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Abstract It is shown that the parity game can be solved in quasipolyno-
mial time. The parameterised parity game (with n nodes and m distinct
values) is proven to be in the class of fixed parameter tractable (FPT)
problems (when parameterised over m). Both results improve known

bounds, from runtime nO(

p
n/ log(n)) to O(nlog(m)+6) (note that m  n)

and from an XP-algorithm with runtime O(n⇥(m)) for fixed parameter
m to an FPT-algorithm with runtime O(n5)+g(m), for some function g
depending on m only. As an application it is proven that coloured Muller
games with n nodes and m colours can be decided in time O((mm ·n)5);
this bound cannot be improved to O((2m · n)c), for any c, unless FPT

= W[1].

1 Introduction

A parity game is given by a directed graph (V,E), a starting node s 2 V ,
a function val which attaches to each v 2 V an integer value (also called
colour) from a set {1, 2, . . . ,m}; the main parameter of the game is n,
the number of nodes, and the second parameter is m. Two players Anke
and Boris move alternately in the graph with Anke moving first. A move
from a node v to another node w is valid if (v, w) is an edge in the graph;
furthermore, it is required that from every node one can make at least
one valid move. Anke and Boris own certain values. The alternate moves
by Anke and Boris and Anke and Boris and . . . define an infinite sequence
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of nodes which is called a play. The values of the nodes can always be
chosen such that one player owns the even numbers and the other player
owns the odd numbers. Anke wins a play through nodes a

0

, a
1

, . . . i↵ the
limit superior of the sequence val(a

0

), val(a
1

), . . . is a number which she
owns, that is, a number of her parity. An example is the game as given in

1start 2 3 4 5

Figure 1.

Figure 1; here the nodes are labeled with their values, which are unique
(but this is not obligatory); furthermore, Anke has even and Boris has
odd parity. Boris has now the following memoryless (that is, moves are
independent of the history) winning strategy for this game: 1 ! 1, 2 ! 3,
3 ! 3, 4 ! 5, 5 ! 5. Whenever the play leaves node 1 and Anke moves
to node 2, then Boris will move to node 3. In case Anke moves to node
4, Boris will move to node 5. Hence, whenever the play is in a node with
even value (this only happens after Anke moved it there), in the next
step the play will go into a node with a higher odd value. So the largest
infinitely often visited node value is odd and therefore the limit superior
of these numbers is an odd number which justifies Boris’ win. Hence Boris
has a winning strategy for the parity game given above.

For parity games, in general, the winner can always use a memory-
less winning strategy [4,19,36,37,46]. This fact will be one central point
in the results obtained in this paper: the parity game will be augmented
with a special statistics – using polylogarithmic space – which indicates
the winner correctly after a finite time whenever the winner employs a
memoryless winning strategy.

Parity games are a natural class of games which are not only inter-
esting in their own right, but which are also connected to fundamental
notions like µ-calculus, modal logics, tree automata and Muller games
[2,5,6,9,18,19,41,43,44,45]. Thus a possible application of good algorithms
to solve parity games would be that one could get better algorithms to
decide the theory of certain tree automatic structures [15,16,35] and one
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could employ such algorithms in order to understand these structures
better.

For investigating the complexity side of the game, it is assumed that
the game is given by a description in size polynomial in the number n of
nodes and that one can evaluate all relevant parts of the description in
logarithmic space. A possibility is to store the following three items for
each game (where Anke moves first and starts from node 1):

– two numbers m,n with 1  m  n and one bit which says whether
the values owned by player Anke are the even or the odd numbers;

– the game graph given by a table, that is, for each pair of nodes, a bit
which says whether there is a directed edge between the two nodes or
not;

– the values of the nodes given by another table which holds, for each
node, a binary number from {1, 2, . . . ,m}.

An important open problem for parity games is the time complexity for
finding the winner of a parity game, when both players play optimally;
the first algorithms took exponential time [36,46] and subsequent studies
searched for better algorithms [29,31,32,39,40,41].

Emerson, Jutla and Sistla [20] showed that the problem is in NP \
co -NP and Jurdzinski [30] improved this bound to UP \ co -UP. This
indicates that the problem is not likely to be hard for exponential time.
Indeed, Petersson and Vorobyov [39] devised a subexponential random-
ised algorithm and Jurdzinski, Paterson and Zwick [32] a deterministic
algorithm of similar complexity (more precisely, the subexponential com-
plexity was approximately nO(

p
n/ log(n))). Besides this main result, there

are also various practical approaches to solve special cases [2,13,23] or to
test out heuristics [26,31]; however, when Friedmann and Lange [21] com-
pared the various parity solving algorithms from the practical side, they
found that Zielonka’s recursive algorithm [46] was still the most useful one
in practice. Furthermore, McNaughton [36] showed that the winner of a
parity game can be determined in time O(nm) and this was subsequently
improved to O(nm/3) [40], where n is the number of nodes and m is the
maximum value (aka colour aka priority) of the nodes.

The consideration of the parameter m is quite important; Schewe
[40,41] argues that for many applications which are solved using parity
games, the parameter m is much smaller than n, often by an exponential
gap. Also Di Stasio, Murano, Pirelli and Vardi [12] investigated in their
experiments various scenarios where the number m is logarithmic in n.
The present work takes therefore the parameter m into consideration and
improves the time bounds bounds in two ways:
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– The overall time complexity is O(ndlog(m)e+6) which provides a quasi-
polynomial bound on the runtime, as one can always choose m  n.

– Furthermore, ifm < log(n), then the overall time complexity is O(n5),
which shows that the problem is fixed parameter tractable when para-
meterised by m; the parity games are therefore in the lowest time
complexity class usually considered in parameterised complexity.

Prior investigations had already established that various other paramet-
erisations of parity games are fixed-parameter tractable, but the para-
meterisation by m was left open until now. An application of the results
is that coloured Muller games with n nodes and m colours can be decided
in time O((mm · n)5); this bound cannot be improved to O((2m · n)c) for
any c unless FPT = W[1].

2 The Complexity of the Parity Game

The main result in this section is an alternating polylogarithmic space al-
gorithm to decide the winner in parity games; later more concrete bounds
will be shown. The idea is to collect for both players in the game, Anke
and Boris, in polylogarithmic space statistics over their performance in
the play: these statistics store information about whether the play has
gone through a loop where the largest valued node has the parity of the
corresponding player.

The following notation will be used throughout the paper. In order
to avoid problems with fractional numbers and log(0), let dlog(k)e =
min{h 2 N : 2h � k}. Furthermore, a function (or sequence) f is called
increasing whenever for all i, j the implication i  j ) f(i)  f(j) holds.

Theorem 1. There exists an alternating polylogarithmic space algorithm
deciding which player has a winning strategy in a given parity game.
When the game has n nodes and the values of the nodes are in the set
{1, 2, . . . ,m}, then the algorithm requires O(log(n) · log(m)) alternating
space.

Proof. The idea of the proof is that, in each play of the parity game,
one maintains winning statistics for the players Anke and Boris. These
statistics are updated after every move for both players. In case a player
plays according to a memoryless winning strategy for the parity game, the
winning statistics of this player will eventually indicate the win (in this
case one says that the “winning statistics of the player mature”) while the
opponent’s winning statistics will never mature. This will be explained in
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more detail below.
The winning statistics of Anke (Boris) has the following goal: to track

whether the play goes through a cycle where the largest value of a node in
the cycle is of Anke’s (Boris’) parity. Note that if Anke follows a memory-
less winning strategy then the play will eventually go through a cycle
and the node with the largest value occurring in any cycle the play goes
through is always a node of Anke’s parity. Otherwise, Boris can repeat a
cycle with the largest value being of Boris’ parity infinitely often and thus
win, contradicting that Anke is using a memoryless winning strategy.

The naive method to do the tracking is to archive the last 2n + 1
nodes visited, to find two identical moves out of the same node by the
same player and to check whose parity has the largest value between these
two moves. This would determine the winner in the case that the winner
uses a memoryless winning strategy. This tracking needs O(n · log(n))
space – too much space for the intended result. To save space one con-
structs a winning statistics which still leads to an Anke win in case Anke
plays a memoryless winning strategy, but memorises only partial inform-
ation.

The winning statistics of the players are used to track whether certain
sequences of nodes have been visited in the play so far and the largest
value of a node visited at the end or after the sequence is recorded. The
definitions are similar for both players. For simplicity the definition is
given here just for player Anke.

In Anke’s winning statistics, an i-sequence is a sequence (not neces-
sarily consecutive, but in order) of nodes a

1

, a
2

, . . . , a
2

i which has been
visited during the play so far such that, for each k 2 {1, 2, . . . , 2i � 1},
the maximum value of the nodes visited between ak and ak+1

, that is,

max{val(a) : a = ak _ a = ak+1

_ a was visited between ak and ak+1

},

is of Anke’s parity. The aim of Anke is to find a sequence of length at
least 2n + 1, as such a sequence must contain a loop. So she aims for
an (dlog(n)e + 2)-sequence to occur in her winning statistics. Such a se-
quence is built by combining smaller sequences over time in the winning
statistics.

Here a winning statistics of a player consists of (b
0

, b
1

, . . . , bdlog(n)e+2

)
where bi = 0 indicates that currently no i-sequence is being tracked and
bi > 0 indicates that an i-sequence is being tracked and that the largest
value of a node visited at the end or after this i-sequence is bi. Note that
for each i at most one i-sequence is tracked. The value bi is the only in-
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formation of an i-sequence which is kept in the winning statistics.
The following invariants are kept throughout the play and are for-

mulated for Anke’s winning statistics; those for Boris’ winning statistics
are defined with the names of Anke and Boris interchanged. In the below
description, “i-sequence” always refers to the i-sequence being tracked in
the winning statistics.

– Only bi with 0  i  dlog(n)e + 2 are considered and each such bi is
either zero or a value of a node which occurs in the play so far.

– An entry bi refers to an i-sequence which occurred in the play so far
i↵ bi > 0.

– If bi, bj are both non-zero and i < j then bi  bj .
– If bi, bj are both non-zero and i < j, then in the play of the game,

the i-sequence starts only after a node with value bj was visited at or
after the end of the j-sequence.

When a play starts, the winning statistics for both players are initialised
with bi = 0 for all i. During the play when a player moves to a node with
value b, the winning statistics of Anke is updated as follows – the same
algorithm is used for Boris with the names of the players interchanged
everywhere.

– If b is of Anke’s parity or b > bi > 0 for some i, then one selects the
largest i such that
(a) either bi is not of Anke’s parity – that is, it is either 0 or of Boris’s

parity – but all bj with j < i and also b are of Anke’s parity
(b) or 0 < bi < b
and then one updates bi = b and bj = 0 for all j < i.

– If this update produces a non-zero bi for any i with 2i > 2n then the
play terminates with Anke being declared winner.

Example. Here is an example of i-sequences for player Anke. This ex-
ample is only for illustrating how the i-sequences and bi’s work; in partic-
ular this example does not use memoryless strategy for any of the players.
Consider a game where there is an edge from every node to every node
(including itself) and the nodes are {1, 2, . . . , 7} and have the same values
as names; Anke has odd parity. Consider the following initial part of a
play:

1 6 7 5 1 4 5 3 2 1 3 2 3 1 3 3 1 2 1

The i-sequences and the bi’s change over the course of above play as given
in the following table. In the table, the nodes prefixed by “i :” are the
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nodes of an i-sequence. For i-sequences, if the updates (a) and (b) apply
to the same level i then (a) has priority – for the bi this does not make a
di↵erence and therefore this rule is not part of the updating algorithm.

Move b
4

, b
3

, b
2

, b
1

, b
0

i-sequences in play so far
1 0,0,0,0,1 0:1
6 0,0,0,0,6 0:1 6
7 0,0,0,0,7 1 6 0:7
5 0,0,0,5,0 1 6 1:7 1:5
1 0,0,0,5,1 1 6 1:7 1:5 0:1
4 0,0,0,5,4 1 6 1:7 1:5 0:1 4
5 0,0,0,5,5 1 6 1:7 1:5 1 4 0:5
3 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3
2 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 2
1 0,0,3,0,1 1 6 2:7 2:5 1 4 2:5 2:3 2 0:1
3 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3
2 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2
3 0,0,3,3,3 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2 0:3
1 0,1,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1
3 0,3,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3
3 0,3,0,0,3 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3
1 0,3,0,1,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1
2 0,3,0,2,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2
1 0,3,0,2,1 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2 0:1

The 3-sequence has already a loop, as there are three occurrences of “3 :
3” and the second and third of these have that the same player moves.
However, as the sequences are not stored but only the bi, Anke’s winning
statistics only surely indicates a win of player Anke when there is an
i > log(2n+ 1) with bi > 0; this i is 4 as 24 > 2 · 7 + 1.

Verification of the algorithm. Note that, at the update of Anke’s
winning statistics, if b is of Anke’s parity, then there is an i that satisfies
(a), as otherwise the algorithm would have terminated earlier. Also, the
invariants listed above are preserved after each update by the algorithm,
where the i-sequences may be modified after each update as below.

When updating Anke’s winning statistics by case (a), one forms a
new i-sequence of length 2i by putting the older j-sequences for j =
i � 1, i � 2, . . . , 1, 0 together and appending the newly visited one-node
sequence with value b; when i = 0, one forms a new 0-sequence of length
20 consisting of just the newly visited node with value b. Note that in
case i > 0 both b and b

0

are of Anke’s parity and therefore the highest
valued node between the last member a of the older 0-sequence and the
last node in the new i-sequence (both inclusive) has the value max{b

0

, b}.
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Furthermore, for every j < i� 1, for the last node a of the older (j + 1)-
sequence and the first node a0 of the older j-sequence, in the new i-
sequence a highest valued node in the play between these two nodes a, a0

(both inclusive) has value bj+1

which, by choice, has Anke’s parity. Thus
the overall combined new sequence indeed satisfies the properties needed
for an i-sequence, and b is the value of the last node of this sequence and
thus, currently, also the largest valued node at or after the end of the
sequence. All older j-sequences with j < i are discarded and thus their
entries are set back to bj = 0.

The same rules apply to the updates of Boris’ winning statistics with
the roles of Anke and Boris interchanged everywhere.

Claim 2. If a player is declared a winner by the algorithm, then the play
contains a loop with its maximum valued node being a node of the player.

To prove the claim, it is assumed without loss of generality that Anke is
declared the winner by the algorithm. The play is won by an i-sequence
being observed in Anke’s winning statistics with 2i > 2n; thus some
node occurs at least three times in the i-sequence and there are h, ` 2
{1, 2, . . . , 2i} with h < ` such that the same player moves at ah and a`
and furthermore ah = a` with respect to the nodes a

1

, a
2

, . . . , a
2

i of the
observed i-sequence. The maximum value b0 between ah and a` in the
play is occurring between some ak and ak+1

(both inclusive) for a k with
h  k < `. Now, by the definition of an i-sequence, b0 has Anke’s parity.
Thus a loop has been observed for which the maximum value of a node
in the loop has Anke’s parity.

Claim 3. If a player follows a memoryless winning strategy, then the
opponent is never declared a winner.

To prove the claim, suppose that a player follows a memoryless winning
strategy but the opponent is declared a winner. Then the opponent, by
Claim 2, goes into a loop with the maximum node of the opponent’s
parity. Hence, the opponent can cycle in that loop forever and win the
play, a contradiction.

Claim 4. If a player follows a memoryless winning strategy then the
player is eventually declared a winner.

To prove the claim, it is assumed that the player is Anke, as the case of
Boris is symmetric. The values bi analysed below refer to Anke’s winning
statistics.

Assume that an infinite play of the game has the limit superior c
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which, by assumption, is a value of Anke’s parity. Consider a step as
making a move and updating of the statistics. For each step t let

card(c, t) =
X

n

k: bk(t) has Anke’s parity and bk(t) � c
o

2k

where the bk(t) refer to the value of bk at the end of step t (that is, after
the updates in the statistics following the t-th move in the play). Now
it is shown that whenever at steps t, t0 with t < t0, a move to node with
value c was made and no move, strictly between steps t, t0, was made to
any node with value c0 � c, then card(c, t) < card(c, t0). To see this, let
i be the largest index for which there is a step t00 with t < t00  t0 such
that bi is updated at step t00. Next one considers all possible cases:

– Case bi(t00) = 0: This case only occurs if bi+1

also gets updated at step
t00 and contradicts the choice of i. Thus this case does not need to be
considered.

– Case bi(t) � c and bi(t) has Anke’s parity: In this case, the only way
to update bi at step t00 is to do an update of type (a). In this case also
the entry bi+1

(t00) will be updated, in contradiction with the choice of
i. Thus this case also does not need to be considered.

– Case bi(t) � c and bi(t) has Boris’ parity: An update at step t00 is
possible only by case (a). If bi(t00) < c then, at step t0, another update
will occur and will enforce by (b) that bi(t0) = c. The value card(c, t)
is largest when all bj(t) with j < i have Anke’s parity at step t; even in
this worst case, the inequality card(c, t0)�card(c, t) � 2i�

P
j:j<i 2

j �
1 holds.

– Case 0 < bi(t) < c: Later at stage t0, as an update of type (b) at i
is possible, it will be enforced that bi(t0) = c, while bj(t) < c for all
j  i; therefore card(c, t0) � card(c, t) + 2i � card(c, t) + 1.

– Case bi(t) = 0: At stage t00 an update of type (a) will make bi(t00) > 0
and, in case that bi(t00) < c, a further update of type (b) at stage t0

will enforce that bi(t0) = c. Again, the value card(c, t) is largest when
all bj(t) with j < i have Anke’s parity at step t; even in this worst
case the inequality card(c, t0)� card(c, t) � 2i �

P
j:j<i 2

j � 1 holds.

Accordingly, once all moves involving nodes larger than c in value have
been done in the play, there will still be infinitely many moves to nodes
of value c and for each two subsequent such moves at t, t0 the inequality
card(c, t)+ 1  card(c, t0) will hold. Consequently, the number card(c, t),
for su�ciently large t where a move to a node with value c is made at
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step t, rely on some i with bi(t) � c and 2i > 2n and later the termination
condition of Anke will terminate the play with a win.

The above arguments show that a deterministic alternating Turing ma-
chine can simulate both players and, taking the winning statistics into ac-
count, will accept the computation whenever Anke has a winning strategy
for the game. Moreover, the deterministic alternating Turing machine uses
only O(log(n) · log(m)) space to decide whether the parity game, from
some given starting point, will be won by Anke (or Boris), provided the
winner plays a memoryless winning strategy (which always exists when
the player can win the parity game). ⇤

Chandra, Kozen and Stockmeyer [7] showed how to simulate a determ-
inistic alternating Turing machine working in polylogarithmic space by
a deterministic Turing machine working in quasipolynomial time. Their
simulation bounds for the alternating Turing machine described in The-
orem 1 give a deterministic Turing machine working in time O(nc log(m))
for some constant c. As mentioned above, one can always assume that
in a parity game with n nodes, with values from {1, 2, . . . ,m}, one can
choose m  n, so one gets the following parameterised version of the main
results that parity games can be solved in quasipolynomial time.

Theorem 5. There is an algorithm which decides in time O(nc log(m))
which player has a winning strategy in a parity game with n nodes and
values from {1, 2, . . . ,m}, with m  n.

For some special choices of m with respect to n, one can obtain even
a polynomial time bound. McNaughton [36] showed that for every con-
stant m, one can solve a parity game with n nodes having values from
{1, 2, . . . ,m} in time polynomial in n; however, in all prior works the de-
gree of this polynomial depends on m [22]; subsequent improvements were
made to bring the dependence from approximately nm down to approxim-
ately nm/3 [31,40]. The following theorem shows that one can bound the
computation time by a fixed-degree polynomial in n, for all pairs (m,n)
with m < log(n).

Theorem 6. If m < log(n) then one can solve the parity game with n
nodes having values from {1, 2, . . . ,m} in time O(n5).

Proof. Note that Theorem 1 actually shows that the following conditions
are equivalent:

– Anke can win the parity game.
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– Anke can play the parity game such that her winning statistics ma-
tures while Boris’ winning statistics does not mature.

Thus one can simplify the second condition and show that it is equivalent
to the following two games [34,42]:

– One only maintains Anke’s winning statistics and a play terminates
with a win for Anke i↵ she is eventually declared a winner and the
game is a win for Boris i↵ it runs forever;

– One only maintains Boris’ winning statistics and a play is a win for
Anke i↵ it never happens that the winning statistics of Boris make
him to be declared a winner.

The first game is called a reachability game [34] and the second game a
survival game [42, Chapter 9]. Both games are isomorphic, as they are
obtained from each other only by switching the player who is supposed to
win. Such type of reductions, though not with good complexity bounds,
were also considered by Bernet, Janin and Walukiewicz [1]. The reachab-
ility game to which one reduces the parity game, can now be described
as follows.

– The set Q of nodes of the reachability game consists of nodes of the
form (a, p, b̃) where a is a node of the parity game, the player p 2
{Anke,Boris} moves next and b̃ represents the winning statistics of
Anke.

– The starting node is (s, p, 0̃), where 0̃ is the vector of all bi with value
0, s is the starting node of the parity game and p is the player who
moves first.

– Anke can move from (a,Anke, b̃) to (a0,Boris, b̃0) i↵ she can move
from a to a0 in the parity game and this move causes Anke’s winning
statistics to be updated from b̃ to b̃0 and b̃ does not yet indicate a win
of Anke.

– Boris can move from (a,Boris, b̃) to (a0,Anke, b̃0) i↵ he can move from a
to a0 in the parity game and this move causes Anke’s winning statistics
to be updated from b̃ to b̃0 and b̃ does not yet indicate a win of Anke.

The number of elements of Q can be bounded by O(n4). First note
that the number of increasing functions from {0, 1, . . . , dlog(n)e + 2}
to {1, 2, . . . , dlog(n)e} can be bounded by O(n2), as any such sequence
(b0

0

, b0
1

, . . . , b0dlog(n)e+2

) can be represented by the subset {b0k + k : 0  k 
dlog(n)e+2} of {1, 2, . . . , 2dlog(n)e+2} and that there are at most O(n2)
such sets. Further, note that b0k  b0k+1

implies b0k + k < b0k+1

+ k + 1
and thus all b0k can be reconstructed from the set. Given a winning
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statistics b̃ = (b
0

, b
1

, . . . , bdlog(n)e+2

), one defines b0
0

= max{1, b
0

} and
b0k+1

= max{b0k, bk+1

} and notes that only those bk with bk = 0 di↵er
from b0k. Thus one needs dlog(n)e+3 additional bits to indicate which bk
is 0. The overall winning statistics can then be represented by 3dlog(n)e+5
bits. Furthermore, one needs 1 bit to represent the player and dlog(n)e
bits to represent the current node in the play. Accordingly, each node in Q
can be represented with 4dlog(n)e+6 bits resulting in O(n4) nodes in Q.
The set Q itself can be represented by using a set of such representations
of nodes.

The reachability game can be decided in time O(|Q| · n) by a well-
known algorithm. For the general case of a reachability game, the time
complexity is linear in the number of vertices plus number of edges of the
game graph. The algorithm is listed explicitly by Khaliq and Imran [33]
and in a slightly modified version in Grädel’s tutorial slides [24,25]. The
algorithm is now included for the reader’s convenience.

First, one can construct the set Q of vertices and determine a list
of nodes Q0 ✓ Q where Anke’s winning statistics indicate a win in time
O(|Q| · n); the set Q0 is the set of target nodes in the reachability game.

Second, one computes for each node q 2 Q, a linked list of q’s suc-
cessors (which are at most n in number) and a linked list of q’s prede-
cessors. Note that the collection of all the successor and predecessor lists
for di↵erent nodes in Q taken together has the length at most |Q| · n.
These lists can also be generated in time O(|Q| · n).

Note that a node q is a winning node for Anke if q 2 Q0 or either Anke
moves from q and one successor node of q is a winning node for Anke or
Boris moves from q and all successor nodes of q are winning node for
Anke. This idea leads to the algorithm below.

Next, for each node q, a tracking number kq is introduced and main-
tained such that the winning nodes for Anke will eventually all have
kq = 0, where kq indicates how many further times one has to visit the
node until it can be declared a winning node for Anke. The numbers kq
are initialised by the following rule:

– On nodes q 2 Q0 the number kq is 1;
– On nodes q = (a,Anke, b̃) /2 Q0, the number kq is initialised as 1;
– On nodes q = (a,Boris, b̃) /2 Q0, the number kq is initialised as the

number of nodes q0 such that Boris can move from q to q0.

These numbers can be computed from the length of the list of successors
of q, for each q 2 Q. Now one calls the following recursive procedure,
initially for all q 2 Q0 such that each call updates the number kq. The
recursive call does the following:
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– If kq = 0 then return without any further action else update kq =
kq � 1.

– If after this update it still holds kq > 0, then return without further
action.

– Otherwise, that is when kq originally was 1 when entering the call,
recursively call all predecessors q0 of q with the same recursive call.

After the termination of all these recursive calls, one looks at kq for the
start node q of the reachability game. If kq = 0 then Anke wins else Boris
wins.

In the above algorithm, the predecessors of each node q 2 Q are only
called at most once, namely when kq goes down from 1 to 0; furthermore,
this is the time where it is determined that the node is a winning node
for Anke. Thus there are at most O(|Q| ·n) recursive calls and the overall
complexity is O(|Q| · n).

For the verification, the main invariant is that, for nodes q 2 Q�Q0,
kq indicates how many more successors of q one still has to find which
are winning nodes for Anke until q can be declared a winning node for
Anke. In case that Anke’s winning statistics has matured in the node q,
the value kq is taken to be 1 so that the node is processed once in all
the recursive calls in the algorithm. For nodes where it is Anke’s turn to
move, only one outgoing move which produces a win for Anke is needed.
Consequently, one initialises kq to 1 and as soon as this outgoing node is
found, kq goes to 0, which means that the node is declared a winning node
for Anke. In case the node q is a node where Boris moves then one has to
enforce that Boris has no choice but to go to a winning node for Anke.
Thus kq is initialised to the number of moves which Boris can make in this
node; each time when one of these successor nodes is declared a winning
node for Anke, kq goes down by one. Observe that once the algorithm is
completed, the nodes with kq = 0 are exactly the winning nodes for Anke
in the reachability game. ⇤

This special case shows that, for each constant m, the parity game with n
nodes having values from {1, 2, . . . ,m} can be solved in time O(n5)+g(m),
for some function g depending only onm, and the constant in O(n5) being
independent of m. Such problems are called fixed parameter tractable
(FPT), as for each fixed parameter m the corresponding algorithm runs
in polynomial time and this polynomial is the same for all m, except
for the additive constant g(m) depending only on m. See Downey and
Fellows [14] for an introduction to parameterised complexity.

The next result carries over the methods of the previous result to
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the general case: the size of the code representing a winning strategy for
Boris is given by dlog(n)e + 3  log(n) + 4 numbers of dlog(m + 1)e 
log(m) + 1 bits. As log(m)  log(n), the overall size of representing a
node in the set Q of nodes of the reachability game can be estimated to
log(n) · (log(m) + 5) + c. Hence, the size of |Q| is O(nlog(m)+5).

One can combine this with the usual repeated tests for various types
of NP-problems: for finding the winning strategy for a player which has
a winning strategy, say Anke, in the parity game on graph (V,E), one
keeps doing the following:

1. One maintains, for each node a 2 V , a list of possible successors Va

which is initialised as {b : (a, b) 2 E} at the beginning.
2. If there is no node a 2 V with, currently, |Va| > 1,

then one terminates with a winning strategy for Anke in the parity
game being to move from every node a to the unique node in Va,
else one selects a node a 2 V with |Va| > 1.

3. Now one splits Va into two nearly equal sized subsets V 0
a and V 00

a with
|V 0

a|  |V 00
a |  |V 0

a|+ 1.
4. One replaces Va by V 0

a and permits, in the derived reachability game,
moves from (a,Anke, b̃) to (a0, Boris, b̃0) only when a0 2 Va.

5. If Anke does not win this game, then one replaces Va = V 00
a ; else one

keeps Va = V 0
a.

6. Go to step 2.

The above algorithm works since whenever Anke has a winning strategy
for the parity game, then there is a memoryless one and therefore when
splitting the options at node a, some memoryless winning strategy either
always takes a node from V 0

a or always takes a node from V 00
a . It is straight-

forward to verify that the above loop runs n log(n) rounds and each round
involves O(|Q| · n) time plus one solving of the reachability game, which
can also be solved in time O(|Q| · n). Thus one can derive the following
result.

Theorem 7. There is an algorithm which decides in time O(nlog(m)+6)
which player has a winning strategy for a parity game with n nodes
and values from {1, 2, . . . ,m}. Furthermore, the algorithm can compute a
memoryless winning strategy of the winner in time O(nlog(m)+7 · log(n)).

3 Parity Games versus Muller Games

Muller games are a well-studied topic [5,6,36,44,46] and they had been in-
vestigated as a general case already before researchers aimed for the more
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specific parity games. A Muller game (V,E, s,G) consists of a directed
graph (V,E), a starting node s and a set G ✓ {0, 1}V . For every infinite
play starting in s, one determines the set U of nodes visited infinitely
often during the play: if U 2 G then Anke wins the play else Boris wins
the play. In a Muller game the complement of G is closed under union i↵
for all U,U 0 /2 G, the set (U [ U 0) is not in G.

For complexity assumptions, it is natural to consider the case where
G is not given as an explicit list, but as a polynomially sized polynomial
time algorithm computing the membership of a set U (given by its expli-
cit list) in the set G or some similar equivalent e↵ective representation.
The reason for considering such a representation for G is that Horn [27]
showed that if G is given as an explicit list of all possible sets of nodes
infinitely visited when Anke wins, then the resulting game is solvable in
polynomial time in the sum of the number of nodes and the number of
explicitly listed sets. Hence, only more flexible ways of formulating win-
ning conditions permit to cover interesting cases of Muller games.

For Muller games, Björklund, Sandberg and Vorobyov [3] considered
a parameter which is given by the number of colours. For this, they assign
to every node a value or colour from {1, 2, . . . ,m} and take G to be some
set of subsets of {1, 2, . . . ,m}. Then U is not the set of infinitely often
visited nodes, but instead, the set of colours of the infinitely often visited
nodes. Again, if U 2 G, then Anke wins the play, else Boris wins the
play. Coloured Muller games permit more compact representations of the
winning conditions. In the worst case there is a 2m-bit vector, where m
is the number of colours; however, one also considers the case where this
compressed winning condition is given in a more compact form, say by a
polynomial sized algorithm or formula.

In the following, the interactions between Muller games, memoryless
winning strategies and parity games are presented. The proofs of the first
two results are only given for the sake of a self-contained paper. The first
result is due to Zielonka [46, Corollary 11] and the second one is proven
using standard methods; indeed, McNaughton [36] did not use the ter-
minology of “parity games” but rather considered games in which both
G and its complement are closed under union. Note that the complement
of G are the winning conditions of Boris in a Muller game.

Theorem 8 (Zielonka [46]). Assume that in a Muller game (V,E, s,G)
the complement of the set G of winning conditions is closed under union.
Now, if Anke has a winning strategy in this Muller game then Anke has
also a memoryless winning strategy.
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Proof. The possible choices for Anke at any node will be progressively
constrained. The proof is by induction on the number of possible moves
of Anke in the constrained game. The result holds when, for each node,
Anke has only one choice of move. For the induction step, suppose some
node v for Anke’s move has more than one choice. It is now shown that
for some fixed Anke’s move at node v, Anke has a winning strategy; thus
one can constrain the move of Anke at node v and by induction we are
done. Suppose, by way of contradiction, that for every Anke’s move w at
v, Boris has a winning strategy Sw. This allows Boris to have a winning
strategy for the whole game as follows.

Assume without loss of generality that the play starts with Anke’s
move at v. Intuitively, think of Boris playing several parallel plays against
Anke (each play in which Anke moves w at node v, for di↵erent values
of w) which are interleaved. For ease of notation, consider the individual
play with Anke using move w at node v as play Hw, and the interleaved
full play as H.

Initially H and all the plays Hw, are at the starting point. At any
time in the play H, if it is Anke’s move at v and Anke makes the move
w0, then Boris continues as if it is playing the play Hw0 (and suspends the
previous play Hw if w 6= w0). Thus the nodes visited in H can be seen
as the merger of the nodes visited in the plays Hw, for each choice w of
Anke at node v. This implies that the set of nodes visited infinitely often
in H is equal to the union of the sets of nodes visited infinitely often in
the various Hw. As Boris wins each play Hw which is played for infinitely
many moves, by closure of the complement of G under union, Boris wins
the play H. ⇤

As a parity game is also a Muller game in which G is closed under union
for both Anke and Boris, the following corollary holds.

Corollary 9 (Emerson and Jutla [19], Mostowski [37]). The win-
ners in parity games have memoryless winning strategies.

Hunter [28, page 23] observed the following result.

Theorem 10 (Hunter [28]). Every Muller game (V,E, s,G) in which
both G and its complement are closed under the union operation is a
parity game.

Proof. In this proof a parity game isomorphic to the given Muller game
will be constructed. In this parity game player Anke owns the nodes with
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even value and Boris owns the nodes with odd value. Given V , let

V
1

= {a 2 V : {a} 2 G} and V
2

= {b 2 V : {b} /2 G}.

Obviously V is the disjoint union of V
1

and V
2

. By the closure under
union, any subset V 0 ✓ V

1

is in G and no subset V 0 ✓ V
2

is in G.
To prove the theorem, values will be inductively assigned to the nodes

one by one.
Suppose values have already been assigned to all nodes in V � V 0,

where V 0 is initially V . Then, assign the value to one node in V 0 as
follows. Let V 0

1

= V 0 \ V
1

and V 0
2

= V 0 \ V
2

.
Case 1: Suppose V 0 2 G. Then, there is a node a 2 V 0

1

such that
{a} [ V 0

2

2 G; otherwise, V 0 62 G since complement of G is closed under
the union operation. Now let V 00

1

✓ V 0
1

and V 00
2

✓ V 0
2

. The set {a}[V 00
2

is in
G, as otherwise ({a}[V 00

2

)[V 0
2

is not in G, in contradiction to the choice
of a. Furthermore, as V 00

1

[{a} 2 G, (V 00
1

[{a})[({a}[V 00
2

) = {a}[V 00
1

[V 00
2

is in G. Thus whenever V 00 ✓ V 0 and a 2 V 00, V 00 2 G. Hence, the value
2|V 0| is assigned to a accordingly.

Case 2: Suppose V 0 62 G. Then, there exists a node b 2 V 0
2

such that
{b} [ V 0

1

62 G, by reasons similar to those given in Case 1. Note that this
implies that whenever V 00 ✓ V 0 and b 2 V 00 then V 00 62 G. Hence, the
value 2|V 0|+ 1 is assigned to b.

The above process of assigning values to nodes is clearly consistent,
as in Case 1, if a is in V 00 then Anke wins and in Case 2, if b is in V 00 then
Boris wins. It follows that this Muller game is a parity game. ⇤

Remark 11. For the above proof, it should be noted that the complex-
ity of the reduction is polynomial time, whenever G can be decided in
polynomial time. However, one could look at the scenario where there are
two sets GA and GB of winning conditions for Anke and Boris satisfying
the following conditions:

– GA and GB are disjoint and are both union-closed;
– for all sets U of colours occurring infinitely often in some play, U 2

GA [GB; however, for other U it might be that U /2 GA [GB;
– the sets GA and GB can be decided in polynomial time.

In this case one can, by the proof of Theorem 10, still see that one of the
players, Anke or Boris, has a memoryless winning strategy. Furthermore,
one could adjust the algorithm in Theorem 10 and use it to compute a G
such that both G and its complement are union-closed and GA ✓ G and
GB \G = ;:
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1. The algorithm would be to start with a set C initialised as the set of
all colours and with G = ;.

2. Then the algorithm searches for a c 2 C such that G(c, C) = {U ✓
C : c 2 U} is disjoint to GA or disjoint to GB. Pick such c (it is argued
below that such a c must exist).

3. If G(c, C) is disjoint to GB then let G = G [G(c, C).
4. Let C = C � {c}; if C 6= ; then goto Step 2.
5. If ; 2 GA then let G = G [ {;}.

This algorithm works because the c 2 C always exists in Step 2: If it
would not exist, then the union of all subsets of C which are in GA would
be C and similarly the union of all subsets of C which are in GB would be
C; hence it could not be that GA, GB are disjoint and both union-closed.

However, this algorithm involves exponential search, as there might
be exponentially many sets to be checked for membership in GA and
GB. Thus one might ask whether there are better ways to decide the
winner and to compute the winning strategy. It is shown next that such
an algorithm is not so easy, as finding it is hard for UP.

Consider an instance of unique satisfiability (the promise is that there
is at most one solution) with the variables x

1

, x
2

, . . . , xn and the clauses
c
1

, c
2

, . . . , cm, each having two or three literals, where without loss of
generality it is assumed that, for each i 2 {1, 2, . . . , n} there is a j with
cj = (xi _ ¬xi). In the game constructed, there are 2n + 1 colours: The
colour ⇤ and, for i = 1, 2, . . . , n, the colours xi and ¬xi. The game has,
for each clause cj , three to four nodes described as follows:

– The entry node for the clause, (entryj). This nodes has the colour ⇤.
From (entryj) Anke can move to any of the nodes (testj,k) described
below.

– The nodes (testj,1), (testj,2) and perhaps (testj,3). Each literal `j,k is
of the form xi or ¬xi, in the first case there is a node (testj,k) of colour
xi and in the second case there is a node (testj,k) of colour ¬xi. From
each of the nodes (testj,k), Boris has only one move; if j < m, then
Boris moves to node (entryj+1

); if j = m, then Boris moves to the
node (entry

1

).
– The starting node is (entry

1

), where Anke moves.

Now GA contains all sets U of colours where (a) U contains ⇤, (b) U
contains, for each variable xi, exactly one of the colours xi and ¬xi and
(c) for each clause, at least one literal is in U . GB contains all sets U
of colours where (a) U contains ⇤, (b) U contains, for each variable xi,
at least one of the colours xi and ¬xi and (c) either there is an i such
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that both xi,¬xi are in U or there is a clause such that none of its
literals are in U . It is easy to see that, for the infinitely often visited
colours U of a play, U contains ⇤ as the game goes through node (entry

1

)
infinitely often, and U contains at least one of xi and ¬xi: as there is
a j with cj = (xi _ ¬xi) and the play goes infinitely often through the
node (entryj), thus Anke chooses at least one of the nodes (testj,1) and
(testj,2) infinitely often which have colours xi and ¬xi, respectively. Thus
U 2 GA [ GB. Furthermore U 2 GA i↵ U is a satisfying assignment for
the instance. Note that one can compute the satisfying assignment from
the winning strategy of Anke.

To make the winning conditions to be total, that is, to find a G such
that both G and its complement are closed under union, GA ✓ G and
GB \G = ;, consider the following formula:

G = {U : 9U 0 2 GA [U ✓ U 0]}.

This G contains GA and is disjoint to GB. As GA contains at most one
set U , G and its complement are closed under union. It is now UP-hard
to compute membership in G using the algorithms for membership in GA

and in GB, as one does not know whether there is any winning U for
Anke unless one solves the corresponding UP-problem.

If one could convert any Muller game with a polynomial time condition
of type GA, GB as above to a parity game in polynomial time, then by
using the corresponding parity game solver, one could solve the UP-
problems in quasipolynomial time. It would in particular also imply that
one can factorise n-digit integers in time quasipolynomial in n – something
which many believe to be not possible.

Besides the coloured Muller game of Björklund, Sandberg and Vorobyov
[3], one can also consider the memoryless coloured Muller game. These are
considered in order to see whether the game is easier to solve if one permits
Anke only to win when she follows a memoryless strategy, otherwise she
looses by the rules of the game. The main finding is that while memoryless
coloured Muller games are, on one hand, easier in terms of the complexity
class to which they belong, and, on the other hand, their time complexity
is worse and one cannot exploit small numbers of colours as well as in
Muller games. This is the main message of the following lines.

Björklund, Sandberg and Vorobyov [3] proved that the coloured Mul-
ler game is fixed-parameter tractable i↵ the parity game is fixed-para-
meter tractable (with respect to the number of values m of the parity
game). It follows from Theorem 6 that also the coloured Muller game is
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fixed-parameter tractable.
More precisely, Björklund, Sandberg and Vorobyov [3] showed that a

coloured Muller game withm colours and n nodes can be translated into a
parity game with 2m colours and m! ·n nodes. Note that log(m! ·n) � 2m
for all m � 24 and n � 1: log(m!) � log(8m�8) � 3 · (m� 8) = 3m� 24.
For m � 24, 3m � 24 � 2m. Furthermore, for all su�ciently large n,
log(m! · n) � 2m. Thus, for almost all pairs of (m,n), log(m! · n) � 2m
and therefore one can use the polynomial time algorithm of Theorem 6
to get the following explicit bounds.

Theorem 12. One can decide in time O(m5m · n5) which player has a
winning strategy in a coloured Muller game with m colours and n nodes.

For the special case of m = log(n), the corresponding number of nodes in
the translated parity game is approximately nlog(log(n))+2 and the poly-
nomial time algorithm of Theorem 6 becomes an O(n5 log log(n)+10) al-
gorithm. The algorithm is good for this special case, but the problem is
in general hard and the algorithm is slow.

One might ask whether this bound can be improved. Björklund, Sand-
berg and Vorobyov [3] showed that under the Exponential Time Hypo-
thesis (which says that the problem 3SAT with n variables is not solv-
able in time O(2o(n))) it is impossible to improve the above algorithm
to O(2o(m) · nc), for any constant c. The following result enables to get
a slightly better lower bound based on the more likely assumption that
FPT 6= W[1]. Here a dominating set of a graph is a set of nodes such
that from every node in the graph there is an edge to one of the nodes in
the dominating set; for this property one deviates from the usual conven-
tion of the non-existence of self-loops and assumes that every node has a
loop to itself.

Theorem 13. Given a graph H with n nodes and a number m with 1 
m  n, one can compute in time polynomial in n0 a coloured Muller game
with n0 nodes and m0 colours such that, for all su�ciently large m,n,

– m0  (4m/ log(m)) · log(n),
– n0  n(4m/log(m))+4 and

– the given graph H has a dominating set of size up to m i↵ player Anke
has a winning strategy in the resulting coloured Muller game.

Proof. Assume that the given graph H has vertices {a
1

, . . . , an} and let
E be the set of its edges. Without loss of generality assume that n,m � 2
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so that log(n), log(m) are at least 1.
The main complexity bound in the parity game is due to some com-

pression of m-tuples. Instead of giving a plain m-tuple of m ·dlog(n)e bits,
one stores the m-tuple in subsets of a base set E of colours.

Let {ak
1

, ak
2

, . . . , akm} be Anke’s choice of the dominating set in the
graph H. The idea is to code each sequence of nodes ak

1

, ak
2

, . . . , akh
as a subset of h · dlog(n)/ log(m)e colours from a set E of (2m + 2) ·
dlog(n)/ log(m)e colours. Note that for each subset E0 of E with at
most m colours, there is a one-one mapping fE0 from {a

1

, . . . , an} to
subsets of E such that fE0(a`) is the disjoint union of E0 and a set of
dlog(n)/ log(m)e colours. This one-one function exists, as |E �E0| has at
least dlog(n)/ log(m)e · (m+ 2) elements and

|E � E0|!/(dlog(n)/ log(m)e! · (|E � E0|� dlog(n)/ log(m)e)!)

� mdlog(n)/ log(m)e � 2log(m)·log(n)/ log(m) = 2log(n) = n.

Next one inductively defines

– f(a`
1

) as f;(a`
1

);
– for h = 0, 1, . . . ,m� 1, f(a`

1

, . . . , a`h , a`h+1

) = fE0(a`h+1

) where E0 =
f(a`

1

, . . . , a`h) and `
1

, `
2

, . . . 2 {1, 2, . . . , n}.

Now the idea of the game constructed for the reduction is that Boris
repeatedly asks Anke to ‘find an edge in H from a given ai into some
aj of the dominating set’, for various values of ai; this is represented in
the game by Anke going through her dominating set ak

1

, ak
2

, . . . , akm by
inductively visiting nodes of the game corresponding to ak

1

, ak
2

, . . . , akh
for h = 0, 1, . . . until an h is reached with akh = aj . In case these answers
are inconsistent for some choices ai and ai0 that is, there is an h such that
for both choices ai and ai0 , Anke goes through nodes of the game corres-
ponding to ak

1

, ak
2

, . . . , akh�1

but then goes through nodes corresponding
to a` and a`0 , with a` 6= a`0 , for ai and ai0 respectively, then Boris will ask
Anke to do this repeatedly for an infinite number of times and win the
game.

Now the constructed Muller game is defined more formally. For this,
in addition to the colours E, the colours {d

0

, d
1

, . . . , dh} are also used,
where E \ {d

0

, d
1

, . . . , dh} = ;. Note that there are in total (2m + 2) ·
dlog(n)/ log(m)e colours in E and m+ 1 colours in D = {d

0

, d
1

, . . . , dh}.
To simplify the presentation, in the description below a node w can

have several colours from D [ E, instead of only one colour. This con-
vention does not a↵ect the generality, as the node w can be replaced by
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a sequence of up to |D [ E|+ 1 nodes, where each node in the sequence
has one colour from the set of colours assigned to w and only one choice
for next move; one colour might need to be repeated in order to fix the
player that moves next. All nodes will have at least the colour d

0

, so that
there are no colourless nodes.

Boris wins a play i↵ the colours of infinitely often visited nodes consist,
for some h, exactly of {d

0

, d
1

, . . . , dh} and at least h · dlog(n)/ log(m)e+1
of the colours in E. Note that Boris’ winning condition from above is
closed under union. Given two winning conditions U,U 0 for Boris, there
are h, h0 such that

– U has at least h · dlog(n)/ log(m)e+1 colours from E and the colours
{d

0

, d
1

, . . . , dh} and
– U 0 consists of at least least h0 · dlog(n)/ log(m)e + 1 colours from E

and the colours {d
0

, d
1

, . . . , dh0} and
– U [ U 0 has at least max{h, h0} · dlog(n)/ log(m)e + 1 colours from E

and the colours {d
0

, d
1

, . . . , d
max{h,h0}}.

Thus U [ U 0 is also a valid winning condition of Boris. For this reason,
it is su�cient to consider memoryless winning strategies of Anke. The
nodes of the game and their colours are as follows:

1. Starting node (start) with colour {d
0

}, from where Boris moves to
any node of the form (edge, ai) described in item 2.

2. For i 2 {1, 2, . . . , n}, node (edge, ai) with colour {d
0

}. From node
(edge, ai) Anke can move to nodes (aj , ak

1

, f(ak
1

)) described in item
3 such that (ai, aj) is an edge in the graph H.

3. For j, k
1

, k
2

, . . . , kh 2 {1, 2, . . . , n}, node (aj , akh , f(ak1 , . . . , akh)) with
colours f(ak

1

, . . . , akh) [ {d
0

, d
1

, . . . , dh}. Boris can move from node
(aj , akh , f(ak1 , . . . , akh)) to a node as described below:
(a) always to nodes (edge, ai) for i with 1  i  n;
(b) if h < m and aj 6= akh , then also to the node (nextround, aj ,

f(ak
1

, . . . , akh)), described in item 4;
(c) if h = m ^ aj 6= akh , then also to the node (fail) described in

item 5.
4. For h with 1  h < m and j, k

1

, k
2

, . . . , kh 2 {1, 2, . . . , n}, node
(nextround, aj , f(ak

1

, . . . , akh)) with colours f(ak
1

, . . . , akh)[ {d
0

, d
1

,
. . . , dh}. Anke can move from a node (nextround, aj , f(ak

1

, . . . , akh))
to a node of the form (aj , akh+1

, f(ak
1

, . . . , akh , akh+1

)), for akh+1

being
a node in H, as described in item 3. Here Anke should choose akh+1

according to her dominating set in the graph H, as otherwise she
would lose based on the winning conditions of Boris.
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5. Node (fail), with coloursD[E, the players can only move from (fail)
to (fail).

So in total there are |E|+m+1 colours and their number can be bounded
bym0 = 4m·log(n)/ log(m) for all su�ciently largem. Furthermore, there
are

– 1 node according to item 1,
– n nodes according to item 2,
– at most 2m

0 · n2 nodes according to item 3,
– 2m

0 · n nodes according to item 4 and
– 1 node according to item 5.

These 2m
0 · (n2+n)+n+2 nodes can be translated into at most 2m

0 · (n+
1)2 · (m0 +1) nodes in the regular Muller games, with one colour each, as
indicated above. Using m0  4m · log(n)/ log(m) and m  n, this number
of nodes can be bounded by n4m/ log(m) · (n+1)2 · (4n log(n)+ 1) which is
bounded by n0 = n(4m/ log(m))+4 for all su�ciently large n. Thus, m0 and
n0 are almost always upper bounds on the number of colours and nodes,
respectively.

For the verification, it is shown that Anke wins the game i↵ there is a
dominating set of size at most m in the original graph. If there is a dom-
inating set {ak

1

, ak
2

, . . . , akm}, for each choice (edge, ai) made by Boris
(whenever it is Boris’s turn) Anke always chooses aj 2 {ak

1

, ak
2

, . . . , akm}
such that (ai, aj) is an edge in H and moves to (aj , ak

1

, f(ak
1

)). Then,
Anke goes through choices (aj , akh , f(ak1 , ak2 , . . . , akh)), for h = 2, 3, . . .,
until Boris chooses (edge, ai0) in its turn. Note that this will happen
when akh = aj or before. The maximal h such that aj = akh is chosen
in the play, will make the set of infinitely often visited colours U =
f(ak

1

, . . . , akh)[ {d
0

, d
1

, . . . , dh}, which has only h · dlog(n)/ log(m)e col-
ours from E and therefore it will be a win for Anke and not for Boris.

In the case that there is no dominating set, the play will either end
up in the node (fail) or Anke would not be using its dominating set con-
sistently as illustrated below. One assumes that Anke plays a memoryless
winning strategy and that Boris knows Anke’s strategy; thus it is suf-
ficient to show that Boris can counteract this strategy. So assume that
there is no dominating set of size m. There are two cases.

(a) Anke does not consistently maintain the same candidate for a dom-
inating set. Then there are two nodes ai, ai0 such that, when Boris asks
Anke to follow an edge from ai and ai0 , respectively, into the dominating
set then Anke’s answers are not consistent. More precisely, there are ai
and ai0 , such that, in the case that the play goes to nodes (edge, ai) and
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(edge, ai0), Anke (in series of moves via nodes of item 2 and 3) chooses
(⇤, ak

1

, f(ak
1

)), (⇤, ak
2

, f(ak
1

, ak
2

)), . . ., (⇤, akh�1

, f(ak
1

, ak
2

, . . . , akh�1

)),
and then chooses

(⇤, akh , f(ak1 , ak2 , . . . , akh�1

, akh)) or (⇤, a0kh , f(ak1 , ak2 , . . . , akh�1

, a0kh)),

respectively, where akh 6= a0kh and ⇤ can be any aj 2 {a
1

, a
2

, . . . , an}.
Boris exploits this inconsistency by moving to (edge, ai) at the start of
the play and by alternately choosing (edge, ai0) and (edge, ai) when the
play enters

(⇤, akh , f(ak1 , ak2 , . . . , akh)) or (⇤, a0kh , f(ak1 , ak2 , . . . , a
0
kh
)).

As Anke plays a memoryless strategy, the play will result in an infinite
loop of nodes with the colours

f(ak
1

, ak
2

, ..., akh�1

, akh) [ f(ak
1

, ak
2

, ..., akh�1

, a0kh) [ {d
0

, d
1

, ..., dh�1

, dh}

and the resulting play is won by Boris.
(b) Anke maintains consistently the same candidate for a dominating

set {ak
1

, ak
2

, . . . , akm}. As this candidate is not a dominating set, there is
some ai such that no edge goes from ai into this candidate set. So Boris
chooses (edge, ai) and Anke moves to a node (aj , ak

1

, f({a
1

})). Now the
play will go through all rounds and at each round through the node
(aj , akh , f(ak1 , . . . , akh)) and as aj 6= akh , Boris can continue the play up
until it reaches (fail). Then the play will remain in that node forever and
as E [ D is a set of colours which is in the winning condition of Boris,
Boris will win this play as well. ⇤

Note that the above algorithm reduces the question whether a graph of n
nodes has a dominating set of size m to a Muller game with up to m0 =
(4m/ log(m)) log(n) colours and n0 = n(4m/ log(m))+4 nodes, for su�ciently
large m and n. The construction of the game takes time O(n0). Assuming
now that there is a decision procedure for Muller games which takes time
(2m

0 · n0)c, for some constant c, one can obtain a decision procedure for
the previous dominating set problem in time nc·((8m/ log(m))+4), where the
exponent is clearly o(m). Chen, Huang, Kanj and Xia [10, Theorem 5.4]
showed that if there is an algorithm which solves dominating set with
these parameters – note that their paper uses a di↵erent notation – then
FPT = W[1]. This provides the following corollary.

Corollary 14. For every c there is no algorithm running in time O((2m ·
n)c) which decides the winner of a coloured Muller game with n nodes and
m colours unless FPT = W[1].
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The above reduction, due to the optimisation involved, increased mas-
sively the number of nodes in the game. If one does not want to lower
the factor m to (m/ log(m)) · log(n) in the translation, but only wants
to achieve O(m · log(n)) colours, then there are more straightforward
methods. Zielonka [46] used similar methods to show NP-hardness of the
Muller games, even in the special case of games where player Anke, in
the case that she wins, also has a memoryless winning strategy.

Theorem 15 (Zielonka [46]). The problem to determine whether Anke
can win a Muller game when the set of Boris’ winning conditions is closed
under union is NP-complete; however, for containment in NP, the win-
ning conditions have to be represented as in Zielonka’s paper. In general,
this problem is in ⌃P

2 .

Note that for games where Anke might win, but not with a memory-
less winning-strategy, the complexity bound is worse. Dawar, Horn and
Hunter showed that the problem to decide the winner in a Muller game
is PSPACE-complete [11].

4 Memoryless Coloured Muller Games

This section is dealing with memoryless coloured Muller games. Memory-
less games are games where Anke wins i↵ she (a) plays a memoryless
strategy and (b) wins the game according to the specification of the game.
If she does not do (a), this is counted as a loss for her. This was already
done by Björklund, Sandberg and Vorobyov [3, Section 5] for Streett
games and it can also be done for Muller games.

In contrast to normal coloured Muller games, the complexity of the
memoryless games is di↵erent. On one hand, one can decide in ⌃P

2 whe-
ther Anke has a winning strategy: There is a memoryless strategy of Anke
such that the graph obtained by fixing Anke’s moves according to the
strategy, does not allow Boris to reach a loop of length up to 2n2, where
the set of colours of this loop is a non-member of G. On the other hand,
the next result shows that unless NP can be solved in quasipolynomial
time there is no analogue of the translation of Björklund, Sandberg and
Vorobyov [3] from memoryless coloured Muller games into parity games.

Theorem 16. Given a graph with n nodes and given a number m 2
{1, 2, . . . , n}, one can compute in time polynomial in n

1. a coloured Muller game G with O(m·n·log(n)) nodes and O(m·log(n))
colours with the side-condition that Boris’ winning condition is closed
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under union and superset and generated by a list of two-element sets
of nodes and

2. a memoryless coloured Muller game G0 with O(m ·n · log(n) ·(log(m)+
log log(n))) nodes and O(log(m) + log log(n)) colours, where the win-
ning conditions for Boris can be given as an Poly(m · log(n))-sized
explicit list,

such that the graph has an m-clique i↵ Anke can win the game G i↵ Anke
can win the game G0.

Proof. Suppose (V,E) is the graph for the m-clique problem. Without
loss of generality assume that (a, a) 62 E for each a 2 V and that (a, b) 2
E , (b, a) 2 E for all a, b 2 V . Furthermore, assume that the nodes of V
are represented using dlog(n+ 1)e bits.

Construction of G. The game G will use 1 + 2m · dlog(n+ 1)e colours.
The colours are 1 and Ci

b,k, for i 2 {0, 1}, b 2 {1, 2, . . . ,m} and k 2
{1, 2, . . . , dlog(n+1)e}. Then, in part 2 this game will be modified to use
only O(log(m) + log log(n)) colours.

Intuitively, the game constructed below has m copies of the graph
(V,E), with each copy having a subgraph (network) for each a 2 V .

For each a 2 V , b 2 {1, 2, . . . ,m}, the nodes and edges of the game G
are as follows:

(a) Nodes (entry, a, b). These nodes are entry nodes for the subgraph
related to node a in the b-th copy of (V,E). All the entry nodes have
colour 1 and have Boris’s turn to move.

(b) Nodes (middle, a, b, k), for k 2 {0, 1, 2, . . . , dlog(n + 1)e}. All these
nodes are for Anke’s move. There is an edge from (entry, a, b) to
nodes (middle, a, b, k), for k 2 {0, 1, 2, . . . , dlog(n + 1)e}. For k = 0,
(middle, a, b, k) has colour 1. For k 2 {1, 2, . . . , dlog(n+1)e}, the node
(middle, a, b, k) has colour Ci

b,k, where i is 1 if the k-th bit of a is 1
and 0 otherwise.

(c) Nodes (transfer, a, b). All these nodes are with colour 1 and are
for Boris’s move. There is an edge from the node (middle, a, b, k)
to (transfer, a, b) for k 2 {0, 1, 2, . . . , dlog(n+ 1)e}.

(d) Nodes (last, a, b, b0), where b0 2 {1, 2, . . . ,m}. All these nodes have
colour 1 and are for Anke’s move. For each b0 2 {1, 2, . . . ,m}, there
is an edge from (transfer, a, b) to (last, a, b, b0).

(e) There is an edge from (last, a, b, b0) to (entry, a0, b0), for all a0 such
that there is an edge (a, a0) 2 E.
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(f) There is a (start) node in the game with colour 1 on which Anke
moves. The edges from (start) are to any node (entry, a, 1), where
a 2 V . The game starts at (start).

Note that 1 + 2m · dlog(n+ 1)e colours are used in the game.
The winning condition for Boris is that, for some b, k, the game goes

infinitely often through the colours C0

b,k and C1

b,k. Note that this winning
condition is closed under union and supersets and there is a polynomial
time algorithm which checks whether a set U of colours evaluates to win-
ner Anke or Boris.

Now, if there is a clique in the graph with nodes a
1

, a
2

, . . . , am, then
at (start), Anke can chose to go to (entry, a

1

, 1) and then from the nodes
(last, ab, b, b0), she can choose to go to (entry, ab0 , b0). For any fixed b, k,
the nodes (middle, a, b, k) that the game goes through have a = ab. It
immediately follows that only the colour Ci

b,k, with i being the k-th bit

of a, can be visited infinitely often and not C1�i
b,k . Thus, Anke wins.

On the other hand, if there is no clique, then Boris has the follow-
ing winning strategy. Note that for any fixed sequence a

1

, a
2

, . . . , am, of
nodes, there are s, t 2 {1, 2, . . . ,m} such that (as, at) is not an edge in
the graph (V,E).

Let A
1

, A
2

, . . . , Ar be all possible combinations of m nodes in V (r is
roughly nm).

Consider one round as going, for some a, b, b0, k, through the fol-
lowing sequence of nodes: (entry, a, b), (middle, a, b, k), (transfer, a, b),
(last, a, b, b0).

In the rounds numbered 2p · q and 2p · q + 1, for p 2 {1, 2, . . . , r} and
q is a natural number, Boris chooses b0 during the visit to (transfer, a, b)
(where a, b are as in the corresponding round) as follows: For round 2p ·q,
he chooses b0 = s and for round 2p · q + 1, he chooses b0 = t, where s, t
are such that in the p-th combination of m nodes Ap = a

1

, a
2

, . . . , am,
(as, at) do not form an edge in (V,E). As Anke’s strategy is memoryless,
the choice made by Boris at the nodes of the form (entry, a, b) does not
e↵ect what Anke chooses to play.

By the constraints on edges in the game as in (e) in the play above,
there do not exist a

1

, a
2

, . . . , am such that almost always for any b and b0,
in (last, a, b, b0) Anke chooses to go to (entry, ab0 , b0). Hence, there exist
b and a, a0 with a 6= a0 such that the game goes through (entry, a, b) and
(entry, a0, b) infinitely often. But then, Boris can choose k such that a, a0

are di↵erent in k-th bit, whenever the play goes through node (entry, a, b)
or (entry, a0, b); otherwise he can choose k = 0. Thus the game goes
through colour C0

b,k and C1

b,k infinitely often and Boris wins.
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Construction of G0. The game G0 is constructed by replacing in G the
nodes (middle, a, b, k) for a 2 V , b 2 {1, 2, . . . ,m} and k 2 {0, 1, 2, . . . ,
dlog(n+ 1)e}, by the following nodes with corresponding colours:

(g) Nodes (middleA, a, b, k, h), where

h 2 {1, 2, . . . , dlog(m+ 1)e+ dlog(dlog(n+ 1)e+ 1)e}.

All these nodes are for Anke’s move. For k = 0, the colour of these
nodes is 1; for k > 0, the colour of node (middleA, a, b, k, h) is 4h +
2 + 2j + i, where j is the h-th bit of b k (binary representations
of b and k concatenated together) and i is the k-th bit of a. There
is an edge from (entry, a, b) to each node (middleA, a, b, k, 1), for
k 2 {0, 1, 2, . . . , dlog(n+ 1)e}.

(h) Nodes (middleB, a, b, k, h), where

h 2 {1, 2, . . . , dlog(m+ 1)e+ dlog(dlog(n+ 1)e+ 1)e � 1}.

All these nodes are for Boris’s move. Each node (middleB, a, b, k, h)
has the colour 1. Furthermore, for

h 2 {1, 2, . . . , dlog(m+ 1)e+ dlog(dlog(n+ 1)e+ 1)e � 1},

an edge goes from (middleA, a, b, k, h) to (middleB, a, b, k, h), and
from (middleB, a, b, k, h) to (middleA, a, b, k, h+ 1).

(i) There is an edge from (middleA, a, b, k, h) for h = dlog(m + 1)e +
dlog(dlog(n+ 1)e+ 1)e, to (transfer, a, b).

Thus, in e↵ect instead of a play going through node (middle, a, b, k),
the play goes through the nodes (middleA, a, b, k, 1), (middleB, a, b, k, 1),
(middleA, a, b, k, 2), (middleB, a, b, k, 2), . . ., (middleA, a, b, k, dlog(m +
1)e+ dlog(dlog(n+1)e+1e)). The remaining nodes visited in a play stay
the same as before. Now, the winning condition of Boris will be appropri-
ately modified as follows: for some values of b, k, for each i 2 {0, 1}, the
play has to go infinitely often through only the colours 1 and 4h+2+2j+i,
for each h 2 {1, 2, . . . , dlog(m+ 1)e+ dlog(dlog(n+ 1)e+ 1)e}, where j is
the h-th bit in the binary representation of b k. ⇤

This reduction shows that if Theorem 6 would also hold for memoryless
coloured Muller games, then one could show that the clique problem could
be solved in polynomial time. For a su�ciently large k and for p(n) = (n ·
m·log(n)·(log(m)+log log(n)))k, via padding, one can increase the number
of nodes to p(n). As the number of colours is in O(log(m) + log log(n)),
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this value is below log(p(n)) for su�ciently large constant k. Now the
assumed result would give P = NP; however, many people believe this
is false.

Remark 17. Björklund, Sandberg and Vorobyov [3, Section 5] consider-
ed memoryless Streett games (called Quasi-Streett games in their paper)
and showed that these areW[1]-hard. This hardness transfers to memory-
less coloured Muller games, the only modification needed for the proof is
to colour the nodes such that two nodes have the same colour only if they
appear for all Streett conditions (E,F ) either both in E or none in E and
either both in F or none in F . Thus, in the diagram [3, Figure 2] of that
construction, one can use

(a) one colour for the nodes on Level 0, Level 2 and Level 5, as they do
not show up in any condition,

(b) one colour for all nodes on Level 3, as they show up only jointly in
one set of one Streett condition,

(c) one colour for all nodes on Level 4, as those show up jointly in only
one set of one Streett condition,

(d) individual colours for the 2k + 1 remaining nodes on other levels.

This gives in total 2k+4 colours. Now one can translate the Streett condi-
tion into a Muller condition for this coloured Muller game in a straightfor-
ward way. Player Anke wins a play of that game i↵ she moves memoryless
(a requirement on both sides) and the colours of the infinitely often visited
nodes satisfy the translation of the Streett condition. Thus the original
construction, which reduces the existence of independent sets of k vertices
to the existence of a winning strategy for Anke in the memoryless Streett
games with k+2 conditions, carries over to a construction which reduces
the existence of independent sets of k vertices to the existence of a winning
strategy for Anke in the memoryless coloured Muller game with 2k + 4
colours. So the memoryless coloured Muller game is also W[1]-hard.

Furthermore, the arguments in the remark and the result above also
show that, if there would be a translation for the parameterised memory-
less coloured Muller game into parity games with similar size and speed
constraints as in the case of standard coloured Muller games, then one
would get two unlikely outcomes: W[1] = FPT and a quasipolynomial
algorithm for the clique problem.
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5 Conclusion

The progress reported in this paper shows that solving parity games is not
as di�cult as it was widely believed. Indeed, parity games can be solved
in quasipolynomial time – the previous bounds were roughly nO(

p
n/ log(n))

– and they are fixed parameter tractable with respect to the number m of
values – the previously known algorithms were roughly O(nm/3). These
results are in agreement with earlier results stating that parity games
can be solved in UP \ co -UP [30] and that there are subexponential
algorithms to solve the problem [32]. In spite of the current progress, the
original question whether parity games can be decided in polynomial time
still remains an important open question.

The above results on parity games are then used to give an algorithm
of runtime O((mm · n)5) for coloured Muller games with n nodes and
m colours; this upper bound is almost optimal, since an algorithm with
runtime O((2m · n)c), for some constant c, only exists in the case that
FPT = W[1], an assumption which is considered to be unlikely.

One might ask whether the results obtained for parity games permit
further transfers to Muller games, for example, in the special cases where
(a) player Anke can employ a memoryless winning strategy due to the
special type of the game or (b) one does not permit player Anke to use
other strategies than memoryless ones. Note that case (b) di↵ers from
case (a), as in case (b) the condition on using memoryless strategies can
be restrictive while case (a) applies to Muller games of those types where
one knows that “if Anke has a winning strategy then she has a memory-
less winning strategy”. Case (a) was analysed by McNaughton [36] and
Zielonka [46]; it applies to Muller games where the winning condition of
player Boris is closed under union [46].

The above mentioned lower bound directly also applies to case (a).
For case (b), the complexity class of the general problem is also in the
polynomial hierarchy but not PSPACE-complete (unless PSPACE is
contained in the polynomial hierarchy) as the decision problem for col-
oured Muller games; however, the algorithmic bounds are, even for rel-
atively small values of m, expected to be worse, as one can code NP-
hard problems into instances with logarithmically many colours; this is
also reflected by the fact that coloured Muller games are in FPT while
memoryless coloured Muller games are W[1]-hard.
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