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1. Introduction

Alan Turing, one of the founders of modern Computer Science, during
the whole his lifetime was fond of Number Theory. His very last paper
that he saw published, namely, [36], was in Number Theory. That paper1

was devoted to computer veri�cation of the celebrated Riemann Hypothesis;
nowadays it is one of the seven Millenium problems [2].

The Hypothesis predicts the positions of complex zeroes of so called Rie-

mann's zeta function. This meromorphic function can be de�ned for <(s) > 1
by a Dirichlet series,

ζ(s) =

∞∑
n=1

1

ns
. (1)

L. Euler gave another de�nition of this function,

ζ(s) =
∏

p prime

1

1− p−s
. (2)

The equality of the right-hand sides in (1) and (2), known as Euler iden-
tity, is essentially an analytical form of the Fundamental Theorem of Arith-

metic, stating that every natural number can be represented in a unique way
as a product of powers of prime numbers. This is the reason why Riemann's
zeta function plays so important role in the study of prime numbers.

1More details about Turing's contribution to Number Theory can be found in [8, 7, 17,
9, 4].
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In particular, B.Riemann proved in his seminal paper [33] that

π(x) = Li(x)− 1

2
Li(x

1
2 ) +

∑
ζ(ρ)=0

Li(xρ) + small terms. (3)

Here π(x) denotes the number of primes below some bound x,

Li(x) =

∫ x

2

1

ln(t)
dt. (4)

and the summation is taken over non-real zeroes of Riemann's zeta func-
tion. According to the Riemann Hypothesis, all these zeros should have real
parts equal to 1/2. In terms of the function π(x) the Hypothesis can be
reformulated as

π(x)− Li(x) = O(x
1
2 log(x)). (5)

The Riemann Hypothesis has many other important corollaries in Num-
ber Theory and, more surprisingly, in Computer Science as well. In particu-
lar, the best known today deterministic test for the primality of a number p
has complexity Ω(p6); but already in 1976 G. L.Miller [29] proposed an algo-
rithm of complexity O(p4) assuming the validity of the (extended) Riemann

Hypothesis.
Table 1 shows results of computational veri�cation of the Riemann

Hypothesis for the initial (pairs of conjugate) zeros of the zeta function.
It should be emphasized that, while it was done via �nite computation
with numbers of �nite accuracy, the computations present mathematically
rigourous proofs that the real parts of these zeros are exactly equal to 1/2.

Reported in [36] contribution of Turing, that is, about zeros from 1042nd
to 1104th, does not look impressive compared neither with his predecessor
no with his follower. However, it was a milestone in numerical veri�cation
of the Riemann Hypothesis. On the one hand, it was one of the �rst usage
of an electronic computer for proving non-trivial mathematical statements.
But more important is the following: for performing his computation Turing
developed an e�cient method for testing the Riemann Hypothesis. It is know
in Number Theory as Turing method and all subsequent computations, up
to our days, are based on this method.

In a typical paper about Turing one reads that he has published only two
number-theoretical paper, [37, 36]. This is not quite so. Turing dealt with
the Riemann Hypothesis also in his Ph.D. thesis which was later published as
[35]. There he introduced the notion of number-theoretical theorems. Turing
wrote:

By a number-theoretic theorem we shall mean a theorem of
the form �θ(x) vanishes for in�nitely many natural numbers x�,
where θ(x) is a primitive recursive function. ... An alternative
form for number-theoretic theorems is �for each natural number
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Year Number of zeroes Author

1903 15 J. P. Gram

1914 79 R. J. Backlund

1925 138 J. I. Hutchinson

1936 1041 E. C. Titchmarsh

1953 1104 A. M. Turing

1956 25000 D. H. Lehmer

1958 35337 N. A. Meller

1966 250000 R. S. Lehman

1968 3500000 J. B. Rosser, J. M. Yohe, L. Schoenfeld

1977 40000000 R. P. Brent

1979 81000001 R. P. Brent

1982 200000001 R. P. Brent, J. van de Lune,
H. J. J. te Riele, D. T. Winter

1983 300000001 J. van de Lune, H. J. J. te Riele

1986 1500000001 J. van de Lune, H. J. J. te Riele,
D. T. Winter

2004 900000000000 S. Wedeniwski

2004 10000000000000 X. Gourdon

Table 1: Numerical veri�cation of the Riemann Hypothesis

x there exists a natural number y such that φ(x, y) vanishes�,
where φ(x, y) is primitive recursive.

Respectively, a problem is called number-theoretical if its solution can be
given in the form of a number-theoretical theorem. It is easy to see that the
set of such problems is exactly the class Π0

2 from the arithmetical hierarchy.
As one of the examples of a number-theoretical problems Turing proves

that the Riemann Hypothesis can be reformulated as Π0
2 statement.

It is interesting to note that Turing didn't believe in the validity of the
Riemann Hypothesis. He wrote in [36]:

The calculations were done in an optimistic hope that a zero
would be found o� the critical line [where <(s) = 1/2], and the
calculations were directed more towards �nding such zeros than
proving that none existed.

The class of arithmetical statements which can be refuted by a �nite
calculation is Π0

1, and in 1958 G.Kreisel improved Turing's result by con-
structing a Π0

1 formula equivalent to the Riemann Hypothesis2.

2This was just a particular application of a very general technique developed by Kreisel
in [25].
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Neither Turing's no Kreisel's reformulations of the Riemann Hypothesis
immediately attracted attention of specialists in Number Theory. The sit-
uation changed in 1970 when the author made the last step in the proof of
what is nowadays referred to as DPRM-theorem3. This theorem establishes
that every formula from Π0

1 with parameters a1, . . . , am is equivalent to a
formula of the special form

∀x1 . . . xn[P (a1, . . . , am, x1 . . . xn) 6= 0] (6)

where P is a polynomial with integer coe�cients.
Together with the above mentioned result of Kreisel, DPRM-theorem

has the following corollary: one can construct a particular polynomial

R(x1 . . . xn) with integer coe�cients such that the Riemann Hypothesis is

equivalent to the statement that Diophantine equation

R(x1 . . . xn) = 0 (7)

has no solutions.
A method for an actual construction of such an equation (7) was de-

scribed in [19, Section 2]. Later a simpli�ed version was presented in [3,
Section 6.4]; more details are supplied in [11]; both methods are discussed
in [32].

DPRM-theorem was worked out as a tool to establish the undecidability
of Hilbert's 10th problem. It is one of the 23 mathematical problems posed
by D.Hilbert in 1900 in [23]. In this problem he asked for an algorithm for
recognizing whether given arbitrary Diophantine equation has a solution.

The Riemann Hypothesis is a part of Hilbert's 8th problem. Now an
equation (7) shows that this Hypothesis is a very special case of the 10th
problem; such a relationship (found via the Computability Theory) between
the 8th and 10th Hilbert's problems seems have never been anticipated by
specialists in Number Theory.

Hardly we can hope to prove (or refute) the Riemann Hypothesis by
examining corresponding Diophantine equation (7). But we can look at
such reformulation from a di�erent point of view. Namely, besides the formal
proof of the undecidability of Hilbert's 10th problem, we have an informal
�evidence� of the di�culty of Diophantine equations � for some of them one
cam easily prove that they are equivalent to the tricky Riemann Hypothesis.

But how could one measure the di�culty of a mathematical problem?
C. S.Calude, E.Calude, and M. J.Dinneen ([15], for further development see
[13, 14, 12]) suggested that the complexity of a statement from Π0

1 can be
de�ned as the complexity of the simplest machine (or program) that never

3After M.Davis, H. Putnam, J.Robinson and Yu.Matiyasevich; for detailed proofs see,
for example, [1, 3, 27, 18, 24]
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Figure 1: Non-Deterministic Diophantine Machine

halts if and only if the statement is true. Among other famous mathemat-
ical problems they estimated (from above) the complexity of the Riemann
Hypothesis. Of course, such a bound heavily depends on our current level
of knowledge, and it will drastically fell down if someday someone proves or
refutes the Riemann Hypothesis.

The numerical value of such complexity measure depends also on the
formalism used for describing computations. L.Adleman and K.Manders [6]
introduced the notion of Non-Deterministic Diophantine Machine, NDDM
for short. Each such machine is speci�ed by a parametric Diophantine equa-
tion

P (a, x1, . . . , xn) = 0 (8)

and works as follows: on input a it guesses the numbers x1, . . . , xn and then
checks (8); if the equality holds, then a is accepted.

The DPRM-theorem is exactly the statement that NDDMs are as pow-
erful as, say, Turing machines4. Thus the di�culty of any problem from
Π0

1 can be measured by any complexity measure (such as the number of the
unknowns and the degree) of the Diophantine equation from corresponding
NDDM. In particular, equations equivalent to the Riemann Hypothesis (de-
scribed, for example, in [19, 3, 11]) can perform this role with respect to the
Hypothesis.

In [15, 14, 16] a version of register machines was used for estimating
the complexity of mathematical problems. Such models of computational

4The crucial question is whether NDDMs are as e�cient as Turing machines. If they

are, then NDDMs could be used for the study of P
?
=NP problem. Partial progress in this

direction was archived in [6] but this intriguing question still remains open.
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devices were proposed in 1961 by J. Lambek [26], by Z.A.Melzak [28], and
by M.L.Minsky [30] (see also [31]). A register machine has a �nite number
of registers capable to contain arbitrary large non-negative integers. Types
of possible instructions can varies. In [15, 14, 16] they are rather powerful:
assigning an arbitrary value to a register, adding the values of two registers,
conditional branches and calling subroutines. The Riemann Hypothesis is
presented in [16] by a program with 178 such instructions (this is an im-
provement over machine with 290 instructions provided in [15]).

More recently, A.Yedidia and S.Aaronson [38] constructed a classical
Turing machine with two-letter tape alphabet which, having started with
the empty tape, will never halt if and only if the Riemann Hypothesis is
true. Their machine has 5372 state. Its construction was based on the
reformulation of the Riemann Hypothesis used in [19] for constructing cor-
responding Diophantine equation (7). The usage of another reformulation
presented in [3, Section 6.4] reduced the number of states to 744 (see [5]).

Register machines constructed in [15, 16] are also based on the same
reformulation of the Riemann Hypothesis from [3]. In the next Section we
introduce a di�erent method of refuting the Riemann Hypothesis (if it false)
by a �nite computation. It is presented in two forms: as the Python program
from Figure 2 and as the register machine from Figure 3. This machine has
only 128 instructions, and they are of two very simple types in style of [26]
and [30]: to increment or decrement a register by 1. As it was remarked
in [30], register machines with such primitive instructions can be viewed as
Turing machines with several always empty semi-in�nite tapes (only the ends
of the tapes are marked with a special symbol).

2. New construction

We start with the well-known reformulation of the Riemann Hypothesis
via Chebyshev psi function,

ψ(n) = ln(q(n)), (9)

where q(n) is the least common multiple of numbers 1, . . . , n. Functions
π(n) and ψ(n) are closely related but the latter allows simpler (without
integral (4)) reformulation of the Riemann hypothesis. For our goal it better
to state the necessary and the su�cient conditions separately. Namely,

• the Riemann Hypothesis implies that for all n > 1

ψ(n)− n < 1

25
n

1
2 ln(n)2; (10)

• if for some constant C for all su�ciently large n

ψ(n)− n < Cn
1
2 ln(n)2 (11)

then the Riemann Hypothesis holds.
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The bound 1/(8π) on the absolute value of the left-hand side in (10) for
n ≥ 74 was given in [34] (see also [9, Theorem 4.6]); it is easy to verify that
one-sided inequality (10) holds for n = 2, . . . , 73 as well. The su�ciency
of the condition (11) follows from the well-known Ω±-result about the psi
function (see, for example, [9, Theorem 4.8]). We shall use the fact that
whenever C > 1/25, the su�cient condition (11) is weaker than the necessary
condition (10).

The main di�culty in the implementation of these conditions via com-
putational devices is caused by the necessity to calculate the real-valued
natural logarithms, in (9) and in (10)�(11). Methods for overcoming similar
di�culty when constructing Diophantine equation (7) were proposed in [19]
and [3] and then adopted in [15, 16] and in [38] for machines. The methods
used in this paper are quite di�erent. It is more oriented on computations
because main calculated quantities are de�ned by recursion.

First, instead of computing the natural logarithm in (9), we shall work
with (the integer part of) the binary logarithm,

l(n) = blog2(q(n))c. (12)

Clearly,
0 ≤ log2(q(n))− l(n) < 1. (13)

However, we need to transform the binary logarithms into natural ones;
to this end we shall calculate (approximate value of) the natural logarithm,
but of single number only, namely, of 2. Let

b(n) =

n−1∑
k=1

(−1)k+1k−1, (14)

so ln(2) = b(∞). For n ≥ 30 we have the elementary inequality∣∣ ln(2)− b(n)
∣∣ < 3

5
n−1. (15)

Together with (13) this implies that for n ≥ 30∣∣ψ(n)− b(n)l(n)
∣∣ < 1

25
n

1
2 ln(n)2. (16)

Actually, in order to deal with integers only, we shall calculate not b(n)
but its multiple

d(n) =
(2n− 2)!!

2
b(n). (17)

This can be done via the recurrent relations

d(1) = 0, d(n+ 1) = 2nd(n)− (−1)n(2n− 2)!!. (18)
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Our elimination of the logarithms in (10)�(11) is based on the Prime

Number Theorem5 stating that function π(n) growth approximately as
n/ ln(n). We do not need to know the exact asymptotic behavior of this
function but we need explicit lower and upper bounds valid for su�ciently
large n. We shall use the Chebyshev type6 inequalities: for n ≥ 30

1 <
π(n)

n/ ln(n)
<

13

10
. (19)

The same double factorial, (2n−2)!! from (17), will be used for calculation

of an approximation to n
1
2 . Namely, according to the Stirling formula, for

n ≥ 30
9

2
n5/2 <

(2n+ 3)!!

(2n− 2)!!
< 5n5/2. (20)

Now (10), (16), (19), and (20) imply that for n ≥ 30

π(n)2 (d(n)l(n)− f0(n)) < f3(n) (21)

where

f0(n) =
(2n)!!

2!!
, f3(n) =

(2n+ 3)!!

5!!
. (22)

In fact, the inequality (21) holds for n = 1, . . . , 29 as well, which can be
veri�ed by a direct numerical calculation.

In its turn, the inequality (21), together with (16), (19), and (20), implies
(11) with C = 2/5. Thus the ful�lment of the inequality (21) for all n is a
necessary and su�cient condition for the validity of the Riemann Hypothesis.

The least common multiple, q(n) from (21), can be calculated via the
recurrent equations:

q(1) = 1, q(n+ 1) = (n+ 1)q(n)/g(n+ 1) (23)

where
g(m) = GCD(m, q(m− 1)). (24)

Calculated by Euclidean algorithm greatest common divisor (24) can be
used also for calculating π(n) via the recurrent relations

π(1) = 0, π(n+ 1) =

{
π(n) + 1, if g(n) = 1,

π(n), otherwise.
(25)

5The theorem was proved independently by J.Hadamard [22] and by Ch.-J. de la Vall�ee
Poussin [20].

6Other inequalities, 0.921 · · · < π(n)/(n/ ln(n)) < 1.105 . . . , are attributed in many
papers and books to P. L.Chebyshev as valid for all n ≥ 30. It was indicated in [10]
that in fact these inequalities fail, for example, for n = 100. In reality, Chebyshev had
proved inequalities with such bounds but for the ratio ψ(n)/n. The validity of (19) can
be deduced from sharper bounds known for su�ciently large n (see, for example, [21]) and
numerical veri�cation for remaining smaller values of n.
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from math import gcd

d=m=p=0

f0=f1=f3=n=q=1

while p**2*(m-f0)<f3:

d=2*n*d-(-1)**n*f1

n=n+1

g=gcd(n,q)

q=n*q/g

if g==1: p=p+1

m=0; q2=q

while q2>1:

q2=q2//2; m=m+d

f1=2*f0

f0=2*n*f0

f3=(2*n+3)*f3

Figure 2: Python program that never halts if and only the Riemann Hypothesis is true

At last, functions (22) are calculated via the natural recurrent relations:

f0(1) = 1, f0(n+ 1) = (2n+ 2)f0(n), (26)

f3(1) = 1, f3(n+ 1) = (2n+ 5)f3(n). (27)

Combining the recursions (18), (23), and (25)�(27), we come to the fol-
lowing result: the Riemann Hypothesis is valid if and only if the program on

Figure 2 never halts.
Figure 3 presents a register machine that never halts if and only if the

Riemann Hypothesis is true. The machine has 24 registers D, D1, D2, F0�F7,
G, G1, M, N, N1, N2, P, P1, Q, Q1�Q3, S which are empty when the machine
starts. Instructions have two form: either

〈label〉〈register〉++[〈next〉] (28)

or
〈label〉〈register〉−−〈jump〉[: 〈next〉] (29)

In the former case performing instruction label, the machine increases
register by 1 and goes to performing instruction next. In the latter case,
the machine tries to decrease register by 1 and then to go to instruc-
tion next; however if register was empty, its content does not change and
the machine proceeds to performing instruction jump. In the case when
next=label+1, the instruction can be abridged by omitting next. The ma-
chine starts from instruction 1; there is no instruction 0 so the machine halts
whenever it should go to instruction next=0 or jump=0.

9



1F0++ 33G++31 65N1++ 97Q2++96

2F1++ 34Q2--41 66Q3--69 98F2--101

3F3++ 35Q2++ 67Q++ 99F0++

4N++ 36G--31 68Q1++66 100M--98:98

5Q++ 37N2++36 69Q--71 101P--108

6N--14 38N2++ 70Q3++69 102P1++

7N1++ 39G--31 71F4--74 103M--106

8D--11 40Q2++39 72F0++ 104F7++

9D1++ 41G--46 73F2++71 105D2++103

10D2++8 42P++ 74F0--77 106F7--101

11D1--6 43G--46 75F4++ 107M++106

12D++ 44P--45 76F2++74 108P1--115

13D2++11 45G++ 77F5--80 109P++

14S--17 46G++ 78F3++ 110D2--113

15F1--20 47F0--51 79F6++77 111F7++

16D2--15:15 48F1++ 80F3--64 112N2++110

17S++ 49F1++ 81F5++ 113F7--108

18F1--20 50F4++47 82F6++80 114D2++113

19D2++18 51G--54 83Q1--86 115F6--0

20D--21:20 52Q3--57 84Q++ 116F3++

21D2--24 53G1++51 85Q2++83 117N2--118:115

22D++ 54Q++ 86Q2--89 118F6--120

23D1++21 55G1--51 87Q2--89 119F3++118

24N1++ 56G++55 88Q1++86 120D1--121:120

25Q--28 57Q--59 89Q1--98 121D2--122:121

26Q2++ 58Q3++57 90Q2++ 122F4--123:122

27Q3++25 59F3--64 91D1--94 123F5--124:123

28N1--31 60F5++ 92D2++ 124M--125:124

29N++ 61F6++ 93M++91 125N1--127

30N2++28 62F6++ 94D2--96 126N++125

31N2--34 63F6++59 95D1++94 127N2--128:127

32Q2--38 64N--83 96Q1--86 128Q3--6:128

Figure 3: Register machine that never halts if and only the Riemann Hypothesis is true
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Translation of the program from Figure 2 into a register machine may
be done quite straightforwardly. However, a small economy can be achieved.
Namely, calculations of q=n*q/g, f0=2*n*f0 and f3=(2*n+3)*f3 can be
performed within the same cycle of length n.
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