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Abstract

In this paper we define and study finite state complexity of finite strings and

infinite sequences as well as connections between these complexity notions
to randomness and normality. We show that the finite state complexity does

not only depend on the codes for finite transducers, but also on how the
codes are mapped to transducers. As a consequence we relate the finite state
complexity to the plain (Kolmogorov) complexity, to the process complex-

ity and to prefix-free complexity. Working with prefix-free sets of codes we
characterise Martin-Löf random sequences in terms of finite state complexity:

the weak power of finite transducers is compensated by the high complexity
of enumeration of finite transducers. We also prove that every finite state

incompressible sequence is normal, but the converse implication is not true.
These results also show that our definition of finite state incompressibility is
stronger than all other known forms of finite automata based incompressibil-
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ity, in particular the notion related to finite automaton based betting systems
introduced by Schnorr and Stimm. The paper concludes with a discussion of

open questions.
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1. Introduction

Algorithmic Information Theory (AIT) [8, 20, 30, 27] uses various measures

of descriptional complexity to define and study various classes of “algorith-
mically random” finite strings or infinite sequences. The theory, based on

the existence of a universal Turing machine (of various types), is very elegant
and has produced many important results.

The incomputability of all descriptional complexities is an obstacle to-

wards more “down-to-earth” applications of AIT (e.g. for practical compres-
sion). One possibility to avoid incomputability is to restrict the resources

available to the universal Turing machine and the result is resource-bounded
descriptional complexity [7]. Another approach is to restrict the computa-
tional power of the machines used, for example, using context-free grammars

or straight-line programs instead of Turing machines [15, 24, 25, 34].
The first connections between finite state machine computations and ran-

domness have been obtained for infinite sequences. Agafonov [1] proved that
every subsequence selected from a (Borel) normal sequence by a regular lan-

guage is also normal. Characterisations of normal infinite sequences have
been obtained in terms of finite state gamblers, information lossless finite
state compressors and finite state dimension: (a) a sequence is normal iff

there is no finite state gambler that succeeds on it [35] (see also [6, 17]) and
(b) a sequence is normal iff it is incompressible by any information lossless

finite state compressor [46]. Doty and Moser [18, 19] used computations
with finite transducers for the definition of finite state dimension of infinite

sequences. The NFA-complexity of a string [15] can be defined in terms of
finite transducers that are called in [15] “NFAs with advice”; the main prob-
lem with this approach is that NFAs used for compression can always be

assumed to have only one state.
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The definition of finite state complexity of a finite string x in terms of a
computable enumeration of finite transducers and the input strings used by

transducers which output x proposed in [10, 11] is utilised to define finite
state incompressible sequences. In Theorem 9 we prove that the finite state

complexity lies properly between the plain complexity, as a lower bound,
and the prefix-free complexity, as an upper bound, in the case that the enu-
meration of transducers considered is a universal one. Furthermore, while

finite state incompressibility depends on the enumeration of finite transduc-
ers, many results presented here are independent of the chosen enumeration.

For example, we prove that for every enumeration S every CS–incompressible
sequence is normal, Theorem 22. Furthermore, we can show that a sequence

is Martin-Löf random iff it satisfies a strong incompressibility condition (par-
allel to the one for prefix-free Kolmogorov complexity) for every measure CS

based on some perfect enumeration S. One can furthermore transfer this

characterisation to the measure CS for universal enumerations S.

Finally, we illustrate the dependence of finite state complexity on the enu-
meration of finite transducers. We prove that in every sequence there are

infinitely many finite state complexity dips when the complexity is based on
some exotic enumerations.

2. Notation

In this section we introduce the notation used throughout the paper. By

IN = {0, 1, 2, . . .} we denote the set of natural numbers. Its elements will
be usually denoted by letters i, . . . , n. By {0, 1}∗ we denote the set of all

binary strings (words) with ε denoting the empty string; {0, 1}ω is the set
of all (infinite) binary sequences. The length of a finite string x ∈ {0, 1}∗ is
denoted by |x|. Sequences (infinite strings ) are usually denoted by x,y; the

prefix of length n of the sequence x is denoted by x ! n; the nth element of
x is denoted by x(n).

For w ∈ {0, 1}∗ and η ∈ {0, 1}∗ ∪ {0, 1}ω let w · η be their concatenation.
This concatenation product extends in an obvious way to subsets L ⊆ {0, 1}∗

and B ⊆ {0, 1}∗ ∪ {0, 1}ω.
By w ⊑ u and w " y we denote that w is a prefix of u and y, respectively,
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and a prefix-free set L ⊂ {0, 1}∗ is a set with the property that for all strings
p, q ∈ {0, 1}∗, if p, pq ∈ L then p = pq.

3. Admissible Transducers and Their Enumerations

We consider transducers which try to generate prefixes of infinite binary se-
quences from shorter binary strings and consider hence the following trans-

ducers: An admissible transducer is a deterministic transducer given by a
finite set of states Q with starting state q0 and transition functions δ, µ with

domain Q× {0, 1}, and say that the transducer on state q and current input
bit a transitions to q′ = δ(q, a) and appends w = µ(q, a) to the output pro-
duced so far.

One can generalise inductively the functions µ and δ by stating that
µ(q, ε) = ε and µ(q, av) = µ(q, a) · µ(δ(q, a), v) for states q and input strings

av with a being one bit; similarly, δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v).
The output T (v) of a transducer T on input-string v is then µ(q0, v).

Definition 1. A partially computable function S mapping binary strings to
admissible transducers is called an enumeration provided every admissible
transducer T has a string σ ∈ dom(S); for a string σ ∈ dom(S), the admis-
sible transducer assigned by S to σ is denoted as S(σ) = T S

σ .
If the domain dom(S) is a prefix-free subset of {0, 1}∗ then we call S a

prefix-free enumeration.

Next we introduce two subclasses of prefix-free enumerations, that is, enu-
merations S having a prefix-free domain dom(S).

Definition 2 (Calude, Salomaa and Roblot [10, 11]). A perfect enu-
meration S of all admissible transducers is a partially computable func-
tion with a prefix-free and computable domain mapping each binary string
σ ∈ dom(S) to an admissible transducer T S

σ in an onto way.

Note that partially computable functions with a computable range (as con-

sidered here) have a computable inverse, that is, for each input y from the
range, an algorithm finds, by searching in parallel over all possible inputs, an

x which is mapped to y. It is known that there are perfect enumerations with
a regular domain and that every perfect enumeration S can be improved to a
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better perfect enumeration S ′ such that for each c there is a transducer rep-
resented by σ in S and σ′ in S ′ and these representations satisfy |σ′| < |σ|−c,

[10, 11].

Definition 3. A universal enumeration S of all transducers is a partially
computable function with prefix-free domain such that for each other prefix-
free enumeration S ′ of admissible transducers there exists a constant c such
that for all σ′ in the domain of S ′, the transducer T S′

σ′ equals some transducer
T S
σ with σ ∈ dom(S) and |σ| ≤ |σ′|+ c.

Note that perfect and universal enumerations are prefix-free enumerations.

The construction of a universal enumeration S can be carried over from Kol-
mogorov complexity: If U is a universal machine for prefix-free Kolmogorov
complexity and S ′ is a perfect enumeration of the admissible transducers,

then the domain of S is the set of all σ such that U(σ) is defined and in the
domain of S ′ and T S

σ is T S′

U(σ). Then, for every further enumeration S ′′ (also

with prefix-free domain) there is a σ at most a constant longer than σ′′ such
that U(σ) outputs an S ′-program σ′ with T S′′

σ′′ = T S′

σ′ and so T S
σ = T S′′

σ′′ , that

is, there is a constant c such that each transducer with an index of length n
in S ′′ has a further index of length up to n+ c in S. Thus U is universal.

Below in Lemma 4 we will show that universal enumerations S of all

transducers exist.

4. Complexity and Randomness

Recall that the plain complexity (Kolmogorov) of a string x ∈ {0, 1}∗ w.r.t.
a partially computable function ϕ : {0, 1}∗ → {0, 1}∗ is Kϕ(x) = inf{|p| :
ϕ(p) = x}. It is well-known that there is a universal partially computable
function U : {0, 1}∗ → {0, 1}∗ such that

KU(x) ≤ Kϕ(x) + cϕ

holds for all strings x ∈ {0, 1}∗. Here the constant cϕ depends only on U and

ϕ but not on the particular string x ∈ {0, 1}∗. We will denote the complexity
KU simply by K. Furthermore, in the case that one considers only partially
computable functions with prefix-free domain, there are also universal ones
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among them V , say, and the corresponding complexity KV , called prefix com-
plexity is denoted with H ; like K, the prefix-free complexity H depends only

up to a constant on the given choice of the underlying universal machine.
Schnorr [36] considered the subclass of partially computable prefix-

monotone functions (or processes) ψ : {0, 1}∗ → {0, 1}∗, that is, functions
which satisfy the additional property that for strings v, w ∈ dom(ψ), if v ⊑ w,
then ψ(v) ⊑ ψ(w). For this class of functions there is also a universal par-

tially computable prefix-monotone function W : {0, 1}∗ → {0, 1}∗ such that
for every further such ψ (with the same properties) there is a constant cψ,

depending only on W and ψ, fulfilling

KW (x) ≤ Kψ(x) + cψ, (1)

for all binary strings x ∈ {0, 1}∗. As in [20] we denote the complexity induced
by the universal function by KmD. Since processes are arbitrary partial com-

putable functions and partial computable functions with prefix-free domain
are processes, the following inequalities hold for all x ∈ {0, 1}∗.

K(x) ≤ KmD(x) +O(1) and KmD(x) ≤ H(x) +O(1) (2)

Having introduced prefix-free universal partially computable functions V we
can now show that universal enumerations S of all transducers in the sense

of Definition 3 exist.

Lemma 4. There is a universal enumeration S of all transducers.

Proof. Let (Si)i∈N be an effective numbering of all enumerations with prefix-
free domain, this time not requiring that these Si have infinite domain. Now

define a new prefix-free enumeration S as follows:

T S
0i1σ =

{

T Si

σ , if σ ∈ dom(Si);
undefined, otherwise.

For each i and each string x, if x has according to Si the complexity c = |στ |
which is witnessed by some σ in the domain of Si and some input τ with
x = T Si

σ (τ), then x = T S
0i1σ(τ) as well and x has, according to S, at most the

complexity |0i1στ | = c + i+ 1. Thus CS(x) ≤ CSi
(x) + i + 1, for all strings

x where CSi
(x) is defined, hence S is universal. !
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Martin-Löf [28] introduced the notion of the random sequences in terms
of tests and Schnorr — as cited by Chaitin [13] — characterised them in

terms of prefix-free complexity; we take this characterisation as a definition.
Furthermore, Schnorr [36] showed that the same definition holds for process

complexity.

Definition 5 (Martin-Löf [28]; Schnorr [13, 36]). An infinite sequence
x ∈ {0, 1}ω is Martin-Löf random if there is a constant c such that H (x !

n) ≥ n− c, for all n ≥ 1. Equivalently, x is Martin-Löf random iff there is a
constant c such that KmD(x ! n) ≥ n− c, for all n ≥ 1.

5. Finite State Complexity

For a fixed admissible transducer T , one usually denotes the complexity

CT (x) of a binary string x as the length of the shortest binary string y such
that T (y) = x. The complexity CT was proposed in [10, 11] to remedy the

incomputability of Kolmogorov complexity (see more about other proposals
in [10]). It can be viewed also as an example of the Minimal Description

Length Principle [32, 23]. A description of a string x consists of a finite
transducer T and another string y such as T “translates” y into x: CT (x)
minimises the sum between the complexity of T and |y|.

This definition is now adjusted to enumerations S of admissible trans-
ducers.

Definition 6. Let S be an enumeration of the admissible transducers. For
each string x, the complexity CS(x) is the minimum |σ| + |y| taken over all
σ in the domain of S and y in the domain of T S

σ such that T S
σ (y) = x.

This complexity is also called the finite state complexity based on S of a given
string. Note that if S is universal and S ′ is any other prefix-free enumeration

then there is a constant c such that

CS(x) ≤ CS′(x) + c,

for all binary strings x. Thus the universal enumerations define an abstract

finite state complexity in the same way as it is done for prefix-free, process
or plain complexity. The next results relate the complexity CS for universal
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enumerations S to the plain complexity K, the prefix-free complexity H and
the process complexity KmD.

We start with a simple property. Note that there is a fixed transducer
T S
τ such that T S

τ (x) = x, for all x. This implies the following.

Corollary 7. For every enumeration S there is a constant cS such that
CS(x) ≤ |x|+ cs, for all x ∈ {0, 1}∗.

Next we give a useful construction combining an enumeration S with a com-
putable partial function ϕ.

Let ϕ : {0, 1}∗ → {0, 1}∗ be a computable partial function with domain
dom(ϕ) and S an enumeration of admissible transducers. Define a new enu-

meration S[ϕ] in the following way:

T S[ϕ]
0σ (w) = T S

σ (w), for w ∈ {0, 1}∗,
T S[ϕ]
1σ (ε) = ε, if σ ∈ dom(ϕ),

T S[ϕ]
1σ (ε) = undefined, otherwise, and

T S[ϕ]
1σ (aw) = ϕ(σ), for a ∈ {0, 1} and w ∈ {0, 1}∗,

T S[ϕ]
ε (w) = undefined, for w ∈ {0, 1}∗.

(3)

Since T S
σ = T S[ϕ]

0σ , every transducer appears as an image of the new mapping
S[ϕ], and, obviously, S[ϕ] is an enumeration of transducers. Then, from

Eq. (3) we obtain the following.

Lemma 8. If S is a enumeration and ϕ is a computable partial function
then the new enumeration S[ϕ] has dom(S[ϕ]) = 0 ·dom(S)∪ 1 ·dom(ϕ) and
CS[ϕ](w) ≤ Kϕ(w) + 2, for all w ∈ {0, 1}∗.

If, moreover, S is a prefix-free (perfect, universal) enumeration and
dom(ϕ) is prefix-free then S[ϕ] is also a prefix-free (perfect, universal) enu-
meration.

The next theorem shows that universal enumerations define intermediate
complexities between the process and the prefix-free complexities.

Theorem 9. Let S be a universal enumeration of the admissible transducers.
Then there are constants c, c′ such that, for all binary strings x,

KmD(x) ≤ CS(x) + c, CS(x) ≤ H(x) + c′ .
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Furthermore, one cannot obtain equality up to constant for any of these in-
equalities.

Proof. For the first inequality, note that if T S
σ (y) = x then σ stems from a

prefix-free set and hence there is a plain Turing machine ψ which on input

p first searches for a prefix σ of p which is in dom(S) and, in the case that
such a σ is found, outputs T S

σ (y) for the unique y with σy = p. Thus

the mapping from all σy to T S
σ (y) with σ ∈ dom(S) and y ∈ dom(T S

σ ) is
partially computable and prefix-monotone. Thus KmD(x) ≤ CS(x) + c for

some constant c.
Theorem 10 below implies that the first inequality is proper.
Let S be a universal enumeration of all admissible transducers and V

be a prefix-free universal mapping as mentioned in Section 4. Consider the
enumeration S[V ]. Then according to Lemma 8 dom(S[V ]) = 0 ·dom(S)∪1 ·
dom(V ) is prefix-free and CS[V ](w) ≤ H(w)+2, for all w ∈ {0, 1}∗. Since S is
a universal enumeration, we have also CS(w) ≤ CS[V ](w)+c1 ≤ H(w)+c1+2.

Since CS(w) ≤ |w|+c, for some constant c, and H(w)− |w| is unbounded
(cf. [8, 20]) one cannot reverse the second inequality to an equality up to
constant. !

The properness of one inequality was missing in the previous result. It follows

from the following theorem.

Theorem 10. There is a prefix-monotone partially computable function ψ
such that for every prefix-free enumeration S and each constant c there is a
binary string x with Kψ(x) < CS(x)− c.

Proof. Let Ω be the infinite (Martin-Löf random) binary expansion of a
Chaitin Omega number [13] and let Ωs be an approximation to Ω from the

left for s steps. Now define

ψ(x) = 0min{s:x≤lexΩs}.

Here x ≤lex A if either A extends x or if for the first k ∈ dom(x) with
x(k) ̸= A(k) it holds that x(k) = 0 and A(k) = 1. Note that this function

is partially computable and furthermore it is prefix-monotone. It is defined
on all x with x ≤lex Ω. Note that for x = Ω " n, ψ(x) coincides with the
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convergence module cΩ(n) = min{s : ∀m < n [Ωs(m) = Ω(m)]}.
The goal of the construction is now to show that for all constants c and

all prefix-free enumerations S of admissible transducers, almost all prefixes
x ! Ω satisfy that ψ(x) is larger than the length of any value T S

σ (y) with

|σy| ≤ |x|+ c. So fix one prefix-free enumeration S.
The first ingredient for this is to use that for almost all σ, if T S

σ (y) is
longer than ψ(Ω " |σ|+ |y|− c) then y is shorter than |σ|. Assume by way of

contradiction that this is not be true and that there are infinitely many n with
corresponding σ, y such that n = |σ|+ |y|−c and |T S

σ (y)| ≥ ψ(Ω " n) = cΩ(n)

and |σ| ≤ n/2. Now one can compute from σ and |y| the maximum length s
of an output of T S

σ (z) with |z| ≤ |y| and then take Ω " n as Ωs " n. Hence

H(Ω " n) is, up to a constant, bounded by |σ|+2 log(|y|) which is bounded by
n/2+ 2 logn plus a constant, in contradiction to the fact that H(Ω " n) ≥ n
for almost all n. Thus the above assumption cannot be true.

Hence, for the further proof, one has only to consider transducers whose
input is at most as long as the code. The corresponding definition would be

to let, for each σ ∈ dom(S), ϕ(σ) be the length of the longest output of the
form T S

σ (y) with y ≤ |σ|.
Now assume by way of contradiction that there are a constant c and

infinitely many x ! Ω such that there exists a σ with |ψ(x)| ≤ ϕ(σ) and
|σ| ≤ |x|+ c. Then one can construct a prefix-free machine V with the same

domain as S such that V (σ) for all σ ∈ dom(S) outputs z = Ωϕ(σ) " |σ|− c.
As |σ| ≤ |x|+ c it follows that z is a prefix of x and a prefix of Ω.

The domains of V and S are the same, hence V is a partially computable
function with prefix-free domain which has for infinitely many prefixes z ! Ω
an input σ of length up to |z| + 2c with V (σ) = z, that is, which satisfies

HV (z) ≤ |z| + 2c for infinitely many prefixes z of Ω. This again contradicts
the fact that Ω is Martin-Löf random, hence this does not happen.

Note that Kψ(x) ≤ KmD(x) + c′ for some constant c′. Now one has,
for almost all n that the string un = 0cΩ(n) satisfies un = ψ(Ω " n) and

Kψ(un) = n and KmD(un) ≤ n + c′ while, for all S and c and almost all n,
CS(un) > n + c, hence CS(un) − KmD(un) goes to ∞ for n → ∞. So CS

and KmD cannot be equal up to constant for any prefix-free enumeration S

of admissible transducers. #
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Furthermore, for enumerations S having a computable domain dom(S), one
can show that there is an algorithm to compute CS.

Proposition 11. Let S be an enumeration of the admissible transducers and
let dom(S) be computable. Then the mapping x !→ CS(x) is computable.

Proof. We have CS(x) ≤ |x| + c for some constant c. Now CS(x) is the

length of the shortest σy with σ ∈ dom(S), y ∈ {0, 1}∗, |σy| ≤ |x| + c and
T S
σ (y) = x. Due to the length-restriction |σy| ≤ |x| + c, the search space is

finite and due to the computability of dom(S) the search can be carried out
effectively. !

6. Complexity of Infinite Sequences

Martin-Löf randomness can be formalised using both prefix-free Kolmogorov
complexity and process complexity, see Definition 5. Therefore it is natural to

ask whether such a characterisation does also hold for the CS complexity. As
an easy consequence of Definition 5 and the sandwich property of Theorem 9

one obtains the following.

Lemma 12. Let x ∈ {0, 1}ω. Then x is Martin-Löf random iff for every
universal enumeration of transducers S there is a constant c depending only
on x and S such that for all n ∈ IN the condition CS(x " n) ≥ n− c holds.

One can, however, define randomness also in terms of weaker enumerations.

Theorem 13. The following statements are equivalent:

(a) The sequence x is not Martin-Löf random;

(b) There is a perfect enumeration S such that for every c > 0 and almost
all n > 0 we have CS(x " n) < n− c;

(c) There is a perfect enumeration S such that for every c > 0 there exists
an n > 0 with CS(x " n) < n− c.
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Proof. If x is Martin-Löf random then according to Lemma 12 for every
prefix-free enumeration S it holds CS(x ! n) ≥ n− c for some constant c and

all n. Hence none of the conditions (b) or (c) is satisfied.
Now assume that x is not Martin-Löf random. Let V be a universal prefix-

free machine and HV = H . Using V we define the following enumeration S
of finite transducers:

For ση such that σ ∈ dom(V ) and time(V (σ)) = |η|, let T S
ση be

defined as the transducer which maps every non-empty string w

to V (σ)ηw.

Here time(V (σ)) denotes the time till the computation stops; S is com-
putable and prefix-free because dom(V ) is prefix-free and dom(S) = {ση :
σ ∈ dom(V ) ∧ |η| = time(V (σ))}.

If the sequence x is not Martin-Löf random, then for every c > 0 there
is an n > 0 such that H(x ! n) < n − c. Hence, for c > 0 we have n > 0,

σ ∈ {0, 1}∗, s > 0 such that V (σ) = x ! n, |σ| < n− c and time(V (σ)) = s.
Define η ∈ {0, 1}s via

(

x ! (n − c) + s
)

= V (σ)η. Then T S
ση(w) " x

whenever V (σ)ηw " x. Thus CS(x ! n + s′) < n + s′ − c for all s′ ≥ s, and
the conditions (b) and (c) hold. #

Corollary 14. A sequence x is Martin-Löf random iff for every prefix-free
enumeration S there is a constant c such that for every n ≥ 1 the inequality
CS(x ! n) ≥ n− c holds true.

Furthermore, there is a perfect enumeration S which satisfies that a se-
quence x is Martin-Löf random iff for every n ≥ 1 the inequality CS(x ! n) ≥
n− c holds true.

The second clause of this result shows that the measure CS, for perfect S,
combines features of prefix-free Kolmogorov complexity and a minimum de-

scription length: On one hand it permits to define the Martin-Löf random
sequences in a very natural way and, on the other hand, the complexity CS(x)
can be effectively computed for every x ∈ {0, 1}∗. However, CS cannot re-

place the prefix-free Kolmogorov complexity to single out the random finite
strings: the set of random strings is immune, hence it cannot be defined by a

computable measure like CS, as that would result in a decidable set. In this
way, the measure obtained here is the best possible.
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7. Finite State Complexity Based on Exotic Enumerations

Most of the previous results have used the complexity CS based on prefix-

free enumerations S. If we drop the prefix-freeness condition the complexity
can behave in a different way. First we investigate the relation between the
complexity CS and plain Kolmogorov complexity K.

Lemma 15. Let S be a not necessary prefix-free enumeration of all admis-
sible transducers. Then there is a constant c such that for all w ∈ {0, 1}∗ we
have:

K(w) ≤ CS(w) + 2 log |w|+ c.

Proof. Let γ : IN → {0, 1}∗ be a computable prefix-free encoding of the

natural numbers. We may assume that for all n, |γ(n)| ≤ 2 logn+ 2.
Given S we define a computable partial function ϕ as follows:

ϕ(π) =

{

T S
σ (p), if π = γ(|σ|) · σ · p, and
ε, otherwise.

Then

Kϕ(T
S
σ (p)) ≤ |σ|+ |p|+ 2 log |σ|+ 2 ≤ CS(T

S
σ (p)) + 2 logCS(T

S
σ (p)) + 2.

Now the assertion follows from CS(w) ≤ |w|+ cS (see Corollary 7). !

Next we show that in every sequence there exist infinitely many complexity
dips, a phenomenon discovered by Martin-Löf [29] for the plain (Kolmogorov)
complexity. As this is readily seen, for enumerations like S[U ], see Lemma 8,

we restrict our considerations to enumerations where dom(S) is computable.
By string(i) we denote the binary string obtained by removing the leading

1 from the binary representation of the integer i ≥ 1. For an enumeration of
admissible transducers S define the following modified enumeration S ′:

T S′

0σ (p) = T S
σ (p), for σ ∈ S, p ∈ {0, 1}∗, (4)

T S′

1ρ (p) =

⎧

⎪

⎨

⎪

⎩

string(|ρ|) · T S′

1ρ (p
′), if p = 0p′,

ρ · T S′

1ρ (p
′), if p = 1p′,

ε, otherwise.

(5)
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The transducer T S′

1ρ realises, as one can easily see, a homomorphism from
{0, 1}∗ to {0, 1}∗ mapping 0 onto string(|ρ|) and 1 onto ρ.

Next we use the following illustration of [22, Theorem 1] ([8, Theo-
rem 6.10]).

Lemma 16. Every infinite sequence x ∈ {0, 1}ω has infinitely many prefixes
of the form string(|w|)w, with w ∈ {0, 1}∗.

Proof. The proof follows [22, Theorem 1]. Fix x ∈ {0, 1}ω. Choose an

integer ℓ ≥ 1 and put v = x ! ℓ. Then v = string(n) for a unique integer
n ≥ 1. Next define w′ to be the prefix of length ℓ + n of of x, that is,

x ! (ℓ+ n) = w′ = v · w = string(|w|)w. "

Theorem 17. There exist enumerations S ′ having a computable domain
dom(S ′) such that for every infinite sequence x ∈ {0, 1}ω there are infinitely
many prefixes vi # x such that |vi|− CS′(vi) > i.

Proof. First observe that for w ∈ {0, 1}∗, |w| ≥ 2, according to Eq. (5)
we have T S′

1w(01) = string(|w|)w and thus CS′

(

string(|w|)w
)

≤ |w| + 3, but
∣

∣string(|w|)w
∣

∣ ≥ |w|+ ⌊log2 |w|⌋. The assertion follows from Lemma 16. "

Complexity dips cannot be avoided even when we consider only transducers
which satisfy the condition |µ(q, a)| ≤ m, for all (q, a) ∈ Q× {0, 1}, that is,
the output can always be at most m times as long as the input. We call these
transducers m-bounded. We denote by C(m)

S the variant of CS which looks at

complexity using only m-bounded transducers.

Theorem 18. There exist enumerations S of admissible 2–bounded trans-
ducers having a computable domain dom(S) such that for every infinite
sequence x ∈ {0, 1}ω there are infinitely many prefixes vi # x such that

|vi|− C(2)
S (vi) > i.

Proof. Similar to the proof of Lemma 16 define v = string(n) to be the prefix
of length 2ℓ of x and then append the next 2n symbols of x. This construction

shows that for every infinite sequence x ∈ {0, 1}ω there are infinitely many

prefixes of the form string
(

|w|
2

)

w where the lengths of string
(

|w|
2

)

and w

14



are even.
Let w = a1 · · · a2n and v = b1 · · · b2ℓ and define the transducer T1w′ where

w′ = a2a4 · · ·a2n as T1w′ = ({0, 1}, {s1, . . . , sn̄}, s1, δ, µ) with n̄ = ℓ+ n and

δ(si, a) = si+1, µ(si, a) = ab2i, for i = 1, . . . , ℓ,

δ(si, a) = si+1, µ(si, a) = aa2i, for i = ℓ+ 1, . . . , n̄,
δ(sn̄+1, a) = sn̄+1, µ(sn̄+1, a) = a, a ∈ {0, 1}.

This construction is depicted in Figure 1 below.

s1 s2 s3 sn̄ sn̄+1

1/1b2
0/0b2

1/1b4
0/0b4

1/1a2n
0/0a2n

0/0
1/1

Figure 1: Transducer T1w′ where |w′| = n and n̄ = ℓ+ n

The transducer T1w′ is 2-bounded and

T1w′(b1b3 · · · b2ℓ−1a1a3 · · ·a2n−1) = b1 · · · b2ℓ · a1 · · ·a2n = string
( |w|

2

)

w.

A construction similar to Eqs. (4) and (5) shows that

∣

∣string
( |w|

2

)

w
∣

∣− C(2)
S

(

string
( |w|

2

)

w
)

≥ ℓ− 3

is unbounded for suitably chosen prefixes of x ∈ {0, 1}ω. !

8. Finite State Incompressibility and Normality

In this section we define finite state incompressible sequences and prove

that each such sequence is normal. Given an enumeration S of all ad-
missible transducers, a sequence x = x1x2 · · ·xn · · · is CS–incompressible
if lim infn CS(x " n)/n = 1. This definition resembles in some sense the def-

inition of (asymptotic) Kolmogorov complexity κ(x) = lim infn K(x " n)/n
investigated in [33, 38]. From Levin’s Theorem 3.4 of [47] one deduces that

this quantity coincides with Lutz’s [26] constructive dimension. For more
details see [41, 42].
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Proposition 19. Every Martin-Löf random sequence is CS–incompressible
for every enumeration S, but the converse implication is not true.

Proof. If x is a Martin-Löf random sequence, then lim infnK(x ! n)/n = 1,
so by Lemma 15, x is CS–incompressible. Next we take a Martin-Löf random

sequence x and modify it to be not random: define x′(n) = 0 whenever n
is a power of 2 and x′(n) = x(n), otherwise. Clearly, x′ is not Martin-Löf
random, but lim infnK(x ! n)/n = 1, so x is CS–incompressible for every

enumeration S of all admissible transducers. "

A sequence is normal if all digits are equally likely, all pairs of digits are
equally likely, all triplets of digits equally likely, etc. This means that the

sequence x = x1x2 · · ·xn · · · is normal if the frequency of every string y in x
is 2−|y|, where |y| is the length of y.

Lemma 20. If the sequence x is not normal, then there exist a transducer
T S
σ and a constant α with 0 < α < 1 (depending on x, σ, S) such that for

infinitely many integers n > 0 we have CTS
σ
(x ! n) < α · n.

Proof. It is known (see [18, 19, 35]) that if the sequence x is not normal,
then there exist a transducer T S

σ , a sequence y, and a real α ∈ (0, 1) such

that limm→∞ T S
σ (y ! m) = x and for infinitely many m > 0

T S
σ (y ! m) # x and m < α · |T S

σ (y ! m)|.

Consequently, for infinitely many m > 0

CTS
σ
(T S

σ (y ! m)) ≤ m < α · |T S
σ (y ! m)|,

hence CTS
σ
(x ! n) < α · n for infinitely many n > 0 because T S

σ (y ! m) # x
for infinitely many m > 0. "

Example 21. Ambos-Spies and Busse [2, 3] as well as Tadaki [44] investi-
gated infinite sequences x which can be predicted by finite automata in a
certain way. The formalisations result in the following equivalent character-
isations for a sequence x to be finite state predictable:

16



• The sequence x can be predicted by a finite automaton in the sense
that every state is either passing or has a prediction on the next bit and
when reading x the finite automaton makes infinitely often a correct
prediction and passes in those cases where it does not make a correct
prediction, that is, it never predicts wrongly.

• There is a finite automaton which has in every state a label from {0, 1}∗
such that, whenever the automaton is in a state with a non-empty label
w then some of the next bits of x are different from the corresponding
ones in w.

• The sequence x is the image T (y) for some binary sequence y and
a finite transducer T which has only labels of the form (a, aw) with
a ∈ {0, 1} and w ∈ {0, 1}∗ and where in the translation from y into x
infinitely often a label (a, aw) with w ̸= ε is used.

• There is a finite connected automaton with binary input alphabet such
that not all states of it are visited when reading x.

• x fails to contain some string w as a substring.

The last item makes clear that the class of finite state predictable sequences
is the complement of the class of disjunctive [21] or rich sequences [39]. All
Borel normal sequences are disjunctive whereas not all disjunctive sequences
are Borel normal. An example is the sequence x =

∏

w∈{0,1}∗ 0
|w|! · w from

[37] which contains considerably more occurrences of zeros than ones.
In [37, 39] the set of non-disjunctive sequences is characterised as the

union of nullsets or, equivalently, nowhere dense sets definable (or accepted)
by finite automata.

Theorem 22. Every CS–incompressible sequence is normal.

Proof. Assume that the sequence x is not normal. According to Lemma 20
there exist α ∈ (0, 1) and σ ∈ dom(S) such that for infinitely many integers

n > 0 we have CTS
σ
(x ! n) < α ·n. For these n it also holds that CS(x ! n) <

α · n + |σ|. Since α < 1, x is not CS–incompressible. "
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9. How Large is the Set of Incompressible Sequences?

It is natural to ask whether the converse of Theorem 22 is true. The results

in [1, 6, 35, 46] discussed in Introduction might suggest a positive answer. In
fact, the answer is negative.

To prove this result we will use binary de Bruijn strings of order r ≥ 1

which are strings w of length 2r + r − 1 over alphabet {0, 1} such that any
binary string of length r occurs as a contiguous substring of w (exactly once).

It is well-known that de Bruijn strings of any order exist, and have an explicit
construction [16, 45]. For example, 00110 and 0001011100 are de Bruijn

strings of orders 2 and 3 respectively.
Note that de Bruijn strings are derived in a circular way, hence their

prefix of length r − 1 coincides with the suffix of length r − 1. Denote by

B(r) the prefix of length 2r of a de Bruijn string of order r. The examples
of de Bruijn strings of orders 2 and 3 previously presented are derived from

the strings B(2) = 0011 and B(3) = 00010111, respectively. Thus the string
B(r) · B′(r), where B′(r) is the length r − 1 prefix of B(r), contains every

binary string of length string r exactly once as a substring.
In [31] it is shown that every sequence of the form

bf = B(1)f(1)B(2)f(2) · · ·B(n)f(n) · · ·

is normal provided that the function f : IN → IN is increasing and satisfies
the condition f(i) ≥ ii, for all i ≥ 1. Moreover, in this case the real 0.bf is

a Liouville number, i.e. it is a transcendental real number with the property
that, for every positive integer n, there exist integers p and q with q > 1 and

such that 0 < |0.bf − p
q | < q−n.

Lemma 23. Every string w, B(1) ⊑ w ! bf can be represented in the form

w = B(1)f(1)B(2)f(2) · · ·B(n− 1)f(n−1)B(n)jw′ (6)

where n ≥ 1, 1 ≤ j ≤ f(n) and |w′| < 2n+1 = |B(n+ 1)|.

Proof. Indeed, in the case

B(1)f(1)B(2)f(2) · · ·B(n− 1)f(n−1) ⊑ w ! B(1)f(1)B(2)f(2) · · ·B(n)f(n)
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s1 s2 s3 s4 s5

0/B(1) 0/B(2) 0/B(3) 0/B(4)

1/B(1) 1/B(2) 1/B(3) 1/B(4)

0/0

1/1
Figure 2: Block representation of the transducer T4.

we can choose w′ ! B(n), and if

B(1)f(1)B(2)f(2) · · ·B(n)f(n) ⊑ w ! B(1)f(1)B(2)f(2) · · ·B(n)f(n)B(n + 1)

we can choose w′ ! B(n + 1). "

Next we show that there are normal sequences which are simultaneously Li-
ouville numbers and compressible by transducers, that is, the converse of

Theorem 22 is false. This also proves that CS–incompressibility is stronger
than all other known forms of finite automata based incompressibility, cf.

[1, 6, 17, 35, 46]. In view of the second inequality of Theorem 9, for uni-
versal enumerations S this follows from the existence of computable normal

sequences, cf. [4, 5]. Here we show that this holds for all enumerations.

Theorem 24. For every enumeration S there are normal sequences x such
that limn→∞CS(x # n)/n = 0, so x is CS–compressible.

Proof. Define the transducer Tn = ({0, 1}, {s1, . . . , sn+1}, s1, δn, µn) as fol-
lows:

δn(si, 0) = si, µn(si, 0) = B(i), for i ≤ n,
δn(si, 1) = si+1, µn(si, 1) = B(i), for i ≤ n,

δn(sn+1, a) = sn+1, µn(sn+1, a) = a, for a ∈ {0, 1} .

For example, the transducer T4 is presented in Figure 2. Let σn be an en-
coding of Tn according to S. Choose a function f : IN → IN which satisfies

the following two conditions for all n ≥ 1, i > 1:

f(n) ≥ max{|σn+1|, nn, 2n+2} and f(i) ≥ 2 · f(i− 1). (7)
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Finally, let pi = 0f(i)−11 and p′j = 0j−11. Eq. (6) shows that

Tn(p1 · · · pn−1p
′
jw

′) = B(1)f(1) · · ·B(n− 1)f(n−1)B(n)jw′

is a prefix of the normal sequence x = bf . We then have:

|Tn(p1 · · · pn−1p
′
jw

′)| =
n−1
∑

i=1

2if(i) + 2nj + |w′|

≥ 2n−1f(n− 1) + 2nj,

and

|σn|+ |p1 · · · pn−1 · p′j · w′|

= |σn|+
n−1
∑

i=1

|pi|+ |p′j|+ |w′|

≤ f(n− 1) + 2f(n− 1) + j + f(n− 1)

= 4f(n− 1) + j.

This shows that for every prefix w of bf presented in the form (6) as

w = B(1)f(1) · · ·B(n− 1)f(n−1) · B(n)j · w′,

we have B(1) ! w ! bf and (by using the inequality a+b
c+d ≤ max

{

a
c ,

b
d

}

,

when 0 < a, b, c, d):

CS(w)

|w|
≤

4f(n− 1) + j

2n−1f(n− 1) + 2nj
≤

4

2n−1
.

This shows that limn→∞CS(x " n)/n = 0. #

In the proof of Theorem 24 we have used an arbitrary function f satisfying

(7). Of course, there exist computable and incomputable such functions.

Corollary 25. For every enumeration S there are normal and CS–
compressible computable and incomputable sequences.

Similar to Section 7 we consider also the variant C(m)
S of CS which looks

at complexity using only m-bounded transducers. The following result is a
sample result for this area.
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Theorem 26. For every enumeration S of all 2-bounded admissible trans-
ducers, there are normal sequences x such that limn→∞C(2)

S (x ! n)/n = 1/2.

Proof. We start from the transducers Tn defined in the proof of The-

orem 24 and we split every long output B(i) of Tn into 2i−1 pieces of
length 2. Formally, we replace the states si, i ≤ n, by sub-transducers

Ai = ({0, 1}, Ri, ri,1, δ
(i)
n , µ(i)

n ) where Ri = {ri,1, . . . , ri,2i−1},

δ(i)n (ri,j, a)=ri,j+1, µ(i)
n (ri,j, a)=ui,j, j < 2i, a < 2,

δ(i)n (ri,2i−1, 0)=ri,1, µ(i)
n (ri,2i−1, 0)=ui,2i−1,

δ(i)n (ri,2i−1, 1)=ri+1,1, µ(i)
n (ri,2i−1, 1)=ui,2i−1,

and B(i) = ui,1 · · ·ui,2i−1 with |uij| = 2. Observe that the transition with

input 1 on state ri,2i−1 leads to the initial state of the next sub-transducer
(for i = n this leads to state rn+2,1 = sn+1 of Tn).

Then, the new transducer is defined as follows:

Qn =
n
⋃

i=1

Ri ∪ {sn+1}, q0n = r1,1,

δ′n =
n
⋃

i=1

δ(i)n ∪ {(sn+1, 0, sn+1), (sn+1, 1, sn+1)}

and

µ′
n =

n
⋃

i=1

µ(i)
n ∪ {(sn+1, 0, 0), (sn+1, 1, 1)}.

Again let σ′
n be an encoding of T ′

n in S, and let p̄i = (02
i−1

)f(i)−102
i−1−11

where f : IN → IN, f(n) ≥ max{|σ′
n+1|, nn, 2n+2}, f(i) ≥ 2 · f(i− 1), is as in

the proof of Theorem 24. Let p̄′i,j = (02
i−1

)j−102
i−1−11.

Furthermore, let B(1) ⊑ w " bf . According to Eq. (6) we have:

w = B(1)f(1) · · ·B(n− 1)f(n−1)B(n)jw′ = T ′
n(p̄1 · · · p̄n−1p̄

′
jw

′).

We then have:

|T ′
n(p̄1 · · · p̄n−1(0j−1)1 · w′)| =

∑n−1
i=1 2i · f(i) + 2nj + |w′|

≥
∑n−1

i=1 2i · f(i) + 2nj,
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and

C(m)
S (w) ≤ |σ′

n|+
∑n−1

i=1 2i−1f(i) + 2n−1j + |w′|

≤ f(n− 1) +
∑n−1

i=1 2i−1f(i) + 2n−1j + f(n− 1),

finally obtaining

C(m)
S (w)

|w|
≤

∑n−2
i=1 2i−1f(i) + 2n−1j + (2n−2 + 2)f(n− 1)

∑n−2
i=1 2if(i) + 2nj + 2n−1f(n− 1)

≤
2n−2 + 2

2n−1
.

This proves that limt→∞C(2)
S (x ! t)/t = 1/2. "

Theorem 26 can be easily generalised tom-bounded complexity thereby yield-
ing the bound limn→∞C(m)

S (x ! n)/n = 1/m. Moreover, the results of The-

orems 24 and 26 can be also generalised to arbitrary (output) alphabets Y .
Here the circular de Bruijn strings of order n, CB |Y |(n), have length |Y |n.

In connection with Theorem 24, we can ask whether the finite state
complexity of each sequence x representing a Liouville number satisfies
the inequality lim supn→∞CS(x ! n)/n < 1. The answer is negative:

Example 12 of [40] shows that there are sequences x representing Liou-
ville numbers having lim supn→∞K(x ! n)/n = 1, hence by Theorem 9,

lim supn→∞CS(x ! n)/n = 1.

The following result complements Theorem 24: the construction is valid for
every enumeration, but the degree of incompressibility is slightly smaller.

Theorem 27. There exists an infinite, normal and computable sequence x
which satisfies the condition lim infn→∞CS(x ! n)/n = 0, for all prefix-free
enumerations S.

Proof. Fix a computable enumeration (Tm)m≥1 of all admissible transduc-
ers such that each Tm has at most m states and each transition in Tm from
one state to another has only labels which produce outgoing strings of at

most length m (that is, complicated transducers appear sufficiently late in
the list).

Now define a sequence of strings αn such that each αn is the length-
lexicographic first string longer than n such that for all transducers Tm with
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1 ≤ m ≤ n, for all states q of Tm and for each string γ of less than n bits,
there is no string β of length below n−1

n · |αn| such that γTm(q, β) is αn or

an extension of it. Note that these αn must exist, as every sufficiently long
prefix of the Champernowne sequence meets the above given specifications

due to Champernowne sequence normality [14]. Furthermore, α0 = 0 as the
only constraint is that α0 is longer than 0. An easy observation shows that
also |αn| ≤ |αn+1|, for all n.

In what follows we will use an acceptable numbering of all partially com-
putable functions from natural numbers to natural numbers of one variable

(ϕe)e≥1. Now let f be a computable function from natural numbers to natural
numbers satisfying the following conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√
t.

Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.

Match: ∀n ∀e < n ∃t [ϕe(n) < ∞ =⇒ t > ϕe(n) ∧ f(t) = n ∧ f(t + 1) =

n ∧ . . . ∧ f(t2) = n].

In order to construct f , consider first a computable one-one enumeration

(e0, n0, m0), (e1, n1, m1), . . . of the set {(e, n,m) : e < n ∧ ϕe(n) = m}. The
function f is now constructed in stages where the requirement “Short” is

satisfied all the time, the requirement “Finite-to-one” will be a corollary of
the way the function is constructed and the requirement “Match” will be

satisfied for the k-th constraint (ek, nk, mk) in the k-th stage.

In the k-th stage, let sk be the first value where f(sk) was not

defined in an earlier stage and let tk be the first number such that
tk > sk+mk and |αnk

| ≤
√
tk. Having these properties, for u with

sk ≤ u < tk, let f(u) be the maximal ℓ with |αℓ| ≤
√

max{1, u},
and for u with tk ≤ u ≤ t2k, let f(u) = nk.

It is clear that the function f is computable. Next we verify that it satisfies
the required three conditions.

Short: This condition, which is more or less hard-coded into the algorithm,

directly follows from the way tk is selected and f(u) is defined in the
two cases.
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Finite-to-one: The inequality f(u) ≤ n is true only in stages k where for
some u either |αn+1| >

√
sk or nk ≤ n; both conditions happen only

for finitely many stages k.

Match: For each n and e with ϕe(n) being defined, there is a stage k such
that (ek, nk, mk) = (e, n,ϕe(n)). The choice of tk makes then f to be

equal to nk on tk, tk + 1, . . . , t2k and furthermore tk > ϕek(nk).

Let x be the sequence αf(0)αf(1)αf(2) . . . which is obtained by concatenating
all the strings αf(n) for the n in default order. It is clear that x is computable.

Consider any enumeration S of transducers. Choose e such that ϕe(n)

takes the value the length of the code of that transducer Tn which has the
starting state q and a further state q′ and follows the following transition

table:

state input output new state

q 0 ε q′

q 1 αn q
q′ 0 0 q

q′ 1 1 q

As ϕe is total, there is for each n > e a t larger than the code of the transducer
Tn such that f(t), f(t + 1), . . . , f(t2) are all n. Now σ = αf(0) . . .αf(t2) can

be generated by Tn by a code of the form β = 0σ(0)0σ(1) . . . 0σ(u − 1)1t
2−t

where u is the length of αf(0)αf(1) . . .αf(t−1). The length of β is 2u+ t2 − t.

Note that u ≤ t ·
√
t by the condition “Short” and therefore |β| ≤ t2+ t3/2− t

while the string σ generated from β by the transducer Tn has at least the
length (t2 − t) · |αn| which is at least (t2 − t) · (n + 1). Furthermore, the

representation of Tn in S has at most length t, thus

CS(σ)/|σ| ≤ (t2 + t3/2)/(n · (t2 − t)) ≤
2

n
.

It follows that lim infn→∞CS(x ! n)/n = 0.

Next we prove that x is normal. Fix a transducer Tm. Then, for every
n > m, there is a sufficiently large t such that (n − 1) · t of the first n · t
values s < n · t satisfy f(s) > n. Fix such a t and let β = β0β1 . . .βn·t be
such that β0 . . .βs is the shortest prefix of β with Tm producing from the
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starting state and input β0 . . .βs an extension of αf(0) . . .αf(s). Note that the
image of β0 . . .βs is at most m − 1 symbols longer than αf(0) . . .αf(s). Let

σ = αf(0) . . .αf(t·n). One can prove by induction that for all s with f(s) ≥ n
we have

|βs| ≥
n− 1

n
· |αf(s)|,

and for all s where f(s) < n we have

|αf(s)| ≤ |σ|/(t · n).

It follows that |β| ≥ (n−1)2

n2 · |σ| and therefore we have sufficiently long pre-
fixes of x which are concatenations of the strings αf(0) . . .αf(t·n), all having

complexity relative to Tm near 1. Furthermore, the length difference between
any given prefix and a prefix of such a form is smaller than the square root of
the length and therefore one can conclude that the sequence is incompress-

ible with respect to each fixed transducer Tm. Hence, by Theorem 22, it is
normal. !

The proof method in Theorem 27 can be adapted to obtain the following
result.

Theorem 28. There exists a perfect enumeration S and a sequence which
is computable, normal and CS–incompressible.

Proof. The sequence of the Tn and αn is defined as in the proof of The-
orem 27; furthermore, it is assumed that the listing of the Tn is one-one.

However, f is chosen such that it satisfies the following three conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√
t.

Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.

Monotone: For all t ≥ 1, f(t) ≤ f(t+ 1).

This is achieved by selecting

f(t) = max{m : |αm| ≤
√
t}.

It is clear that f is computable and satisfies the conditions “Short” and
“Monotone”. The condition “Finite-to-one” follows from the observation
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that f(t) > n for all t with |αn+1| ≤
√
t and the fact that almost all t satisfy

this condition.

As above one can see that whenever f(t) > n and m ≤ n then Tm(β)
extends αf(0)αf(1) . . .αf(n·t) only if |β| ≥ (n− 1)2/n2. Now one makes S such

that the transducer Tm has the code word 0m1m
2·tm for the first tm such that

f(tm) > m. It can be concluded that CTm
(σ)/|σ| ≥ (m− 1)2/m2 · |σ|, for all

prefixes σ of x and that CTm
(σ)/|σ| goes to 1 for longer and longer prefixes

of x. Thus the sequence x is normal and furthermore x is incompressible
with respect to the here chosen S. !

10. Conclusion and Open Questions

Enumerations are — in the context of this paper — computable listings

of all admissible transducers. We have investigated two main notions of
enumerations: the arbitrary ones and the prefix-free ones. The prefix-free
ones turned out to be the far more natural notion and, among these, we were

specifically interested in two special cases: the perfect enumerations (which
have a decidable domain, are surjective and have a computable inverse) and

the universal enumerations (which optimise the codes for the transducers up
to a constant for the best possible value). We have showed that Martin-Löf
randomness of infinite sequences can be characterised with both of these types

of enumerations. Furthermore, we have related the finite-state complexity
based on universal enumerations with the prominent notions of algorithmic

description complexity of binary strings. Finite-state complexities based on
some exotic enumerations behave like the plain (Kolmogorov) complexity.

The results of Sections 8 and 9 show that our definition of finite state
incompressibility is stronger than all other known forms of finite automata
based incompressibility, in particular the notion related to finite automaton

based betting systems introduced by Schnorr [35].
The following three questions are left open: Are there an enumeration S,

a computable sequence x and a constant c such that CS(σ) > |σ|− c, for all
prefixes σ of x? This would mean that, with respect to S, some computable

sequence x behaves like a Martin-Löf random one (in other enumerations).
One can also ask the converse question: for which enumerations S is it true
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that every sequence satisfying CS(x ! n) ≥ n − c is Martin-Löf random?
Note that every universal and also some perfect enumeration satisfy this

condition. What is the relation between CS–incompressible sequences and
ε–random sequences, [9, 12, 43]? Note that some ε–random sequences can be

finite-state predictable by not having a certain substring, cf. [38, 44], hence
they can be compressed by a single transducer; this is, however, not true for
all ε–random sequences. In particular it would be interesting to ask whether

it is true that x is ε–random iff for every perfect enumeration S there is a
constant c such that for all n, CS(x ! n) ≥ ε · n− c.
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