8888888

CDMTCS
Research
Report
Series

Graph Minor Embeddings
for D-Wave Computer
Architecture

Zongcheng Yang

Michael J. Dinneen
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-503
November 2016

Centre for Discrete Mathematics and
Theoretical Computer Science

1

Why is computing important? Because computing can solve things that human beings
are not capable of solving due to complexity or the possibility of inconsistent errors,
or time. After realizing the importance of computing, both practical and theoretical
research continues, people are spending more resources in an effort to develop a better
computing model. By Moore’s law [24], the number of transistors in an integrated
circuit doubles approximately every two years. Although the exponential speed-ups
held steady from 1975 until around 2012, it was predicted that growth would slow
around recent years since current hardware approaches the physical limits. People
are trying to use an alternative technology called quantum computing to maintain

Graph Minor Embeddings for
D-Wave Computer Architecture

Zongcheng (Lucas) Yang and Michael J. Dinneen

Department of Computer Science, University of Auckland,
Auckland, New Zealand

zyan632Qaucklanduni.ac.nz mjd@cs.auckland.ac.nz

Abstract

The D-Wave system architecture is designed to deal with quantum anneal-
ing to solve computational problems. To run or solve a problem by the D-Wave
hardware, we need to first transform the problem into an Ising or Quadratic
Unconstrained Binary Optimization (QUBO) instance, then embed Hamilto-
nians (logical qubit relationships) onto the actual D-Wave hardware which is
currently based on Chimera graphs (physical qubit couplings). In order to have
better performance of D-Wave’s quantum annealing, an efficient algorithm to
find good embeddings needs to be obtained. In this paper, we present some
heuristic algorithms for minor embedding an arbitrary guest graph onto a host
Chimera graph. Our implementations show these new algorithms are practi-
cal for sparse graphs with hundreds of vertices. In general, for a given minor
embedding, we tried to minimize the maximum number physical qubits repre-
senting by any logical qubit and/or the total number of physical qubits used.

Introduction

the increment.

mailto:rwan074@aucklanduni.ac.nz?subject=CDMTCS-503_paper
mailto:mjd@cs.auckland.ac.nz?subject=CDMTCS-503_paper

The primary difference between classical and quantum computing is that instead
of using binary bits, quantum computing use quantum bits which can be in a super-
position of multiple states. It offers a possibility of solving problems which cannot
be solved by using the current classical computers. In this thesis, we will begin
with a brief introduction to quantum computing and the adiabatic quantum com-
puter developed by D-Wave Systems [28]. D-Wave claims they have built the world’s
first commercial quantum computer, which could use the adiabatic method to solve
optimization problems.

In order to use the D-Wave computer to solve problems, we have to first transform
the problem into an Ising or QUBO instance (explained in Sections 2.2.1 and 2.2.2),
then embed Hamiltonians (logical qubit relationships) onto the D-Wave Chimera
graphs. It should be noted that the problem of finding minor embedding for an
arbitrary graph is an NP-hard problem [26], and searching for a graph minor within a
graph which has hundreds of vertices has received little attention in the graph theory
literature. As a result, all of the current known exact algorithms are only practical
for tens of vertices. In this background, the D-Wave people provide the very first
heuristic algorithm for this problem [5]. Based on the heuristic idea we designed and
implemented a new heuristic algorithm, and this algorithm is practical for finding
minors in graphs which have up to two thousand vertices.

The paper is organized as follows. In the first section, we give an introduction.
and provide some preliminary definitions for the minor embedding problem. We then
give a brief overview of quantum computing and introduce the adiabatic quantum
computer developed by D-Wave Systems, as well as an explanation of how the D-Wave
computer works. We follow this with a background section of some current algorithms
for the minor embedding problem. Then in our main two sections we present two new
heuristic algorithms for embedding arbitrary graphs into the Chimera of the D-Wave
architecture and compare the performance of our new algorithms with the aid of
tables and plots. Later we compare the running time of these algorithms and discuss
the embedding quality of the embeddings obtained by these algorithms. Finally we
present the some conclusions and list some limitations for future work.

1.1 Preliminary Definitions

The basic graph definitions may be found in many introductory algorithms textbooks
such as [11]. We now recall a few of the graph theoretical terms that we use in this
report.

Definition 1 A graph G = (V, E) consists of a finite set of vertices V and a set of
edges E, with each edge being incident with an unordered pair of the distinct vertices.
The order of GG is the number of vertices in G. The size of G is the number of edges
i G. Let u, v be two distinct vertices in a simple undirected graph G, we use uv to

denote an edge between u and v in G. A loop is an edge that connects a vertex to
itself.

Figure 1: Contracting an edge uv which is merged into a new vertex w.

Definition 2 The girth of a graph is the length of any shortest cycle contained in
the graph. If the graph does not contain any cycles, its girth is defined to be infinity.

Definition 3 The eccentricity e(v) of a vertex v is the greatest distance between v
and any other vertex. The diameter of G is the mazimum eccentricity of any vertex

i G.

In this paper, only undirected graphs which have no loops and no multiple edges
are considered.

1.1.1 Graph minor and embeddings

In graph theory, a graph H is called a minor of a graph G if H can be formed from
G by deleting edges and vertices and by contracting edges. Now we give the formal
definition:

Definition 4 Graph H is a minor of graph G = (Vi, Eq) if a graph isomorphic to
H can be obtained from G by repeating the following operations:

1. Remowving any vertex v € Vi and any edges e € Eg in which e is incident to v
2. Removing any edge uv € FEg.

3. Contracting any edge uv € Eg. This operation removes u,v from Vg and makes
a new vertex w incident to all the vertices u,v are incident to.

An edge contraction is an operation which removes an edge from a graph while
simultaneously merging the two vertices that it previously joined. Edge contraction
is a fundamental operation in the theory of graph minors. The edge contracting
operation are illustrated in Figure 1 with edge uv becoming a new vertex w.

Our main objective is to develop a practical minor embedding algorithm. We now
formally define the minor containment problem.

Problem 5 Minor Containment
Input: Graphs G = (V4, Ey) and H = (V, E»).
Question: Does G contain a minor which is isomorphic to H?

Definition 6 A minor embedding of a guest graph H in a host graph G is defined
by the function ¢ : V(H) — 2V such that:

1. For each vertex v € V(H), the subgraph induced by ¢(v) in G is connected.
2. For any two distinct vertices u and v in H, ¢p(u) N p(v) = 0.

3. Suppose u and v are adjacent in H, then there is at least one edge between ¢(u)

and ¢(v) in G.

We call ¢(v) the vertex model of v and say that ¢(v) represents v in G.

The general minor containment problem is to decide for any two graphs G and
H . if H is a minor of G. Whenever H is fixed, Robertson and Seymour have recently
proven the following theorem [22, 23]:

Theorem 7 For any fixed graph H, there is an algorithm to decide if H is a minor
of an input graph G that runs in time O(n®), where n is the number of vertices of G.

Robertson-Seymour Theorem is an important theoretical theorem, it implies that
for arbitrary host graph G and a fixed guest graph H, there is a polynomial-time O(n?)
algorithm for determining whether or not the graph G contains graph H as a minor.
Unfortunately, Robertson and Seymours algorithm is not practical since the actual
polynomial-time bound has a large hidden constant. However, when both H and G
are part of the input, the minor containment problem is NP-Complete [26]. In this
report the focus is practicality: for given graphs H and G, our goal is to design and
implement a practical algorithm to determine if guest H is a minor of host G, and
give the mapping if it exists.

2 Quantum Computing and D-Wave Computer Ar-
chitecture

Quantum computing is typically defined as theoretical computation systems which
make direct use of quantum-mechanical phenomena, such as superposition and entan-
glement, to perform operations on data. Quantum computation was first introduced

by Yuri I. Manin [18] in 1980 and Richard Feynman [12] in 1982. It uses quantum bits
(qubits) which can represent a zero, a one, or any quantum superposition of those
two qubit states. The classical computation requires data to be encoded into binary
digits (bits) using a classical physical system, each of which is in one of two states (0
or 1). Unlike classical binary bits, qubits can be operated together in superposition
to perform massively parallel computations, on all its possible quantum states simul-
taneously in a single processing unit, while classical parallel computers have to run
with many processing units [6].

Based on the property of superposition, we may use quantum computers to ef-
ficiently solve problems which no classical systems would be able to solve within a
reasonable amount of time. There is a class of problems called BQP (Bounded error,
Quantum, Polynomial time), which can be solved efficiently using a quantum com-
puter with high probability, and BQP is believed to be different from BPP (Bounded
error, Probabilistic, Polynomial time), the class of problems considered to be solved by
classical computers. Nowadays, people are funding quantum computing research on
both practical and theoretical areas, seeking and developing on quantum computers
for business, trade, education, and military purposes.

2.1 Quantum algorithms

We should note that the undecidable problems in a classical system remain undecid-
able using quantum devices, but quantum algorithms might be able to solve some
problems faster than classical algorithms. In 1985, David Deutsch [10] established
the very first quantum computer model, which is able to simulate any other quantum
computer with at most a polynomial slowdown. After Deutsch, many quantum algo-
rithms have been designed for different applications with hundred of thousands times
speed-up over the best known classical algorithm based on the classical machine. In
1994, Shor [25] devised an exponential-faster quantum algorithm for factoring inte-
gers in O(n?) time with respect to arbitrary input size, there is no known classical
polynomial algorithm for factoring (the problem is still open). Another famous quan-
tum algorithm example is Grover’s algorithm [13], Grover described a quadratic faster
method over the best classical algorithm for searching an unsorted n-entry database

in O(y/n) time.

2.1.1 Adiabatic quantum computation

In quantum computation theory, there exist multiple types of quantum computers
which are based on different computation models to perform calculations. In this
paper, we focus on the adiabatic model of computing.

Adiabatic Quantum Computation (AQC) is a theoretical model that based on
Born-Fock Adiabatic Theorem [2]. It uses the fact [8] the quantum mechanical system
want to stay in the lowest possible energy level. Initially, the quantum qubits start

from a ground state of one Hamiltonian (real-valued interaction matrix), then slowly
transform to another until they are able to solve the given problem. During the
entire computation, the system must stay in a valid ground state. It solves the given
problem by encoding the set of candidate solutions to a problem as the ground state
of a Hamiltonian [21].

2.1.2 Quantum annealing

Quantum Annealing (QA) was first proposed in 1998 [15], which used as a meta-
heuristic for solving minimization problems. In a quantum system when a particle
transfers through a barrier, we can compare the effect to that of a ball rolling over a
hill. If the ball does not have enough energy to get over the hill, the ball can “borrow”
energy from the hill and travel through it to the other side. By replacing the hill with
the given objective function over a set of candidate solutions, we will see the optimal
solution is comparable to finding the lowest valley in the range of mountains [19].

2.2 D-Wave computer

The D-Wave computers are produced by the Canadian company D-Wave Systems
which specializes in making quantum computers. Based on the idea of quantum
annealing and using current hardware, they claim to have built the world’s first
commercially available quantum computer D-Wave One in 2010 up to the current
model D-Wave 2X in 2016 [28]. The computer architecture consists of qubits arranged
in cells (shown in Figure 2) and the multiple cells connected together in a grid-like
host configuration as a Chimera graph. More details given later in Section 2.2.3.

Figure 2: The graph K, 4 of qubits for a single cell.

2.2.1 Ising model

D-Wave Systems uses the Ising model to solve discrete optimization problems, it
is the standard representation for problems for the D-Wave computer. The model
was named after the physicist Ernst Ising. This mathematical model in statistical
mechanics consists of discrete variables, these variables represent magnetic dipole
moments of atomic spins that can be in one of two states: either s; = +1 for spin-
up or s; = —1 for spin-down. The D-Wave hardware can be viewed as a hardware
heuristic which minimizes Ising objective functions using a physically realized version
of quantum annealing. The Ising energy minimization problem of n variables s; €
{—1,+1} is given by:

s* = msin Z s;Ji,j)s; + Zhisi,wheresi e {-1,+1}.

(ig)eB ieV

The spin variables interact with neighbors in a graph G = (V, E), where each
edge (i,j) € E has a non-zero energy interaction .J;; ;) and each vertex ¢ € V' has an
external energy h;. Without loss of generality it is convenient to assume that J is
upper-triangular of the adjacency matrix of G. If J; ;) > 0 the edge is positive, and if
Jii;) < 0the edge is negative. This graph captures the dependencies between variables
which can be exploited to more efficiently minimize the Ising objective functions. The
details can be checked in D-Wave System manual [27].

2.2.2 QUBO model

The Ising model tends to be favored by physicists since it uses Ising spin {—1,+1}.
We now describe another model for computer scientists, using binary value {0,1}
instead. The QUBO (Quadratic Unconstrained Binary Optimization) [6] is an NP-
hard mathematical problem consisting in the minimization of a quadratic objective
function z = 2TQz, where x is a n-vector of binary variables and @ is a symmetric
n X n matrix:

Tt = minZwiQ(ivj)xj,Where z; € {0,1}.
(2]

The spin variables in the Ising model and the binary variables in the QUBO mode
are simply related to each other through the transformation s = 2x—1 or x = (s+1)/2.
In the D-Wave utility packs [27] provide code which applies this translation, we may
freely translate between whichever Ising/QUBO representation is more convenient.

2.2.3 Chimera graph

To solve the general Ising/QUBO problems using the machine, we have three known
constraints imposed by the current hardware: a small number of qubits, sparse qubit

7

connectivity, and limited parameter precision. Due to these constraints, only certain
pairs of qubits are connected in the hardware.

More formally, a M x N x L Chimera graph has 2M N L vertices, it consists of an
M x N two-dimensional lattice of blocks each with 2L vertices and all of these vertices
are arranged into the bipartite graph K ;. Each of these blocks has L connections to
each of its neighboring blocks and most of them have four neighbors: right, left, up
and down, except for blocks on the edge of the lattice. An 8 x 8 x 4 Chimera graph
for the 512 qubit D-Wave Two hardware is shown in Figure 3.

2.3 Using D-Wave to solve QUBO /Ising problems

Our motivation for researching heuristic minor embedding algorithm stems from its
importance in solving problems to D-Wave’s quantum computer. The D-Wave com-
puter solves problems in the form on an Ising or QUBO formulation described in
Sections 2.2.1 and 2.2.2. This is the quadratic optimization [3] over the Boolean
variables (the qubits) we have to map to the D-Wave hardware.

There are two main steps in converting a problem into one which can be solved
by using the D-Wave hardware.

1. Transform the problem into an Ising or QUBO instance [17].

2. In order to map to the Chimera graph discussed in Section 2.2.3, we use multiple
qubits in the hardware graph (physical qubits) to represent the same variable in
the Ising model (logical qubits). Hence, the problem must be minor embedded
so that it fits within the hardware.

Since only a very limited number of qubits are available on the D-Wave machine,
it is really important to find some good embeddings for using the D-Wave computer to
solve problems. In general, we want either to minimize the maximum number physical
qubits representing any logical qubit, or minimize the total number of physical qubits.
It should be noted that a higher quality of embedding leads directly to better hardware
performance (i.e. the higher probability of finding or getting closer to an optimal
solution).

3 Related Work

We now consider some of the existing algorithms done on the minor embedding prob-
lem. First of all, we will give an exact minor embedding algorithm which guarantees
to find the solution without any constraints. Next, we will talk about the current
heuristic search approach which is feasible for hundreds of vertices.

2\ Y 2/ \ &
4 @
W/ e/ I\ W (@ & & & \EF S |\E
2) (% @))
L —1
L —
r//JJJ/
"'\
) |\ |\ (W S W& & W& W \NE
P/ WS/ [\ & [\ S WS (W& S W& (S
(®
881
=
£
v\ = & W N\ &
~
o (@ 5) |l @
| —7
) @&/ W@ @ ¥ O\ T/ -/ ¥

Figure 3: An 8 x 8 x 4 Chimera graph with 512 qubits taken from [20]. Red circles
denote faulty qubits in the hardware.

3.1 Exact minor containment algorithm

Based on the theorem by Robertson and Seymour [22, 23], we know there is a polyno-
mial time O(n?) algorithm to solve the containment problem when the guest graph is
fixed. However, the actual running time is not very practical because of the existence
of large hidden constant. In 2000, Xiong and Dinneen [30] present a simple algorithm
to decide whether a (guest) graph H is a minor of a (host) graph G, where G is
connected:

Step 1: Generate all feasible vertex maps from H onto G.

Step 2: For each map, contract edges in G where the endpoints have the same
image in H. This gives a resulting graph G'.

Step 3: Test if H is a subgraph of G'. If it is, return true, otherwise iterate
step 2.

Step 4: Return false.

A vertex map is a function which maps V(H) to V(G). This approach requires
a two-phase process: the first is to generate all feasible vertex models, the second is
a validity check. The first phase, based on the idea of set partitions we could easily
generating all feasible mappings. For each partition, validity checking is to ensure
that all of the vertices in any sub-partition form a connected induced subgraph in the
host graph. If all of the induced subgraphs are connected that means there is a way
to contract all the vertices in the given set partition into a valid graph G'.

3.1.1 Set partition approach

For the minor embedding problem, the number of vertices in the host graph should be
greater or equal to the number of vertices of the guest graph, since extra vertices of
host graph can be reduced by edge contractions, this is a many-to-one map. In order
to generate all feasible vertex models, we introduce the concept of set partition [16].

Definition 8 A set partition of the setV = {1,2,...,n} is a collection By, By, . .., B;
of disjoint subsets of V' whose union is V. Each B; is called a block.

For any input graph G with order n and input graph H with order k£ where k < n,
we use S(n) to denote the set of all partitions of {1,2,...,n} into non-empty subsets,
S(n, k) is used to denote the set of all partitions of {1,2,...,n} into exactly k non-
empty subsets, using the idea of set partitions, the algorithm partitions the host graph
G into k parts, where periods separate the individual sets. For n = 4,

1. 5(4,1): 1234

10

2. 5(4,2): 123.4 124.3 134.2 1.234 12.34 13.24 14.23
3. 5(4,3): 1.2.341.24.3 1.4.23 14.2.3 13.2.4 12.3.4
4. 5(4,4): 1.2.34

Obviously and naturally, all the partitions above have bijections with the vertex
models we used in our algorithm. In order to generate all partitions, the “restricted
growth string” can be used based on this sort order. We will not present the details of
the algorithm for generating S(n, k), this can be found in [30] for interested readers.

Once we have a set partition of S(n, k), there are k! possible maps and all of them
should be tested. For each map, we first pretest to determine if those vertices in G
could be formed a connected subgraph. If it is no, then we just skip to the next map.
if it is yes, then we have to make sure if each edge in the guest graph H is embedded
in the resulting graph G’. To check embedding, we just pick every edge uv in H, if
there is a corresponding edge v'v" in G which ¢(u') = v and ¢(v') = v. If any of these
testings failed, then H is not a minor of G. Otherwise, we can conclude that H is a
minor of G. In this way, we do not have to do any edge contractions in G since this
operation is very time-consuming.

Instead of doing a two-phase partitioning process, Datt [9] presented an optimized
partitioning way which uses a single phase method that enumerates all valid set
partitions while avoiding bad sets. A bad set is a partitioning such that there is
a sub-partition that cannot be contracted into a single vertex. Datt also gives the
partitioning procedure that proves to be faster than the process implemented by
Xiong and Dinneen, complete with proof of correctness in his thesis.

As a result, all of the known exact algorithms for the minor-embedding problem are
only practical for up to tens of vertices in the host graphs. Recently D-Wave released
the general availability of their D-Wave 2X computer, which has a 12 x 12 x4 Chimera
graph with 1,152 qubits architecture. This means we have to find an algorithm to
solve the minor-embedding problem for up to a thousand vertices in the host graph,
and this is unsolvable by considering exact algorithms.

3.2 Heuristic search approach

The D-Wave software package [27] provides an algorithm for finding a minor embed-
ding. However, the method it uses is not given to the public. Now we introduce a
heuristic approach which could solve the minor embedding problem in a reasonable
amount of time for the D-Wave computer architecture.

In computer science and artificial intelligence, a heuristic is a technique designed
for solving problems more quickly when classic methods cannot give an exact solution
in a reasonable time frame. This can be achieved by trading optimality, complete-
ness, accuracy, or precision for speed. In order to find embedding with hundreds

11

of vertices graph, the engineers from D-Wave Systems: Cai, Macready and Roy [5]
obtain a heuristic algorithm for finding a graph H as a minor of a graph G with some
probability. Before this paper, the heuristic search idea for arbitrary guest graph into
hundreds of vertices graph has received little attention in the graph theory literature,
possibly due to a lack of known applications. We now give the high-level description
of their heuristic algorithm.

Initially, we randomize vertex order in a guest H, then for each vertex v in the
randomize order, the heuristic algorithm proceeds by iteratively to construct a vertex
model ¢(v), based on the weighted shortest path distances to its neighbors’ vertex
models; if none of v’s neighbors have vertex models yet, we can randomly choose a
single vertex from G to be the vertex model for v. At each step, we have to make
sure no two of the vertex models share a same vertex in G. Once all the vertices in
the guest H matched to some valid vertex models, we find the minor. Otherwise, we
rerun the algorithm, if can not find the minor in a certain time, then we suspect no
minor embedding exists.

The authors claim this algorithm has been implemented by D-Wave Systems and
it has proven to be effective in finding graph minors with hundreds of vertices. Our
main algorithm will be based on this heuristic idea, with the hope of finding some
better embeddings with respect to various criteria.

4 Improved Heuristic Minor-embedding Algorithm

In this section, we will present some heuristic approaches for embedding arbitrary
graphs into the Chimera graph of the D-Wave architecture. Once the embedding has
been found, we also give some ideas to minimize the total number of physical qubits
used, or the maximum number physical qubits representing any logical qubit.

4.1 A basic heuristic to find minor embeddings

We now give a basic heuristic search of finding an embedding into an arbitrary sized
Chimera graph, and this method was originally given by Cai et al. [5] in 2014.

For arbitrary input guest graph H and host graph G, recall the vertex model in
Definition 6, our heuristic algorithm loops through every vertex v in a guest graph H
iteratively, and tries to construct the corresponding vertex model ¢(v). We will give
the main approach first, then describe how to construct the minimal vertex model.

The heuristic search is described as follows. In the first step, we randomize the
vertex order in the guest graph H. For each vertex v in the randomized order, our
algorithm proceeds iteratively to construct the minimal vertex model ¢(v) based on
the weighted shortest path search (explained in the following section) to its neighbors.
In the case for some vertices in the guest graph H which do not have any neighbor

12

vertex model yet, we just randomly select a single vertex in host graph G to be its
vertex model. After the first step, we run a fixed number of iterations to reconstruct
the vertex models. For each step, try to use only unused vertices for our new vertex
model. At last, if there is no overlap between all the vertex models, then we have
found a minor embedding.

4.2 Minimal vertex model

The key word “minimal” here does not necessarily mean that we found the best vertex
model in terms of global embeddings. We are trying to find a good vertex model with
a minimum number of vertices used each step. Suppose we are looking at the vertex
model ¢(v) for v € V(H), and v has some neighbors wy, ..., u; which already have
vertex models ¢(uy), ..., ¢(ur). We want to minimize the number of vertices used
in ¢(v) that ensures ¢(v) has an edge between each of ¢(uy), ..., ¢(ug). To do this,
we have to calculate the shortest-path distance from all the unused vertice in G to
every neighbor vertex model ¢(uy), ..., ¢(ux). Using a cost function ¢(g,) to store the
distance information, we compute the total sum of distances), c¢(g,¢) and select the
vertex r* which has smallest sum as the root of our new vertex model ¢(v). Finally
we determine the shortest path from r* to all its neighbors’ vertex models and use
the union of those paths as the new model ¢(v). An example is shown in Figure 4.

Py

findingmine(y) @ u,
S

Oy

Figure 4: An illustration of finding vertex model ¢(v). Based on the minimum sum
distance to select root r*, then take the union of shortest path from r* to all neighbors’
vertex model as ¢(v).

Unfortunately, for most of the cases we cannot find such a root r* that the union
of the shortest path from the root to all neighbors’ vertex models using only unused
vertices. In order to solve this problem, we use a weighted shortest paths search. Let
C be a constant, the vertex weight defined as:

13

weight(r) = CNHéred(ui)}|

We temporarily allow multiple vertex models of the guest graph H to share the
same vertex from host graph (G, and assigned a big penalty which grows exponentially
with the number of vertices of H represented there. The best situation is a vertex
model using only unused vertices from host G. Finally, we calculate the sum of the
weights of all vertices used in that path and still choose the one with the smallest
sum. By using the weighted shortest path search idea, we can make sure the new
vertex model use overlapped vertices as few as possible.

4.2.1 Ciritical choices in implementation

There are some critical choices in implementing this algorithm. To overcome the
weighted vertices shortest path search issue, we obtained a modified Dijkstra’s algo-
rithm [1] that works with weighted vertices to compute the weighted shortest path.
The basic Dijkstra’s algorithm works with weighted edges, however, we can easily
convert vertex weights into edge weights by moving each arc’s weight to its head.
Also, when calculating the distance from vertex r to a vertex model ¢(v), we add
an extra vertex v’ that is adjacent to every vertex in ¢(v). By only calculating the
shortest path to v/, we do not have to find the shortest path to each vertex in the
model. In this way, we can avoid a large computation time.

4.3 Approach with improvements

The most time-consuming part of this heuristic algorithm is computing the shortest
path when we are trying to find the root for new vertex model. Since the weights of
vertices change in every iteration, we have to recompute the shortest path each time.

4.3.1 Higher degree first with random root selection

Instead of doing initial randomization to get a vertex order for the guest graph, we
could sort all the vertices in decreasing order by its degree. In such a way the vertex
with a higher degree will find its corresponding vertex model first, resulting vertices
have a lower degree would do less work for searching shortest path. Also, in the basic
heuristic algorithm we always choose the root for vertex model with minimal cost; this
requires a large calculation because we need to compute the length of the shortest path
to every vertex in the host graph, from every vertex model. To overcome this issue,
we may choose the root randomly, this is especially useful for a “small guest within a
large host” type embedding since we do not want waste too much time on searching
through all vertices in the host graph. Pseudo-code expresses this procedure.

14

HeuristicMinorEmbeddingl(G,H)
Input: guest graph H with vertices {uy, ..., u,}, host graph G.
Output: vertex models ¢(uq), ..., (u,) of an H-minor in host, or “failure”.

sort degree in descending order: uy, ..., uy,
set round =1
set C' = diameter(G)
forie {1,...,n}
set ¢(u;) = {}
while maz,ev) [{i : v € ¢(w;)}| or >, |¢(u;)| is improving, or round < ROUNDS
fori e {1,...,n} do
for r € V(G)
set weight(r) = CHireetu)}
choose root r* randomly from unused neighbor
¢(u;) = r*U{paths from r* to each neighboring vertex model ¢(u;)}
set round = round + 1
if [{i:r € o(u)} <1forallreV(Q)
return ¢(uy), ..., ¢(uy)
else
return “failure”

We terminate the algorithm if there is no improvement in embeddings after a
certain number of iterations, the user could set up the minimum number of rounds

(ROUNDS) as needed.

4.3.2 First level search

The random root selection idea helps avoid getting stuck in local optima in some
case, but it will be exhausted when the input guest gets larger. In this section, we
describe a modification to the random root algorithm which only searches the first
level of neighbors’ vertex model when finding the new root.

Instead of computing the cost of the shortest path to every vertex of G, from every
vertex model. We calculate the distance for a small set of vertices which have a higher
probability of being a “good root”, we call this set the rootC'andidates. Suppose we
are looking for the vertex model ¢(v), and v is adjacent to uy, ..., ux which already
have vertex models ¢(uy), ..., p(ux). The rootCandidates selects vertices which are
adjacent to each of these neighbor vertex model as our set of candidates, then remove
the vertices have already used by any other vertex model to ensure all candidates
are unused in GG. After the initial selection, we still use the weighted shortest path
algorithm to get the vertex with minimum cost as our new root r*.

Computing the shortest path distances between vertex model and all vertices of
G takes a large computational time. In first level search, by searching a small set

15

Figure 5: An illustration of using first level search idea to find new root for ¢(v).
We only consider the vertices adjacent to neighbors’ vertex model as root candidates
(colored yellow), then use weighted shortest path search to find the new root r*.

of vertices we still could find a relative good embedding. Also, this first level search
approach will find a better embedding to the random root selection. We give more
details in next chapter. Pseudo-code for first level search approach is expressed next.

HeuristicMinorEmbedding2(G,H)
Input: guest graph H with vertices {uy, ..., u,}, host graph G.
Output: vertex models ¢(uq), ..., (u,) of an H-minor in host, or “failure”.

randomize the vertex order: uq, ..., u,
set round = 1
set C' = diameter(G)
forie {1,..,n}
set ¢(u;) = {}
while maz,cv) [{i : 7 € ¢(u;)}| or >, |¢(u;)| is improving, or round < ROUNDS
fori e {1,...,n} do
for r € V(G)
set weight(r) = CNiresuall
®(u;) = findMinimalVertexModel(G,weight,{u;: neighbors’ vertex model})
set round = round + 1
if {i:7r € ¢(u;)}| <1forallreV(G)
return ¢(uy), ..., (uy)
else
return “failure”

FindMinimalVertexModel(G,weight,{¢(u;)})

16

Input: host graph G with vertex weights, neighboring vertex models {¢(u;)}.
Output: vertex model ¢(v) in G such that there is an edge between ¢(v) and each ¢(u;).

if all ¢(u;) are empty
return random {r*}
set rootCandidates = U{all unused vertices from first level}
for all r € rootCandidates and all j do
if ¢(u;) is empty
set cost(r,j) =0
else if r € ¢(u;)
set cost(r, j) = weight(r)
else
set cost(r, j) = weighted shortest path distance(g, ¢(u;)) excluding weight(p(u;))
set r* = argmin,) ; cost(r, j)
return {r*} U {paths from r* to each neighboring vertex model ¢(u;)}

4.3.3 Optimization on given embeddings

Note that not all minor embeddings result in the same hardware performance [5, 8.
Finding a better embedding leads directly to the better use of D-Wave’s quantum
annealing in solving quadratic pseudo-Boolean optimization problems. In general,
for a minor embedding we would like to minimize:

e maximum number physical qubits representing any logical qubit (vertex model)

e the total number of physical qubits used in host GG
Once the embedding has been found, we have to go through all the vertex model to

check whether the improvement can be made. One method is depicted in Figure 6.

5 Results and Discussion

The heuristic search algorithms described in the previous section have three different
versions:

1. The basic heuristic search through all vertices in the host graph.
2. Higher degree first search with random root selection search.

3. First level root selection search.

17

(uy)

Figure 6: An illustration of minimizing vertex model size. If any vertex appears in
only a single shortest path, move it to the model which has a fewer number of vertices.
In this case we move the orange vertices to ¢(u,) and ¢(u,).

To show the performance of these three algorithms, we considered three sets of
guest graphs: complete graphs, random cubic graphs, and a set of famous graphs
obtained from [29, 7]. Also we picked three Chimera graphs as host graph with
different size (M x N x L notation which discussed in Section 2.2.3): 8 x8 x4 (D-Wave
Two), 12 x 12 x 4 (D-Wave 2X) and 12 x 14 x 6 respectively. For each combination,
we run each algorithm a fixed number of times to get the average running time and
embedding success probability, and record the time even when the minor embedding
was not found. The running time is in seconds using a single core of an Intel i5
3.4GHz processor.

5.1 Embedding into an 8 x 8 x 4 Chimera graph

We started with using some relative smaller graph as the host graph. In this section,
we will present result for embedding into D-Wave T'wo architecture which is an 8x8x4
Chimera graph of 512 vertices. The number of physical couplers (edges) connecting
qubits (vertices) in the hardware is 1472. This means that if a guest graph has more
than 512 vertices or 1472 edges, then there is no chance of finding an embedding.
In particular, we run the basic heuristic search and first level search algorithm 10
times, the random selection algorithm 100 times, set a time out after a maximum of
1000 seconds. When the guest graph is much smaller than then the host graph, an
embedding is often found within seconds, but for borderline cases, it can take minutes
before finding an embedding.

18

5.1.1 Running time and success probability

Tables 1 and 2 show the running time and success probability for the set of famous
graph from [29]. Some basic properties of these graphs are shown in Tables 3 and 4.
Figure 7 shows how the expected time grows and success probability drops as the
number of vertices increases respectively in complete graphs and random cubic graphs.

It is clear that for the same amount of running time, the basic heuristic search
method has a much lower chance of finding an embedding than other two methods.
The largest part of the algorithm’s running time is computing the shortest path
distances between vertex model and other vertices of G. This is obviously since
for every iteration, the basic heuristic search needs to compute the length of the
shortest path to every vertex of host GG, from every vertex model. This is reckless.
The random selection method avoids getting stuck in root selection step, resulting
in a faster algorithm for fewer order graphs. However, we have to note that as
the number of vertices increasing in the guest graph, the running time for random
selection method increased dramatically at a certain point, and our first level search
idea has best running time for borderline size guest graphs. This could be explained
by the fact that the random selection method does not perform any pre-calculation
before selecting the root, this is acceptable as input guest is small; when guest graph
getting large the embedding requires a “good root” for each iteration, otherwise we
would easy to have multiple vertex models share the same node, this overlap is not
allowed in our embedding. To overcome this problem, the random selection method
has to keep randomizing until finding the embedding, hence cost much time. As a
result, it seems like using the first level search way to choose root from a small set of
candidates may be performing the best, we use a small amount of time to select the
“good root” from neighbor level candidates, which has a significant increase in the
chance of finding embeddings.

Similarly, the embedding success probability for all three algorithms start off at 1,
and at a certain number of graph order quickly drop off towards 0. From the Figure 7
can be seen that random selection method drops off earlier than other two methods,
this happens when the embedding is trying to invoke more vertices and the random
root may lead to an overlap. In terms of the success rates, there is not a significant
difference between the basic heuristic and first level search idea, but the search work
we did in first level search is much less than the basic heuristic algorithm, since we
only compute the distance for a small set of root candidates. This result is what we
expected.

Thus, the first level search approach would be the most practical algorithm of
these three, especially in borderline cases. However, the random selection approach
may still be useful for some cases with lower degree guest graph.

19

Table 1: Running time for embedding into an 8 x 8 x 4 Chimera graph.

Basic Heuristic

First Level Search

Random Selection

Average Success Average Success Average Success
Graph Name Runtime | Probability || Runtime | Probability || Runtime | Probability

Balaban10Cage 353s 1 7.2s 1 0.18s 0.11
BiggsSmith 519s 0.4 9.9s 0.3 0.41s 0
BlanusaSnark1 60s 1 0.9s 1 0.06s 1
BlanusaSnark2 42s 1 1.6s 1 0.08s 1

Brinkmann 116s 0.9 3.2s 1 0.2s 0.98

BuckyBall 256 0.9 8.9s 0.9 0.3s 0.08
C20 34s 1 0.4s 1 0.04s 1
C30 68s 1 1.3s 1 0.04s 1
C40 91s 1 2.6s 1 0.05s 1

C5h0 140s 1 2.8s 1 0.07s 0.97

C60 168s 1 3.1s 1 0.1s 0.98

C70 209s 1 4.2s 1 0.16s 0.99
C80 228s 1 4.1s 1 0.17s 1
C90 299s 1 4s 1 0.19s 1
Coxeter 73s 1 3s 1 0.17s 1
Desargues 67s 1 1.4s 1 0.06s 1

DoubleStarSnark 102s 1 7s 1 0.19s 0.99

Dyck 109s 1 4.3s 1 0.12 0.97

Ellinghamb4 146s 0.9 6s 0.8 0.29s 0.28

Ellingham78 480s 0.6 12s 0.7 0.33s 0.02
FlowerSnark 82s 1 1.2s 1 0.06s 1
Folkman 69s 1 1.3s 1 0.06s 1
Foster 414s 0.2 8s 0.7 0.33s 0
Franklin 30s 1 0.4s 1 0.03s 1

Gray 266s 1 6.8s 1 0.14s 0.11

Grid6x6 167s 1 5.8s 1 0.1s 0.19

Grid6x7 191s 1 7.9s 1 0.15s 0.15

Grid6x8 189s 1 5.8s 1 0.3s 0.22
Grid6x9 312s 0.9 9.9s 0.8 0.02s 0

Grid7x7 221s 1 5.8s 0.9 0.14s 0.02
Grid7x8 224s 1 6.1s 1 0.22s 0
Grid7x9 370s 0.8 11.2s 0.8 0.23s 0
Grid8x8 399s 0.9 10.9s 1 0.24s 0
Harries 301s 1 8.1s 1 0.22s 0
HarriesWong 486s 0.9 8.2s 1 0.21s 0
HoffmanSingleton 333s 0 16s 0 0.35s 0
Horton 512s 0.7 17s 0.5 0.31s 0
Kbx7 39s 1 1.7s 1 0.06s 1

20

Table 2: Running time for embedding into an 8 x 8 x 4 Chimera graph.

Basic Heuristic First Level Search Random Selection
Average Success Average Success Average Success
Graph Name | Runtime | Probability || Runtime | Probability || Runtime | Probability

Kb5x8 48s 1 1.7s 1 0.09s 1
Kb5x9 62s 1 2.2s 1 0.12s 1
Ko6x7 73s 1 2.2 1 0.08s 1
K6x8 728 1 1.9s 1 0.26s 1
K6x9 91s 1 28 1 0.24s 1
K7x7 61s 1 1.3s 1 0.11s 1
K7x8 72s 1 1.9s 1 0.16s 1
K8x8 101s 1 3.3s 1 0.17s 1
K8x9 101s 1 4s 1 0.15s 1
K9x9 109s 1 6.8s 0.9 0.15s 1

K10x10 169s 0.7 7.7s 0.8 0.19s 0.99
K11x11 161s 0.9 4.9s 1 0.26s 1

K12x12 199s 0.9 9.6s 0.8 0.47s 0.99
Kittell 206s 1 4.9s 0.9 0.12s 1
Ljubljana 333s 0 7.9s 0 0.35s 0

Markstroem 79s 1 2s 1 0.14s 0.18
McGee 76s 1 3.4s 1 0.20s 1
Meredith 369s 0.3 8.8s 0.4 0.32s 0
MoebiusKantor 39s 1 0.6s 1 0.05s 1
MoserSpindle 6s 1 0.3s 1 0.03s 1
Nauru 101s 1 2s 1 0.06s 1

Q5 279s 0.7 11.1s 0.8 0.21s 0.08
Q6 587s 0.3 20.1s 0.2 0.52s 0
S10 158 1 1s 1 0.06s 1
S20 21s 1 2.2 1 0.07s 1
S30 36s 1 5.4s 1 0.09s 1

S40 49s 1 12.8s 0.9 0.11s 0.49

S50 61s 1 14s 1 0.23s 0.94

S60 72s 1 7.1s 1 0.23s 0.91

S70 117s 1 14s 1 0.39s 0.87

S80 144s 1 21s 0.8 0.42s 0.86

S90 168s 0.7 41s 0.9 0.39s 0.92

Schlaefli 617s 0.7 32s 0.5 0.4s 0.28

Sylvester 258s 0.9 7.5s 1 0.19s 0.17

SzekeresSnark 172s 1 5.4s 1 0.17s 0.09
TutteCoxeter T7s 1 3.28 1 0.23s 1
Wells 141s 0.8 8.1s 0.6 0.16s 0

WienerAraya 248s 0.9 4.8s 1 0.31s 0.88
K7 U Q3 62s 1 1.6s 1 0.11s 1

21

Table 3: Properties of guest graphs—Part 1.

Graph Name Order | Size | Min degree | Max degree | Diameter | Girth
Balaban10Cage 70 105 3 3 6 10
BiggsSmith 102 | 153 3 3 7 9
BlanusaSnark1 18 27 3 3 4 5)
BlanusaSnark2 18 27 3 3 4 5
Brinkmann 21 42 4 4 3)
BuckyBall 60 90 3 3 9)
C20 20 20 2 2 10 20
C30 30 30 2 2 15 30
C40 40 40 2 2 20 40
C50 50 50 2 2 25 50
C60 60 60 2 2 30 60
C70 70 70 2 2 35 70
C80 80 80 2 2 40 80
C90 90 90 2 2 45 90
Coxeter 28 42 3 3 4 7
Desargues 20 30 3 3) 6
DoubleStarSnark 30 45 3 3 4 6
Dyck 32 48 3 3 5 6
Ellinghamb4 54 81 3 3 10 6
Ellingham78 78 117 3 3 13 6
FlowerSnark 20 30 3 3 4 6
Folkman 20 40 4 4 4 4
Foster 90 135 3 3 8 10
Franklin 12 18 3 3 3 4
Gray 54 81 3 3 6 8
Grid6x6 36 60 2 4 10 4
Grid6x7 42 71 2 4 11 4
Grid6x8 48 82 2 4 12 4
Grid6x9 54 93 2 4 13 4
Grid7x7 49 84 2 4 12 4
Grid7x8 56 97 2 4 13 4
Grid7x9 63 110 2 4 14 4
Grid8x8 64 112 2 4 10 4
Harries 70 105 3 3 6 10
HarriesWong 70 105 3 3 6 10
HoffmanSingleton | 50 175 7 7 2)
Horton 96 144 3 3 10 6
Kb5x7 12 35 5 7 2 4
K7U Q3 15 33 3 7 00 3

22

Table 4: Properties of guest graphs—Part 2.

Graph Name | Order | Size | Min degree | Max degree | Diameter | Girth
K5x8 13 40 5 8 2 4
K5x9 14 45 5 9 2 4
K6x7 13 42 6 7 2 4
K6x8 14 48 6 8 2 4
K6x9 15 54 6 9 2 4
K7x7 14 49 7 7 2 4
K7x8 15 56 7 8 2 4
K8x8 16 64 5 8 2 4
K8x9 17 72 8 9 2 4
K9x9 18 81 9 9 2 4

K10x10 20 100 10 10 2 4
K11x11 22 121 11 11 2 4
K12x12 24 144 12 12 2 4
Kittell 23 63 5 7 4 3
Ljubljana 112 168 3 3 8 10
Markstroem 24 36 3 3 6 3
McGee 24 36 3 3 4 7
Meredith 70 140 4 4 8 4
MoebiusKantor 16 24 3 3 4 6

MoserSpindle 7 11 3 4 2 3

Nauru 24 36 3 3 4 5
Q5 32 80 5 5 5 4
Q6 64 192 6 6 6 4
S10 11 10 1 10 2 00
S20 21 20 1 20 2 00
S30 31 30 1 30 2 00
S40 41 40 1 40 2 00
S50 51 50 1 50 2 00
S60 61 60 1 60 2 00
S70 71 70 1 70 2 00
S80 81 80 1 80 2 00
S90 91 90 1 90 2 00

Schlaefli 27 216 16 16 2 3
Sylvester 36 90 5) 3 >

SzekeresSnark 50 75 3 3 7)

TutteCoxeter 30 45 3 3 4 8
Wells 32 80 5 5 4 5

WienerAraya 42 67 3 4 7 5

n-cubic graph n 37” 3 3 -

Complete K, n "("271) n—1 n—1 1

23

Average time for success (s)

Average time for success (s)

Figure 7: Comparing the performance of three heuristic minor embedding algorithms
in finding graph minors into an 8 x 8 x 4 Chimera graph G. Line plots showing
how of time grows with the number of vertices increasing in complete graphs and
random cubic graphs, as well as the proportion of successful embeddings of these
three algorithms. Success probability starts at 1, and at a certain number of vertices,
quickly drop off towards 0. It can be seen that success probability of the random

=}

Complete graphs

{ =@ basic heuristic
= first level search

= random selection

Number of vertices in H

Random cubic graphs

o =®— basic heuristic

= first level search

= random selection

Number of vertices in H

Embedding success probability

Embedding success probability

Complete graphs

oar

04r

0.2

=}
T

= basic heuristic
— first level search

= random selection

Number of vertices in H

Random cubic graphs

o.ap

0.6

0.4r

0.z

=}
T

= basic heuristic
= first level search

= random selection

50 100

Number of vertices in H

selection method drops off significantly earlier than other two methods.

24

5.1.2 Embedding quality

It has been suggested that the high maximum chain length (the biggest vertex model
size) and a large total number of physical qubits used (total number of vertices used
in all vertex models) results in worse performance by the hardware [14]. In this
section, we show the correlation between the order of guest graph and the quality of
its corresponding embedding.

Based on the information from Figure 8 and Tables 5 and 6, we can see that
the physical qubits used increase much more quickly than the order of guest graph.
As expected, both basic heuristic search and first level search algorithms resulting
the similar correlation between guest graph order and total physical qubits, but the
rate of increase is more in the random selection method. Due to the same reason we
discussed in the previous section, the random selection method does not perform any
pre-computation when choosing the root. It randomly picks a vertex and searches
for a local solution. In most of the cases, the new vertex model would involve more
vertices since we need to find a path from the root to each neighbor vertex model,
this is why total physical qubits used increase dramatically.

It is not hard to see that the maximum chain length is proportional to total
physical qubits used for both complete graphs and cubic graphs. In particular, while
as the number of vertices increase in the guest graph, the embedding quality for
random selection algorithm drops faster in sparse graphs. Interestingly the first level
search method produces a slightly better embedding quality than the basic heuristic
way on harder problems, even the basic heuristic suffer from more runtime doing the
search.

In terms of the both running time and embedding quality, it suggests that the
first level search based algorithm may be performing the best in borderline cases and
harder problems. But we still suggest that the random selection strategy may give
some useful results on particular problems.

5.2 More results on harder problems

We give the performance of first level search algorithm on harder problems, as illus-
trated in Figures 9 and 10.

Figure 9 shows the embedding performance on D-Wave 2X hardware graph, which
is the latest D-Wave architecture released on August 20, 2015. Figure 10 demonstrates
our first level search algorithm is still practical for a host graph with two thousand
vertices and a guest graph with three hundred vertices.

25

Table 5: Embedding quality for embedding into an 8 x 8 x 4 Chimera graph.

Basic Heuristic

First Level Search

Random Selection

Qubits | Maximum || Qubits | Maximum || Qubits | Maximum
Graph Name Used Chain Used Chain Used Chain
Balaban10Cage 198 16 198 14 288 18
BiggsSmith 303 12 294 12 - -
BlanusaSnark1l 30 4 38 6 68 10
BlanusaSnark2 40 5 49 6 75 10
Brinkmann 55 6 62 6 154 13
BuckyBall 179 14 125 9 208 16
C20 26 3 32 3 36 12
C30 46 7 48 8 60 10
C40 56 6 50 4 65 11
C50 66 4 82 6 83 14
C60 74 4 72 4 80 8
C70 82 3 88 6 116 12
C80 118 7 102 5 133 11
C90 116 6 120 8 127 11
Coxeter 55 7 64 6 165 10
Desargues 26 2 33 3 88 8
DoubleStarSnark 70 7 59 6 158 15
Dyck 157 7 62 5 154 14
Ellinghamb4 116 9 115 7 258 14
Ellingham78 172 7 177 7 408 32
FlowerSnark 33 5 33 5 90 11
Folkman 44 4 45 4 100 10
Foster 288 14 267 15 - -
Franklin 18 5) 22 5 35 7
Gray 147 13 128 8 288 22
Grid6x6 92 6 84 7 186 12
Grid6x7 85 6 87 6 248 16
Grid6x8 130 10 134 8 272 16
Grid6x9 125 7 120 6 - -
Grid7x7 131 9 117 7 288 14
Grid7x8 160 13 160 12 - -
Grid7x9 168 10 137 6 - -
Grid8x8 170 8 135 6 - -
Harries 234 11 203 11 - -
HarriesWong 183 8 193 10 - -
HoffmanSingleton - - - - - -
Horton 252 15 247 11 - -
Kbx7 24 2 24 3 70 12

26

Table 6: Embedding quality for embedding into an 8 x 8 x 4 Chimera graph.

Basic Heuristic

First Level Search

Random Selection

Qubits | Maximum | Qubits | Maximum || Qubits | Maximum
Graph Name Used Chain Used Chain Used Chain
Kb5x8 26 7 26 8 81 21
K5x9 33 6 33 4 85 25
Ko6x7 26 2 26 2 95 14
K6x8 36 5 28 2 73 13
K6x9 35 5 36 4 102 16
K7x7 28 2 28 2 100 16
K7x8 30 2 30 2 91 14
K8x8 32 2 65 5 129 20
K8x9 42 3 42 5 144 22
K9x9 54 10 54 11 163 15
K10x10 70 12 60 3 198 26
K11x11 66 3 66 3 256 23
K12x12 72 3 72 3 240 23
Kittell 69 5 92 10 146 12
Ljubljana - - - - - -
Markstroem 66 10 61 6 90 8
McGee 53 7 40 4 132 10
Meredith 205 15 188 13 - -
MoebiusKantor 32 3 31 4 48 8
MoserSpindle 13 3 12 3 23 5
Nauru 38 4 40 4 141 10
Q5 119 10 113 8 365 21
Q6 400 16 356 15 - -
S10 13 3 14 4 14 4
S20 25 5 35 6 27 7
S30 38 8 41 10 43 13
S40 54 14 59 16 59 19
S50 64 14 69 14 74 20
S60 80 20 7 17 86 24
S70 89 19 91 20 104 34
S80 103 23 109 26 121 41
S90 138 30 130 32 156 67
Schlaefli 243 12 258 14 374 25
Sylvester 174 10 182 12 278 18
SzekeresSnark 108 8 96 6 353 21
TutteCoxeter 57 4 64 4 161 14
Wells 151 13 149 11 - -
WienerAraya 116 7 103 8 272 15
K7 U Q3 33 4 30 3 55 6

27

Total number of qubits used

Total number of qubits used

Figure 8:

500

a00F

300

=}

Complete graphs

basci heuristic

= first level search

= random selection

w
=}
v
ha
=]
ra
n
W
=}

MNumber of vertices in H

Random cubic graphs

= basci heuristic

— first level search

= random selection

L
120

20 40 60 80 100

Number of vertices in H

Maximum chain length

Maximum chain length

Complete graphs

=}
T

= basci heuristic 4

— first level search

= random selection

w
=}
v

20 25 30

Number of vertices in H

Random cubic graphs

201

= basci heuristic
— first level search

= random selection

L
120

Number of vertices in H

Comparing the embedding quality of three heuristic minor embedding al-

gorithms in finding graph minors into an 8 x 8 x 4 Chimera graph G. Line plots
of maximum chain length and the total number of qubits used as increases size in
complete graphs and random cubic graphs. It is clear that for the same number of ver-
tices in H, the basic heuristic search and first level search algorithms have both lower
maximum chain length and the total number of qubits used, as would be expected.

28

Random cubic graphs Random cubic graphs

T T T T T T
1
z
< = 0.8
3 z
I g
5 a
] "
o @ 0.6F
£ 4
v 5
£ @
= (=
© =
%’ § 0.4
g2 o
< E
[}
0.2f
. y . . y .
50 100 150 50 100 150
Number of vertices in H Number of vertices in H

Figure 9: The performance of embedding random cubic graphs into a 12 x 12 x 4
Chimera graph (D-Wave 2X) with 1152 vertices. Success probability quickly drops
off towards to 0 when the guest graph has more than 150 vertices.

Random cubic graphs Random cubic graphs

800
1
700
600 > 08
i~ =
3 o
& @
§ 500 %
2 o 0.6
. @
S 400 o
] =2
g H
= =
w 300 c 0.4
g Z
o Y
Z 200 £
g2
100
0 0
50 100 150 200 250 300 50 100 150 200 250 300
Number of vertices in H Number of vertices in H

Figure 10: Line graph showing the running time and probability of embedding random
cubic graphs into a 12 x 14 x 6 Chimera graph with 2016 vertices. The algorithm
could embed cubic graph which has 300 vertices with high probability.

29

6 Conclusions

6.1 Summary

The D-Wave hardware Chimera graph is designed to have large treewidth and large
automorphism group [4], which means exact algorithms are of no practical use at
the current scales. In this paper, we reviewed the current algorithms on the minor
embedding problem. We also presented two new heuristic algorithms for finding graph
minors in sparse host graph and guest graph with hundreds of vertices.

Using a heuristic search method to find graph minors was originally inspired by
Cai [5]. Based on this idea we presented the random selection approach and the first
level search approach. The random selection method always randomly picks root
from its neighbor level, in this way we avoided large computation time on the most
time-consuming part, but due to the bad embedding quality, this algorithm is not
practical for borderline cases. The first level search algorithm has been implemented
and tested, based on large experiment results, it has proven to be effective in finding
minors with hundreds of vertices.

Finding a better algorithm for minor embedding problem leads directly to the
better use of D-Wave’s quantum annealing in solving quadratic pseudo-Boolean op-
timization problems. The host graph architecture produced by the D-Wave company
is slightly different in each processor, as certain qubits of insufficient quality are dis-
abled, the future versions of the hardware may have totally different architecture.
Our first level search algorithm requires both host graph and guest graph as part of
the input, so we believe this approach will be useful in providing a practical way of
finding minor embeddings for D-Wave computer architecture.

6.2 Limitations

We now describe some of the limitations when using our heuristic search algorithms
and the D-Wave computer to solve problems:

e The heuristic search algorithm is an entirely probabilistic algorithm and pro-
vides no guarantees of finding an embedding.

e There is no strong evidence of quantum computer can get a speed-up since the
work of embedding imposes a heavy penalty.

e Although quantum computers may be faster than classical computers for some
problem types, quantum computers are unable to compute anything which can-
not be computed classically.

30

6.3 Future research

Based on our results here, we also list some potential future research:

e The heuristic search algorithm presented here takes a large running time to
calculate the shortest path distances, it can be improved significantly by looking
for a “good root” without too much computation. How to find a good root of
vertex models is a topic for future research.

e Since we know the host Chimera architecture has a bounded degree, more focus
on exploiting this property should be continued.

e A better embedding result directly to a better performance of D-Wave’s quan-
tum annealing in solving QUBO problems. Investigating the correlation be-
tween embedding quality and D-Wave computer performance needs to be done
in the future.

References

1]

Michael Barbehenn. A note on the complexity of Dijkstra’s algorithm for graphs
with weighted vertices. IEEE transactions on computers, (2):263, 1998.

Max Born and Vladimir Fock. Beweis des adiabatensatzes. Zeitschrift fiir Physik,
51(3-4):165-180, 1928.

Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Discrete
applied mathematics, 123(1):155-225, 2002.

Paul I. Bunyk, Emile M. Hoskinson, Mark W. Johnson, Elena Tolkacheva, Fabio
Altomare, Andrew J. Berkley, Roy Harris, Jeremy P. Hilton, Trevor Lanting,
Anthony J. Przybysz, et al. Architectural considerations in the design of a

superconducting quantum annealing processor. Applied Superconductivity, IEEE
Transactions on, 24(4):1-10, 2014.

Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for finding
graph minors. arXiw preprint arXiw:1406.2741, 2014.

Cristian S. Calude, Elena Calude, and Michael J. Dinneen. Guest column: Adi-
abatic quantum computing challenges. ACM SIGACT News, 46(1):40-61, 2015.

Cristian S. Calude and Michael J. Dinneen. Solving the broadcast time problem
using a d-wave quantum computer. Technical Report CDMTCS 473, Center
for Discrete Mathematics and Theoretical Computer Science, The University of
Auckland, New Zealand, 2014.

31

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the param-
eter setting problem. Quantum Information Processing, 7(5):193-209, 2008.

Niraj Datt. Practical graph containment algorithms. University of Auckland,
Honors degree thesis, 20009.

David Deutsch. Quantum theory, the church-turing principle and the universal
quantum computer. In Proceedings of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, volume 400, pages 97-117. The Royal
Society, 1985.

Michael J. Dinneen, Georgy Gimel’farb, and Mark C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages. Pearson Education New
Zealand, 2nd edition, 2009.

Richard P. Feynman. Simulating physics with computers. International journal
of theoretical physics, 21(6):467-488, 1982.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-
ing, pages 212-219. ACM, 1996.

Richard J. Hughes and Colin P. Williams. Quantum computing: The final fron-
tier? Intelligent Systems and their Applications, IEEE, 15(5):10-18, 2000.

Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the trans-
verse Ising model. Physical Review E, 58(5):5355, 1998.

Donald L. Kreher and Douglas R. Stinson. Combinatorial algorithms: generation,
enumeration, and search, volume 7. CRC press, 1998.

Andrew Lucas. Ising formulations of many NP problems. arXiv preprint
arXiv:1302.5843, 2013.

Yuri I. Manin. Quantum computing and Shor’s factoring algorithm. arXiv:quant-
ph/9903008v1, 1999.

Laurence M. McFarlane. Embedding bounded treewidth graphs into the D-Wave
computer architecture. University of Auckland, Honors degree thesis, 2014.

Kristen L. Pudenz, Tameem Albash, and Daniel A. Lidar. Error-corrected quan-
tum annealing with hundreds of qubits. Nature communications, 5, 2014.

Timothy Resnick. Sudoku at the intersection of classical and quantum com-
puting. Technical Report CDMTCS 475, Center for Discrete Mathematics and
Theoretical Computer Science, The University of Auckland, New Zealand, 2014.

Neil Robertson and Paul D. Seymour. Graph minors. XIII. the disjoint paths
problem. Journal of combinatorial theory, Series B, 63(1):65-110, 1995.

32

[23]

[24]

[25]

[26]

[27]
[28]

[29]

Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004.

Robert R. Schaller. Moore’s law: past, present and future. Spectrum, IEEFE,
34(6):52-59, 1997.

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 124-134. IEEE, 1994.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,
2012.

D-Wave Systems. Programming with QUBOs. 2013.

D-Wave Systems. Meet D-Wave. http://www.dwavesys.com/our-company/meet-
d-wave, 2016.

Stein A. William. Sage mathematics software (version 6.2). The Sage Develop-
ment Team, http://www.sagemath.org, 2014.

Liu Xiong and Michael J. Dinneen. The feasibility and use of a minor contain-
ment algorithm. Technical Report 171, Department of Computer Science, The
University of Auckland, New Zealand, 2000.

33

