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Abstract. We present an abstract framework in which we give simple proofs for Gödel’s
First and Second Incompleteness Theorems and obtain, as consequences, Davis’, Chaitin’s
and Kritchman-Raz’s Theorems.
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1. Introduction

Gödel’s Incompleteness Theorems are arguably the most important results

in mathematical logic; they have deep implications not only in mathematics

and logic, but also in other fields like philosophy and computer science.

Gödel’s First Incompleteness Theorem states that in every computably

enumerable rich enough consistent formal theory, there exists a sentence that

cannot be proved nor disproved within the theory. This result is purely syn-

tactic; if the formal theory has a sound semantics, then from the Gödel’s

First Incompleteness Theorem one can deduce the existence of a true, but

unprovable in the theory, sentence. The Second Incompleteness Theorem

states that the consistency of a computably enumerable rich enough consis-

tent formal theory cannot be proved within the theory.

In this paper we give simple proofs, in an abstract framework, for both

Incompleteness Theorems based on the undecidability of the Halting Prob-

lem. The undecidable sentences have a “relatively simple structure”, lowest

in Gödel’s hierarchy [8]. From these results we deduce the First Incomplete-

ness Theorem in Davis’ version [10] and Chaitin’s version [5, 6], as well as

Kritchman and Raz’s version [17] of the Second Incompleteness Theorem.

2. Framework

We assume elementary knowledge of computability theory [21] and algorith-

mic information theory [2]. In particular, we use an (abstract) universal

programming language operating with binary strings. Such a language is

equivalent to Turing machines, or register machines, see [21, 11].
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The Halting Problem [9, p. 70–71] requires a decider program which can

determine, given any pair (program, input), whether the program will even-

tually halt when run on input. The future tense indicates that the decision

has to be made “in advance”. There are no resource limitations on the amount

of memory or time required for the decider program’s execution. The decider

program should stop in finite time and give the correct answer for all possible

pairs (program, input). Arguably the most important result in computability

theory is the undecidability of the Halting Problem.
1

Theorem 1 (Halting Theorem). No program can solve the Halting Problem

for a universal programming language.

Corollary 1. There exists a computably enumerable set which is not com-

putable.

The Halting Theorem fails to apply when we know the number of inputs

of given lengths that stop on a given program.

Lemma 1. Consider a universal programming language having as inputs bi-

nary strings. Fix an n > 0 and a program P . If we know the number of

inputs v of length less than or equal to n for which P (v) stops, then the

Halting Problem for the set {(P, v) | |v|  n} is decidable.

Indeed, if we know the number N of programs |v|  n for which P (v)
stops, then we can run in parallel P (v) for all programs |v|  n till the N
halting inputs show up and stop; all other programs of length less than or

equal to n never stop on P .

A formula (sentence) S is provable in a formal theory T if there exists a

proof ⇡ in T for S; in this case we write ` S. The formula ¬S is the negation

of S.

The following properties of a formal theory T will be used in what follows:

• T is computably enumerable if the set of proofs (hence, theorems) in T is

computably enumerable.

• T is rich enough
2

if a certain amount of elementary arithmetic can be

carried out in it.

1According to Copeland [7, p. 40], the “Halting Problem was so named (and, it appears,
first stated) by Martin Davis” [9, p. 70–71]. Davis credited Kleene’s monograph [16, p. 382]
with an informal proof.

2The minimal amount of arithmetic required will be clear in each case.
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• T is consistent if there is no sentence S in T such that ` S and ` ¬S.

• T is syntactically complete if for every sentence S in T we have ` S or

` ¬S.

Gödel’s First Incompleteness Theorem is syntactic:

In every computably enumerable, rich enough and consistent formal

theory, there exists a sentence that cannot be proved nor disproved

within the theory.

From the First Incompleteness Theorem one can deduce a semantic, more

intuitive, variant:

In every computably enumerable, rich enough and consistent formal

theory, there exists a true, but unprovable sentence.

But, what semantics should one choose for T? According to [18, p. 18]

Gödel never used, neither in his statements nor in his proofs, the

notion of “truth", which is not a formal concept. It is necessary to

stress this point, because in current readings of this theorem, it is

often too hastily said that it shows the existence of “statements that

are true but unprovable" in Arithmetics. “True" statements? But

where, how, according to which notion of truth?

This question will be discussed in Section 3.

Gödel’s Second Incompleteness Theorem states that

The consistency of a computably enumerable, rich enough and consis-

tent formal theory cannot be proved within the theory.

For more details see [22]. The paper [18] contains a deep analysis of the

incompleteness phenomenon and, in particular, of the distinction between

the syntactic and semantic variants.

3. First Incompleteness Theorems

In this section we present an abstract form of the First Incompleteness

Theorem and, as consequences, we deduce syntactic variants of Davis’ and

Chaitin’s Theorems. Next we introduce an abstract form of semantics and

prove a semantic version of the First Incompleteness Theorem from which
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we deduce Davis’ and Chaitin’s Theorems.

The framework developed in this paper is justified by Gödel’s view of

a formal system as just a mechanical procedure for generating “provable

formulas" [14]:

. . . due to A. M. Turing’s work, a precise and unquestionably ade-

quate definition of the general concept of formal system can now be

given, the existence of undecidable arithmetical propositions and the

non-demonstrability of the consistency of a system in the same sys-

tem can now be proved rigorously for every consistent formal system

containing a certain amount of finitary number theory.

Turing’s work gives an analysis of the concept of “mechanical proce-

dure" (alias “algorithm" or “computation procedure" or “finite com-

binatorial procedure"). This concept is shown to be equivalent with

that of a “Turing machine". . . . A formal system can simply be de-

fined to be any mechanical procedure for producing formulas, called

provable formulas.
3

In what follows we will work with a computably enumerable and rich

enough formal theory (shortly, formal theory) T “for almost all mathemat-

ics”. An example is ZFC, Zermelo–Fraenkel set theory with the axiom of

choice, the standard axiomatic set theory for mathematics. This means that

virtually every mathematical proof, and in particular the proofs in this pa-

per, can be carried out in T.

Consider a formal theory T using sentences over an alphabet ⌃ containing

the symbol ¬. In T we fix two sets: P1 is a non-empty computable set of

sentences over ⌃ \ {¬} and P2 = {¬S | S 2 P1}. We also define two sets of

sentences in P1 provable in T:

Prov1 = {S 2 P1 | ` S},Prov2 = {S 2 P1 | ` ¬S}.

Theorem 2 (First incompleteness Theorem). Let T be a consistent formal

theory such that Prov1 is not computable. Then, there exists a sentence in

P1 such that neither itself nor its negation are provable in T.

Proof. From consistency it follows that Prov1 \ Prov2 = ;. Assume by

absurdity that for every S 2 P1 we have either ` S or ` ¬S. Fix S 2 P1 and

3My italics.
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computably enumerate all proofs ⇡i, i = 1, 2, . . . in T; from the absurdity

assumption it follows that eventually either a proof ⇡i for S or a proof ⇡j for

¬S will show up in the enumeration. In the first case ` S, so S 2 Prov1; in

the second case ` ¬S, so S 2 Prov2, hence by consistency, S 62 Prov1. This

proves that Prov1 is computable, a contradiction.

Definition 1. A sentence that neither itself nor its negation is provable in

T is called undecidable (in T).

In the context of Theorem 2, if S is undecidable in T, then the set P1\{S}
is computable and the set Prov1 \ {S} is not computable, hence the theorem

can be applied again to P1 \ {S}.

Corollary 2. Let T be a consistent formal theory such that Prov1 is not

computable. Then, there exist infinitely many undecidable sentences in T.

Consider now a universal programming language like the Turing ma-

chine language [21] or Turing-Post programming language [10]. The sentence

“N(P, v)” says that the program P never halts on input v. So, for every pro-

gram P and string v, “N(P, v)” is a perfectly definite sentence which is either

true (if P never halts) or false (if P eventually halts). The falsity of “N(P, v)"
can always be proved by exhibiting the sequence of program instructions run

by P on v which leads to termination. However, when “N(P, v)" is true, no

finite sequence of instructions suffices to demonstrate it.

The sentences “N(P, v)" can be formalised in a formal theory T and

they form a computable set P1. As a consequence of the undecidability

of the Halting Problem the set Prov1 is computably enumerable but not

computable, so we get

Corollary 3 (Syntactic version of Davis’ Theorem [10]). Let T be a con-

sistent formal theory. There exist infinitely many undecidable sentences

“N(P, v)" in T.

We may still be able to prove that a particular “N(P, v)" is provable in

T by a logical analysis of P ’s behaviour on v and, indeed, there are infinitely

many such cases.

To obtain Chaitin’s Theorem we need to introduce the notion of Kolmogo-

rov-Chaitin complexity, shortly, complexity. To define the complexity of a

binary string w we need a binary encoding of programs P , see [21], i.e. an

injective, computable function P ! code(P ), and a computable encoding

h , i of pairs of strings (from z = hx, yi we retrieve uniquely, in a computable
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way, x, y).4 A string x is described by a pair hP, vi such that P (v) = x. The

length of the description is |hP, vi|. A string x has complexity n, in writing

C(x) = n, if

1) there is a program P and a string v such that P (v) = x and |hP, vi| = n,

and

2) n is the smallest natural number for which 1) holds.

The sentences of the form “C(x) > n” can be formalised in a formal theory T
and they form a computable set P1. Again, as a consequence of the Halting

Theorem, the complexity function C is incomputable [2], hence the set Prov1
is computably enumerable but not computable, so we get

Corollary 4 (Syntactic version of Chaitin’s Theorem [5]). Let T be a

consistent formal theory. There exist infinitely many undecidable sentences

“C(v) > n” in T.

We now present a form of semantic incompleteness. To this aim we need

a suitable formal definition of “true sentences" of T. The completeness of

propositional calculus and, more interestingly, of predicate calculus, offer

solutions: a formula in such a calculus is true iff it is true under every

interpretation [22]. In the first example the truth/validity of a formula can

be decided with truth tables; in the second, more complex case, truth was

defined by Gödel [12] as part of his proof of the Completeness Theorem.
5

In contrast with the case of propositional calculus, Church [20] proved that

truth is not decidable in predicate calculus. These formulations of truth are

not powerful enough for the complexity of the formal systems aiming to be

foundations for the whole mathematics. Following [18, p. 24] we can ask:

. . . how can we state, in Mathematics, that an assertion is true without

demonstrating it (or taking it for hypothesis)? The interlocutor must

then produce a proof convincing us of the “(unprovable) truth" of

G.
6

The hypothesis of consistency, he/she points out, implies that

G is unprovable (first theorem). And since G “asserts” that it is not

provable . . . then it is true. This reasoning based on the “meaning"

of G is informal, vague and unwritten. But once formalised, it is a

4An example is hx1x2 . . . xn, yi = x10x20 . . . xn1y.
5Which became the first important link between proof theory – that studies which

sentences can be formally proven in formal theories – and model theory – that deals with
what is true in different models of theories.

6This refers to Gödel’s original proof [13].
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semantic version of the rigorous formal implication PA ` (Cons ! G)
that constitutes the core of the second theorem.

To make matters worse we recall
7

Theorem 3 (Tarski’s Undefinability Theorem [23]). Arithmetical truth can-

not be defined in Peano Arithmetic.

Still, a painless formalisation of truth suited for our discussion can be

provided. Motivated by the simple structure of sentences in Corollary 3 and

Corollary 4 we introduce the following:

Definition 2. By True we denote a subset of P1[P2 satisfying the property

• for every S 2 P1, S 2 True iff ¬S 62 True.

The elements S in True are called true sentences and are denoted by

|= S. True sentences satisfy a semantic form of consistency:

Lemma 2. There is no S 2 P1 such that |= S and |= ¬S.

Fix a set True. We say that

• T is sound for True if for every sentence S in T, if ` S, then |= S.

• T is semantically complete for True if for every sentence S in T, if |= S
then ` S.

Lemma 3. Every formal theory T sound for True is consistent.

Proof. If T is not consistent, then there exists an S 2 P1 such that ` S and

` ¬S, so by soundness we get, |= S and |= ¬S, contradicting Lemma 2.

Remark 1. If T is sound for True and Prov1 6= ;, then P1 \ True 6= ;.

Theorem 4 (Semantic incompleteness Theorem). Let T be a formal theory

which is sound for a set True and Prov1 is not computable. Then, there exist

in True infinitely many undecidable sentences (in T).

Proof. By hypothesis T is sound for True, so by Lemma 3, T is consistent;

as Prov1 is not computable, Theorem 2 applies, so we get a sentence G 2 P1

such that G and ¬G are not provable in T. From Lemma 2 one and only one

of these two sentences is true. Finally, we use Corollary 2 to get infinitely

many undecidable true sentences (in T).

7See [1, p. 128]; Gödel discovered this result in 1930, while proving his First Incom-
pleteness Theorem [13], well before 1933, the year of Tarski’s publication, see [19].



8 Cristian S. Calude

Corollary 5 (Davis’ Theorem [10]). Let T be a formal theory which is

sound for the set True of all true sentences “N(P, v)". Then there exist

infinitely many true sentences “N(P, v)" unprovable in T.

Corollary 6 (Chaitin’s Theorem [5]). Let T be a formal theory which is

sound for the set True of all true sentences “C(v) > n". Then there exist

infinitely many true sentences “C(v) > n" unprovable in T.

The original form of Chaitin’s Theorem is: For any rich enough consistent

formal theory T, there exists a positive integer L such that for every binary

string v, the statement “C(v) > L” cannot be proved in T. At a superficial

level one may think that the statement says that Corollary 6 is true for

almost all true sentences “C(v) > n", but this is false: there exist infinitely

many true statements “C(v) > n" provable in T.

4. Second Incompleteness Theorem

In this section we present an abstract form of the Second Incompleteness

Theorem from which we deduce a variant based on the Halting Theorem and

Kritchman-Raz Theorem.

Definition 3. A formal theory T with a set True is

• reciprocally sound for True if for every S 62 True we have ` ¬S.

Theorem 5 (Second Incompleteness Theorem). Let T be a consistent formal

theory which is sound and reciprocally sound for a set True and the set Prov1
is not computable. Then, T cannot prove its consistency.

Proof. Assume that the computable set P1 (which is infinite by Corollary 2)

is injectively coded in the form {S(x) | x 2 {0, 1}⇤}, where {0, 1}⇤ is the set

of all binary strings. For each n � 1 consider the set

Mn = {S(x) 2 P1 | S(x) 2 True, |x|  n}.

By Theorem 4 there exists a sentence S(z) 2 True \ Prov1, hence for

every n � |z|, S(z) 2 Mn \ Prov1 and 1  #Mn  2n+1 � 1.
Fix n � |z|. If Mn has one element, then all the remaining 2n+1 � 2

sentences S(y) with |y|  n are not in Mn, hence not in True, so by reciprocal

soundness, ` ¬S(y). By computably enumerating the proofs ⇡1,⇡2, . . . in T
till all 2n+1�2 proofs for these sentences show up, we get all 2n+1�2 sentences

S(y) with |y|  n and S(y) 62 True;8 the remaining unique sentence S(z)

8This process is analogous to Lemma 1.



Incompleteness and the Halting Problem 9

is in Mn \ Prov1. However, for every |y|  n, y 6= z we have ` ¬S(y), and

because T is rich enough, ` S(z), in contradiction with Theorem 4. Using

the consistency of T and the fact that T is rich enough, we deduce that T
proves that Mn has at least 2 elements. The above reasoning can continue by

assuming that Mn has exactly 2 elements and getting again a contradiction

with Theorem 4. Step by step we will reach the stage when T proves that

Mn has at least 2n+1 � 1 elements, a contradiction.

Corollary 7. Let T be a formal theory which is sound for the set of all

true sentences “N(P, v)". Then T cannot prove its consistency.

Proof. The set Prov1 is computably enumerable but not computable be-

cause of the Halting Theorem. The set True = {“N(P, v)” | P (v) does not

stop} satisfies Definition 2; furthermore, it is reciprocally sound because if

“N(P, v)" 62 True, then P (v) stops, hence T can prove it by simply describ-

ing the running of P on v until it stops. Finally, in view of the consistency

of T and Lemma 3, the conclusion follows from Theorem 5.

Corollary 8 (Kritchman-Raz Theorem [17]). Let T be a formal theory

which is sound for the set of true sentences “C(x) > n". Then T cannot

prove its consistency.

Proof. As in the proof of Corollary 7, Prov1 is computably enumerable

but not computable. The set True = {“C(x) > n” | C(x) > n} satisfies

Definition 2 and it is reciprocally sound because if “C(x) > n” 62 True, then

there exists a program P and a string v such that P (v) = x and |hP, vi|  n,

hence T can prove it by giving P and v and describing the running of P (v)
until it stops and produces x. Again, by consistency of T and Lemma 3, the

conclusion follows from Theorem 5.

5. Conclusions

In this paper we have used the Halting Theorem to prove an abstract form

of Gödel’s First Incompleteness Theorem (Theorem 2) from which we have

derived a semantic version (Theorem 4), Gödel’s Second Incompleteness The-

orem (Theorem 8) as well Davis’, Chaitin’s Theorems (also in syntactic vari-

ants) and finally Kritchman-Raz’s Theorem. Theorem 4 answers in the affir-

mative the open problem posed in [3], which referred to unprovable instances

of every undecidable problem.
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All undecidable sentences in this paper have the form “8x[Pred(x, y)]”,
where Pred is a computable predicate. They have a “relatively simple struc-

ture”, lowest in Gödel’s hierarchy [8], in the sense that such a sentence can

be refuted by a single counter-example.
9

However, this does not mean that

they are simple or mathematically non-interesting. For example, Fermat’s

Last Theorem and Riemann’s Hypothesis have each this form.

No discussion about incompleteness can avoid a philosophical comment.

Hintikka [15, p. 35] stated that

We are now in position to see that any particular proof given to

Gödel’s first incompleteness theorem is philosophically irrelevant. . . .

it has no philosophical significance whatsoever. It does not, because it

cannot, show anything about the reasons why elementary arithmetic

is incomplete.

Would the undecidability of the Halting Problem – the common argument

in the unification proposed in this paper – count as a reason for incomplete-

ness?
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