits are arrayed on a chip, a 2-dimensional grid in Chimera graph, which
is almost, but not a planar graph. The connections are only between nearest
neighbors, so that most of the qubits on a pathway between any two qubits
we may want to connect must be sacrificed to fashion a quantum connection

12This is not as acute in the quantum annealing paradigm, [1].
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channel. A little thought about graph theory and topology reveals that this
problem is intrinsic to more or less every quantum computer design one can
engineer with a non-complete graph architecture in our three dimensional
world. We refer to this as the “graph” or “topological” constraint inherent in
the architecture of quantum computers. Classical computers of course have
the same problem, but it is much less acute because of the absence of quantum
fragility and the facility with which classical bits may be copied and amplified
when routing them through arbitrary networks of communication channels.
The quassical architecture can, in principle, move some of the information
through classical channels greatly mitigating the topological graph problem.
One of the more natural applications of the quassical architecture became

evident to the first author in the course of an experiment conducted to use
the D-Wave machine to a deep learning problem. The experiment [3] studied
a class of pedagogical methods based on using the D-Wave machine as the
‘instructor’ for a deep learning network and, as many have since discovered,
quantum computers can be used to train neural networks more efficiently
(less circuit depth) and with more accuracy and precision per training cycle
than using classical techniques. Pedagogy, wherein the “professor” is quan-
tum and the student is a classical network, is a natural and suggestive appli-
cation of quassical computing. In particular, one would like to know whether
a simple pedagogical quassical gate could be designed and how “universal”
that gate would be. Here universal is intended in the sense defined above for
the quantum gate model of quantum computing.

7 CONCLUSION: THE FUTURE GLIMPSED FROM OUR
OBSERVATION POINT

We hope we have conveyed our intuitions that quantum computers will not
make classical machines obsolete: quite the contrary, they will be integrated
into classical machines as co-processors of a sort perhaps like the ways Jozsa
sets forth in his essay on measurement-based quantum computing. So, we
hold that quantum computing will extend and enhance classical computing
– not supplant it. Moreover, the best integrations of quantum— and classical
computers13 will exploit non-trivial, profound quassicality because it offers a
more cost-effective pathway to the full power of quantum computing without
excessive error correction overhead or the achievement of exotic coherence
times for qubits – even crumby qubits can excel in quassical architectures.14

13Reversible classical computing, see the Reversibility Theorem above, offers probably the most natu-
ral candidate.
14Measurement-based models of quantum computing, discussed above, could be viewed as a different
form of “quassical computing” wherein the quantum computer, like in the neural network training
algorithm, is used as a co-processor within a larger iterative classical algorithm.

IJUC˙011018˙Calude˙V2 13



14 EDWARD H. “NED” ALLEN AND CRISTIAN S. CALUDE

In addition, the topological connectivity graph constraint may be largely
lifted for quassical architectures, providing all the more appeal for quassi-
cal designs. But perhaps the most important legacy of quassical architectures
will be that they advance our thinking past that of seeing quantum machines
as simply quantum embodiments of classical algorithms and machines. They
will enable a whole new field of quassical thinking that extends beyond quan-
tum information science to support a new and clearer understanding of quan-
tum information science and its fundamental thermodynamic dual and, thus,
spawn whole families of unanticipated new technology.
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