8888888

CDMTCS
Research
Report
Series

Formalising Martin-Lof’s
Theorem Using Coq

D. Britten

University of Auckland, New Zealand

CDMTCS-522
February 2018

Centre for Discrete Mathematics and
Theoretical Computer Science

Formalising Martin-Lof’s Theorem Using Coq

by
Daniel Britten

supervised by

Cristian S. Calude

and with guidance from

Monica Marcus

A report submitted as part of the requirements for Computer Science 789 - Honours
Dissertation

University of Auckland - 2017-2018

Introduction

A classic question in logic and computer science is whether there exist undecidable mathe-
matical statements. In his 1995 paper || Per Martin-Lof proved that, on the intuitionistic
conception of the key notions, there are no absolutely undecidable propositions. A key aim
of this dissertation was to formalise some of the reasoning from Martin-L6f’s work.

The central notion to formalise is: ‘can be known’. Since both possibility and knowledge
have been modelled using modal logics for many years, a key approach explored was formal-
ising Martin-L6f’s argument in a modal logic.

It has turned out to be challenging to formalise Martin-L&f’s argument. A chapter is ded-
icated to unpacking challenges and failed attempts at formalising his theorem. It is still
unclear whether an accurate formalisation has been found.

The most promising formalisation involves a ‘Constructive S4’ modal logic [2]. This formali-
sation is explored and includes a proof of the Martin-Lof Theorem in this system. Concerns
with the system are also discussed.

It remains difficult to fully comprehend the meaning of the Martin-L6f Theorem. But the
hope is that this work is some progress towards a fuller understanding of the intriguing result
proved by Martin-Lof.

Acknowledgements

I would like to thank Cris Calude for his guidance and support throughout this project. I am
very grateful for his advice, encouragement, and understanding. I would also like to thank
Monica Marcus for her enthusiastic and extensive input into this project, and especially
for her tireless efforts working on finding an adequate formalisation and proof of Martin-
Lof’s Third Law. Lastly, T would also like to thank Patrick Girard for his assistance with
understanding intuitionistic logic more deeply.

Contents

The Coq Proof Assistant

1.1 Interactively viewing proofs L.
1.2 A typical Coq Proof
1.3 An overview of relevant tactics L.
1.4 Confidence in different types of Coq proofs

The Martin-L6f Theorem

2.1 Unpacking the key notions oL
2.1.1 Proposition
2.1.2 Truth 0 e
2.1.3 Falsity o
2.1.4 Knowledge
2.1.5 Possibilityo

2.2 Unpacking the Martin-L6f Theorem
2.2.1 Objective vs. subjective mathematics
2.2.2 Does objective mathematics coincide with subjective mathematics?
2.2.3 Objective mathematics vs. subjective mathematics
2.2.4 Martin-Lof’s argumento

Formalising Modal Logics in Coq

3.1 Motivation and backgroundo
3.1.1 The Benzmuller and Paleo paper
3.1.2 Bi-modal logic

3.2 Coq formalisation of modal logic
3.2.1 Defining an embedding of modal logicin Coq
3.2.2 Increasing the usability by defining tactics
3.23 Examples

3.3 Coq formalisation of bi-modal logic
3.3.1 Defining the embedding of bi-modal logic in Coq.
3.3.2 Increasing usability by defining tactics
3.3.3 Examples
3.3.4 The Third Law

4 Formalising the Martin-Lof Theorem - Challenges and Failed Attempts

4.1 A challenge - double negation elimination and the completeness of intuition-
istic logic L
4.1.1 Example: double negation elimination
4.1.2 Completeness theorems,

4.2 Failed attempts
4.2.1 A failed Coq formalisation that oversimplifies the notion ‘undecidable’
4.2.2 A failed Coq formalisation that oversimplifies the notion ‘knowable’ .

Formalising the Martin-Lo6f theorem - Formalisation in CS4+-Int
5.1 Axioms.
5.1.1 From CS4 e
5.1.2 From intuitionistic logic o000
5.2 Proof of Martin-Lof’s Third Law 00 000000
5.3 Coq definitions
5.3.1 Propositional atoms 0oL
5.3.2 Modal formula syntaxo
5.3.3 Notation e
5.3.4 Using Coq’s logic as a meta-language
535 Axioms in Coq
5.4 Proof of Martin-Loéf’s Third Law 0000
5.4.1 Proof mirroring the structure of Marcus’ proof
5.4.2 Alternate proof of Martin-Loéf’s Third Law
5.5 Reasonableness of the axioms
5.5.1 Considering the axioms themselves
5.5.2 Considering some lemmas
5.6 Extending to Martin-Lo6f’s Theorem

24

24
24
26
27
27
29

Formalising the Martin-L6f Theorem - Formalisation of Intuitionistic Logic 38

6.1 Motivation and backgroundo o000
6.2 Defining an embedding of intuitionistic logic

6.2.1 Atoms
6.2.2 Propositions
6.2.3 Proofs

6.2.4 Notation e
6.2.5 Lemmas e
6.3 Proof of Martin-Lof’s Third Law
6.4 Proof of the Martin-Lof Theorem
6.5 Comments on this formalisation

38

7 Open Questions 44

7.1
7.2
7.3

Double negation elimination and the Martin-Léf Theorem 44
Simplifying the axioms in the CS4 + Int formalisation 44
Implications of the ‘Non-strictly positive occurrence’ error in the intuitionistic

logic formalisation Lo 45

Chapter 1

The Coq Proof Assistant

This chapter is an introduction to and overview of the proof techniques relating to the Coq
Proof assistant [3] that are used in this dissertation.

1.1 Interactively viewing proofs

The entire text of this dissertation is comprised of Coq source files which include all the
proofs given. The reader is recommended to download Coqlde from

https://coq.inria.fr/download
and use the Coq source files available from
https://github.com/Coda-Coda/MartinLoefTheorem-Dissertation /releases/tag/cdmtcs

This will allow the reader to step through any of the proofs in this dissertation interactively.

1.2 A typical Coq Proof

Because of the nature of the topic covered by this dissertation, some of the proof techniques
used are not entirely standard (for instance Axioms are often used) but most of the same
elements are still used. Below is an annotated fairly standard Coq proof that highlights some
of the ways Coq is used to assist with proofs in this dissertation.

Inductive boolean =
| true
| false.

Above a data type, boolean, is defined which can have either of the values listed. Data type
definitions of this kind will be used to define propositional or modal formulas as their own
type.

Definition not (z:boolean) : boolean =

https://coq.inria.fr/download
https://github.com/Coda-Coda/MartinLoefTheorem-Dissertation/releases/tag/cdmtcs

match z with
| true = false
| false = true
end.

Above a function not is defined with the type signature boolean — boolean. Very few function
definitions of this kind are used in this dissertation.

Lemma ezample_lemma : Y (b:boolean), b = not (not b).

Proof.

destruct b.

- Case b = true reflexivity.
- Case b = false reflexivity.
Qed.

Above is an example of a Coq proof. The statement of the proof appears first, followed by
the ‘proof script’ which instructs Coq as to which steps to take to prove the statement. Each
step involves using a tactic which can be a basic step or be a complex semi-automated step.
This dissertation involves many proofs and also defines some tactics in order to aid with
proofs.

A Coq proof can be stepped through interactively tactic by tactic. At each stage Coq will
show the remaining goal that needs to be proven at that stage.

1.3 An overview of relevant tactics

In general, Coq does not automatically prove statements. Rather, the process is guided by
the user inputting tactics which control the flow of the proof. Below are a selection of tactics
that are commonly used in proofs in this dissertation.

e reflexivity will simplify the goal and then solve a goal of the form a=a.

Example reflexivity_example : 1=1.
Proof.

reflexivity.

Qed.

e simpl will simplify a goal.

Example simpl_example : 1 + 2 = 3.

Proof.

simpl. The goal now is 3 = 3.
reflexivity.

Qed.

e intros will typically introduce quantified variables as new arbitrary variables. Usually
used with goals of the form V p ¢,

Example intros_example : ¥ n,n +1 =n + 1.

Proof.

intros. The context now contains n : nat, and the goal is n + 1 = n + 1.
reflexivity.

Qed.

exact will solve a goal that looks exactly like a current hypothesis. In the example
below, p is introduced as the hypothesis H and then the goal p can be solved with the
tactic exact H.

Example ezact_example : ¥ p, p — p.
Proof.

intros p H.

exact f.

Qed.

unfold will unpack a definition and rewrite the goal accordingly.

Definition double_neg (p:Prop) := — — p.

Example unfold_example : ¥V p:Prop, p — double_neg p.

Proof.

intro.

unfold double_neg. Now the goalis p — - = p.

firstorder. Proof automation for first order logic can complete the proof.
Qed.

destruct facilitates analysing different cases.

Example destruct_example : ¥ b: boolean, b = true V b = false.
Proof.

destruct b.

left. reflexivity. Case: b = true.

right. reflexivity. Case: b = false.

Qed.

pose proof can be used to bring an axiom into the context as shown below. Note how
examplel is followed by p and — ¢, they are then bound to A and B respectively, giving
the correct instantiation of the axiom examplel.

Axiom examplel : VA B - A— AV B — B.

Example pose_proof_example : ¥ p g, —p —-pV 7 qg— - g
Proof.

intros p q.

pose proof examplel p (— q) as examplel_aziom.

exact examplel_azxiom.

Qed.
e apply will apply a theorem to the current goal, as shown below.

Example apply_example : Y p g, - p = pV - q— — q.
Proof.

intros p q.

apply examplel.

Qed.

1.4 Confidence in different types of Coq proofs

It is important to note that different ways of using Coq have important implications for how
trustworthy the resulting proofs are and for which sections of code need to be checked to be
trustworthy before trusting a particular proof.

When Coq is used without adding any additional assumptions and for its regular usage
we can be very confident of the system’s consistency and the trustworthiness of proofs. In
general, if the Coq definitions used in a theorem are fully understood, the user code leading
to a proof of it would not need to be manually checked to be trustworthy.

In contrast, when the code leading to a proof makes use of assumptions then it is important
to carefully check that the assumptions do not lead to unintended results. For example,
consider the statement below.

Parameter 7 : Type.

The Parameter keyword is an example of this. In the code above, we assume the existence
of + and that it is a Type. In this case, this is a safe assumption but it is important to
note that the trustworthiness of proofs in a Coq file depends on the trustworthiness of such
statements.

For example, the following use of Parameter would make Coq’s logic inconsistent:
Parameter z: Fulse.

This assumes the existence of z of type Fualse, which essentially assumes the existence of a
proof of False (which should be impossible).

A second consideration is whether the proof involves an embedding and ‘lifted connectives’,
such as is the case with the Modal Logic formalisation in a later chapter. This technically
falls under the idea of being sure that “the Coq definitions used in the theorem are fully un-
derstood”. Essentially, if an entire logical system has been newly defined, then any theorems
proven in such a system are only as trustworthy as the definitions given in the user code.
These considerations are relevant to aspects of the formalisations in this dissertation, and
also relevant are the standard considerations outlined on a Coq FAQ site [1] which include
trusting the integrity of the system Coq is running on and trusting the theory behind Coq.

Chapter 2

The Martin-Lof Theorem

The Martin-L6f Theorem is introduced in the paper Verificationism Then and Now (1995,
2013)[1, 5]. The conclusion of the paper is that, on the intuitionistic conception, there are
no absolutely undecidable propositions.

A large portion of the paper involves carefully unpacking the notions of a proposition, truth,
falsity, knowledge and possibility.

The purpose of this dissertation and the ongoing work in parallel to it is to formalise the
proof outlined by Martin-Lof in some sound and complete logical system as well as in a proof
assistant such as Coq.

2.1 Unpacking the key notions

For a full treatment of the key notions in the Martin-L6f Theorem see the paper Verifica-
tionism Then and Now |5]. Here an overview is given.

2.1.1 Proposition

A proposition is defined by its introduction rules. For example, the proposition A V B gets
its meaning from that the introduction rule for V requires either a proof for A or a proof for
B in order to have a proof for AV B.

2.1.2 Truth

A proposition is true if it has a proof.

2.1.3 Falsity

A proposition is false, if there exists a hypothetical proof of L from it.

10

2.1.4 Knowledge

A proposition can be known to be true if there exists a proof for it.

2.1.5 Possibility

The ‘if there exists’ in the definition of knowledge refers to an intuitionistic understanding of
these words. That is, possibility in principle. For example, in order for a statement involving
a large number to be known to be true, there need not be a proof detailing every step of
that proof - rather it would be sufficient to demonstrate the existence of an algorithm that
would, in principle, produce the required step by step proof.

2.2 Unpacking the Martin-Lof Theorem

The sections below describe the informal proof of the Martin-Lof Theorem. This content
was kindly provided by Cristian Calude [6], with only minor alterations made by myself.

2.2.1 Objective vs. subjective mathematics

e Objective mathematics consists of the body of mathematical propositions, constructive
or not, which hold true in an absolute sense. Peano Arithmetic or Zermelo-Fraenkel
set theory are parts of it.

e Subjective mathematics consists of all mathematical truths humanly demonstrable (or
provable or knowable), in a constructive manner or not.

2.2.2 Does objective mathematics coincide with subjective mathe-
matics?

Godel accepted Hilbert’s rejection of the existence of absolutely unsolvable problems because
otherwise,

“it would mean that human reason is utterly irrational by asking questions it can-
not answer, while asserting emphatically that only reason can answer them” |7,
p. 324-325|

but he found Turing’s argument inconclusive:

“Turing gives an argument which is supposed to show that mental procedures
cannot go beyond mechanical procedures. However, this argument is inconclu-
sive. What Turing disregards completely is the fact that mind, in its use, is
not static, but constantly developing, i.e., we understand abstract terms more
and more precisely as we go on using them ...though at each stage the number
and precision of the abstract terms at our disposal may be finite, both ... may
converge toward infinity ...” [8, p. 306]

11

Godel’s answer (Gibbs lecture “Some Basic Theorems on the Foundations of Mathematics
and their Implications”, [9]) based on his incompleteness theorem is a disjunctive conclusion:

“Either mathematics is incompletable in this sense, that its evident axioms can
never be comprised in a finite rule, that is to say, the human mind (even within
the realm of pure mathematics) infinitely surpasses the powers of any finite ma-
chine, or else there exist absolutely unsolvable diophantine problems of the type
specified.”

Martin-Lof’s answer based on a constructive interpretation of the notions of ‘true’, ‘false’
and ‘can be known’ [1]:

There are no propositions which can neither be known to be true nor be known
to be false.

For the non-constructive mathematician:

No propositions can be effectively produced (i.e. by an algorithm) of which it can
be shown that they can neither be proved constructively nor disproved construc-
tively. There may be absolutely unsolvable problems, but one cannot effectively
produce one for which one can show that it is unsolvable.

2.2.3 Objective mathematics vs. subjective mathematics

Emil Post writes: [10, 11, p. 200]

“A fundamental problem is the question of the existence of absolutely undecidable
propositions, that is, propositions which in some a priori fashion can be said to
have a determined truth-value, and yet cannot be proved or disproved by any
valid logic.”

We will only require that the objective mathematics contains the subjective mathematics.
Furthermore, in contrast with Feferman [12], we will include in subjective mathematics all

statements provable by any methods, ariomatic (dynamic, not only static), constructive,
computational or by methods currently not yet discovered.

2.2.4 Martin-Lo6f’s argument

Constructive logical interpretations:

e The proposition A can be known to be true if we have a proof for A.

e The proposition AV B can be known to be true if we have a proof for A or we have a
proof for B.

12

e The proposition A A B can be known to be true if we have a proof for A and we have
a proof for B.

e The proposition A — B can be known to be true if we have an algorithm which
converts any proof for A into a proof for B.

e The proposition ~A can be known to be true if we have a proof for A — (0 = 1).
e The proposition A can be known to be false if we have a proof for ~A.

e The proposition A cannot be known to be true if we have an algorithm which tests and
rejects any given ‘proof’ which purports to demonstrate A.

e If the proposition A can be known to be true, then A is true.

e Martin-Lof’s notions of can be known to be true/false are not related to any fixed formal
system.

Fact 1. |Unknowability of truth entails knowability of falsity| If the proposition A cannot
be known to be true, then A can be known to be false.

Proof: To prove that A can be known to be false we have to show that ~A, i.e. A — (0=1)
can be known to be true. To this aim we need an algorithm B to convert any proof of A into
a proof of (0 = 1). The algorithm B returns anything output by the algorithm A provided
by the hypothesis, i.e. noting: vacuously, the implication holds.

Comment: The proof constructively produces positive information from negative informa-
tion.

Fact 2. If A can be known to be true and B can be known to be true, then AN B can be
known to be true.

Fact 3. [Absolute consistency| The proposition (0 = 1) cannot to be known to be true.

Proof: The proposition ~(0 = 1) can be known to be true because (0 = 1) — (0 = 1) is
provable using the identity algorithm, so (0 = 1) can be known to be false, i.e. it is false.
No proof can demonstrate (0 = 1) because otherwise it would be true: the algorithm rejects
any proof candidate.

Fact 4. [Law of contradiction| One and the same proposition A cannot both be known to be
true and be known to be false.

Proof: By hypothesis we have a proof demonstrating A and a proof demonstrating ~A, i.e.
A — (0 =1). Then we can demonstrate (0 = 1), contradicting Fact 3.

13

Fact 5. [Law of excluded middle| There is no proposition which can neither be known to be
true nor be known to be false, i.e. there is no absolutely unprovable proposition.

Proof: It A is a proposition which cannot be known to be true, then by Fact 1, A can be
known to be false, a contradiction.

14

Chapter 3

Formalising Modal Logics in Coq

3.1 Motivation and background

The Martin-Lof Theorem includes the notion of knowledge as well as the notion of possibility
in key ways. Both possibility and knowledge have been modelled using modal logics for many
years, and so it seemed likely that incorporating or adapting some of those techniques would
be useful in formalising the Martin-Lo6f theorem and its proof.

3.1.1 The Benzmuller and Paleo paper

The paper ‘Interacting with Modal Logics in the Coq Proof Assistant’ [13] sets out a useful
way to embed modal logics in the Coq proof assistant. The approach they put forward in
their paper is also extensible and so had the potential to be adapted as necessary when
formalising the Martin-Lof Theorem. Their work was very helpful.

In their paper they state: "the main contribution described in this paper - convenient tech-
niques for leveraging a powerful proof assistant such as Coq for interactive reasoning for
modal logics - may serve as a starting point for many interesting projects." [13, p. 2].

3.1.2 Bi-modal logic

One of the approaches was to formalise the theorem in a bi-modal logic, representing knowa-
bility and possibility as modal operators. This approach is shown below, based almost
entirely on the Coq code from the Benzmuller paper, with some minor adaptations for it to
be bi-modal logic.

3.2 Coq formalisation of modal logic

Here the approach to formalising K5 given in the Benzmuller and Paleo paper is outlined
and explored with reference to exercises and examples from First-Order Modal Logic (Fitting
and Mendelsohn, 1998)[14]. The purpose of this section is to explore the Benzmuller and

15

Paleo approach when applied to standard modal logics before extending it to handle bi-modal
logic.

3.2.1 Defining an embedding of modal logic in Coq

The Coq code in this subsection is directly from the Benzmuller and Paleo Paper [15], the
comments have been added.

It is worth noting that to check the trustworthiness of any theorem using the techniques from
the Benzmuller and Paleo paper, it is necessary to check the trustworthiness of the user code
defining the modal logic embedding (below), and especially the impact of any adaptations
to their original technique such as the adaptation to bi-modal logic later in this chapter.

Worlds, objects, modal propositions and the accessibility relation

Parameter i: Type. Here we declare/assume a type i as the type for worlds.
Parameter u: Type. Here we declare/assume a type u as the type for objects/individuals.

Definition o := ¢ — Prop. Here we define o to be the type which takes a world and gives
a meta-language proposition. o then, is the type of modal propositions, which when given a
world are then a meta-language proposition.

The intended usage is to have a modal formula, say p (with type o), with the meaning of
(p w) to be that the modal proposition represented by p is true at world w (where w is a
world, with type 7).

The meanings of the definitions of ¢, v and o are fixed further by their usage in the next
definitions. It is also worth noting that the reason why undescriptive names are used is
because 7, u and o will need to be written often and it would be inconvenient if their names
were long.

Parameter 7: ¢ — 7 — Prop. Here we declare/assume a function/predicate of arity 2
defined over worlds, to be the accessibility relation for worlds.

Connectives

Here the lifted connectives are defined. Each lifted connective (except mnot) takes two modal
propositions (with type o) and a world (with type i) and gives a ‘meta-language’ proposition
(with the standard Coq type Prop) reflecting the meaning of the connective.

Definition mnot (p: o)(w: i) := = (p w).

Definition mand (p q:0)(w: i) := (p w) A (¢ w).

Definition mor (p q:0)(w: i) := (p w) V (q w).

Definition mimplies (p q:0)(w:i) = (q
Definition mequiv (p q:0)(w:i) := (p w) <> (q w).
Definition mequal (z y: u)(w: i) :=z = y.

Here we define a more natural prefix and infix notation for the lifted connectives.

16

Notation “m— p” := (mnot p) (at level 74, right associativity).

Notation “p mA ¢’ := (mand p q) (at level 79, right associativity).

Notation “p mV ¢” := (mor p q) (at level 79, right associativity).

Notation “p m— ¢” := (mimplies p q) (at level 99, right associativity).

Notation “p m<> ¢” := (mequiv p q) (at level 99, right associativity).

Notation “z m= y” := (mequal z y) (at level 99, right associativity).

Note that the notation for each of the connectives in the embedded modal logic is an ‘m’
followed by the connective. So there is m— and mV for example. Also, below mforall and
mexzxists are defined.

Quantifiers

Here the lifted versions of the quantifiers are defined. The quantifiers take a type, a func-
tion /predicate which takes elements of that type and gives a modal proposition, and a
world, and gives a ‘meta-language’ proposition’ (with type Prop) reflecting the meaning of
the quantifier.

Definition A {¢: Type}(p: t — o)(w: i) :=V z, p z w.

Definition E {¢: Type}(p: t — o)(w: i) := 3z, p z w.

If a world is not given, then A ¢ p will have type ¢ — Prop and so it will be a modal proposition
itself. This will allow the expression of modal formulae such as Vz, P(z) — P(x). In this
formula P would correspond to p in the definitions above.

Here more natural notations for A and F are defined. The definitions for A and £ make
use of Coq’s type inference ability so ¢ doesn’t need to be explicitly entered (in many cases
¢t would be the type for objects/individuals u), it is inferred from the type of p.

Notation "'mforall’ x , p" := (A (fun z = p))

(at level 200, z ident, right associativity) : type_scope.
Notation "'mforall’ x : t, p" := (4 (fun z:t = p))

(at level 200, z ident, right associativity,

format ™| 'mforall’ ’/ > x : t,’/ p’|'") : type_scope.
Notation "'mexists’ x , p" := (E (fun z = p))

(at level 200, z ident, right associativity) : type_scope.
Notation "'mexists’ x : t, p" := (E (fun z:t = p))

(at level 200, z ident, right associativity,

format ™| 'mexists’ /P x:t .,/ p’|'") : type_scope.

Modalities
Definition OJ (p: 0) := fun w = V wi, (r w wl) — (p wi).
Definition ¢ (p: 0) := fun w = JFwi, (r w wi) A (p wl).

[1is defined as a function which takes a modal proposition and a world, and returns a ‘meta-
level’ proposition stating that for all worlds related to that world the modal proposition is
true at those worlds.

17

¢ is defined similarly as a function which takes a modal proposition and a world, and returns
a ‘meta-level’ proposition stating that there exists a world related to that world, where the
modal proposition is true.

Since the type of both { and [J when applied to a modal proposition, is 7 — Prop, then [
p and O p are of type o (the type of modal propositions).

Validity

Definition V (p: 0) :=V w, p w. Here the definition of validity for a modal formula
is given. V is defined as a function/predicate that takes a modal proposition and gives a
‘meta-level” proposition stating that the given modal proposition is true at all worlds. So for
any modal proposition p, at the meta-level V' p is true iff p is valid.

Notation "[p |" := (V p). Here a notation is defined so that we can write “p is valid” as
[p] rather than (V p).

The definitions required to embed modal logic are now all defined. The tactics defined below
only add to the usability of the above definitions and do not alter what propositions are
expressible and provable in this embedding of modal logic in Coq like each of the definitions
above have.

3.2.2 Increasing the usability by defining tactics

The tactics defined below allow proofs to be carried out without dealing directly with the
intricate aspects of the definitions of the embedding. Instead, the familiar technique of
working with introduction and elimination rules can be used. Only some new tactics are
needed, as the standard Coq tactics work fine with many of the defined notions. Below a
brief example of each new tactic is given; for a comprehensive explanation of these definitions
see section 3 of the Benzmuller and Paleo paper |13, p. 5].

Modal validity

Ltac mv :— match goal with |- (V _)] = intro end.

Here the mv tactic is defined such that when the proof state requires proving that a modal
formula is valid, applying mv will introduce a new arbitrary world and the goal of the proof
state will then be to prove that the modal formula is true at the new world.

Example muv_eg : |mforall p, O p m— p].
Proof.
mo.

The proof state goal is now: (mforallp:o, O p m— p) w
Abort.

18

Box introduction

Ltac boz_i :— let w :— fresh "w" in let R :— fresh "R"
in (intro w at fop; intro R at top).

Example boz_i_eg : | mforall p, O p |.

Proof.

mu.

intro. Here the standard Coq tactic intro is sufficient for handling mforall.

box_i.
The goal is now: (z w0) with 7 w w0 as one of the assumptions, where both w and w0 are
arbitrary.

Abort.

Box elimination

Ltac box_eltm H w1l H1 := match type of H with

(O ?p) ?w) = cut (p wl);

|intros HI | (apply (H wl); try assumption)| end. boz_elim is an auxiliary tactic for
boz_e, not intended to be directly called by the user.

Ltac bor_e H HI1:= match goal with | [F (= ?w) | = boz_elim H w HI end.

Example boz_e_eg : ¥V wl w2 p, r wl w2 — (O p) wl — p wl.

Proof.

intros.

bor_e HO HI1.

The call of box_e adds p w2 to the list of hypothesis, and the requirement r wi w2 is
automatically solved.

exact H1.
Qed.

Diamond introduction

Ltac dia_i w := (3 w; split; [assumption | idtac|).

Example dia_i_eg : ¥V wl w2, ¥ p:o, r wl w2 — p w2 — (O p) wl.
Proof.

intros.

dia_1 w2.

The call of dia_¢ transforms the goal from ¢ p w! to p w2, automatically checking that w2
is reachable from wi.

exact HO.
Qed.

19

Diamond elimination

Ltac dia_e H := let w := fresh "w" in let R := fresh "R" in
(destruct H as |w [R H||; move w at top; move R at top).

Example dia_e_eg : ¥ p w, (O p) w — 3 w0, p w0.

Proof.

intros.

dia_e H.

The call of dia_e introduces a new arbitrary world w, and another arbitrary world w0 ac-
cessible from w where p is true.

3 w0.
exact H.
Qed.

3.2.3 Examples

With the embedding as well as useful tactics defined, standard modal logic lemmas can now
be proven here.

Lemma examplel : ¥V p ¢, [0 (p mA q) m« (O p mA O q)|.

Proof.
intros.
mo.
split.
- intros.
split.
+ box_1.
box_e H HI.
destruct HI.
exact HO.
-+ Similarly, box_i. box_e H H1. destruct HI. exact HI.
- split.
+ destruct H. box_e H H2. exact H2.
+ Similarly, destruct H. box_e H1 H2. exact H2.
Qed.

Lemma example?2 : |mforall p, O p m— (m— (O (m— p)))|.
Proof.

mo.

intro.

intro.

dia_e H.

intro.

20

assert((m— z) w0).
bor_e HO H1.

exact H1.
contradiction.

Qed.

3.3 Coq formalisation of bi-modal logic

The formalisation given below relates to an early unsuccessful version of our attempt to
formalise the Martin-Lif Theorem.

The modal logic described in the Benzmuller and Paleo paper was adapted to be a bi-modal
logic in line with the intention to formalise the Martin-Lof theorem.

3.3.1 Defining the embedding of bi-modal logic in Coq

All the definitions from the Benzmuller and Paleo modal logic embedding [13] in the previous
section are used, in addition to new definitions which extend it to a bi-modal logic.

The following definitions are added to extend the logic to be bi-modal. The definitions for
K and B mirror [J and { respectively.

Parameter 7kb : i — i — Prop. Similarly to with r, here we declare/assume a func-
tion /predicate of arity 2 defined over worlds, to be the accessibility relation for for worlds,
for knowledge and belief. For bi-modal logic, r is the accessibility relation just for [J and ¢.

Definition K (p: 0) :— fun w = YV wl, (kb w w1) — (p wl).
Definition B (p: 0) := fun w = 3 wl, (rkb w w1) A (p wl).

Axioms about the accessibility relation are also added to match definitions in the model.
Axiom reflexivity: V w, r w w.

Axiom reflexivitykb: ¥ w, rkb w w.

Axiom RksubsetRbox: ¥V wl w2, rkb wl w2 — r wl wl.

Axiom accurate_reasoner: ¥ w, ¥V p:o, B p w — p w.

As before, only the definitions above affect what propositions can be expressed and proven
in this embedding of a bi-modal logic. The tactics below only increase the usability.

3.3.2 Increasing usability by defining tactics

The tactics defined here mirror those defined for [J and ¢ and would be used similarly.

Ltac K_i := let w := fresh "w" in let R := fresh "R"
in (intro w at fop; intro R at top).

21

Ltac K_elim H w1 HI := match type of H with

(K 7p) Tw) = cut (p wl);

[intros HI | (apply (H wl); try assumption)| end.

Ltac K_e H HI:= match goal with | [F (- ?w) | = K_elim H w HI end.

Ltac B_e H := let w := fresh "w" in let R := fresh "R" in
(destruct H as |w [R H||; move w at top; move R at top).

Ltac B_i w := (3 w; split; [assumption | idtac]).

3.3.3 Examples

Lemma ezamplel : ¥V p, [K p m— p|. ie. K p — p is valid.

Proof.

intro.

mo.

intro.

K_e H Hl1.

exact HI.

apply reflexivitykb.
Qed.

Lemma ezample? : ¥V p wl, (B p) wl — F w2, ({ p) w2 ie. if B pis true at some world
then there exists a world where { p is true.

Proof.

intros.

B_e H.

apply RksubsetRbox in R.
J wl.

dia_1 w.

exact H.

Qed.

3.3.4 The Third Law

The Third Law of the Martin-Lo6f theorem can be expressed in this bi-modal logic as below.
An important consideration is whether the definitions above capture the meaning of the
theorem, in particular whether the formally defined meanings of) and K when used together
capture the notion “can be known”.

Informally, Martin-Lo6f’s Third Law states "From the unknowability of the truth of a propo-
sition, its falsity may be inferred” |5, p. 12]. This can potentially be captured formally as
given below.

Tentative Theorem Third_Law : |[mforall A, m— (O (K A)) m— (O (K (m— A)))].

Proof.

22

Abort. A proof is not given here, further work may resolve whether this is provable.

23

Chapter 4

Formalising the Martin-Lof Theorem -
Challenges and Failed Attempts

4.1 A challenge - double negation elimination and the
completeness of intuitionistic logic

The completeness theorems for intuitionistic logic can easily be thought to imply that for
every intuitionistic formula, there either exists a proof of it, or a proof of its negation. This
is what one might expect from the notion of completeness for classical propositional logic,
for example, but this is not something that the completeness theorems for intuitionistic logic
imply.

We can best demonstrate this by noting that neither (= = ¢ — ¢) nor = (= = ¢ — ¢) are
intuitionistically provable. Thus there is a formula for which neither it nor its negation is
intuitionistically provable.

Below, further details are given to show this is the case, and then the completeness theo-
rems for intuitionistic logic are discussed in relation to this. We find that the intuitionistic
completeness theorems do not mean that there don’t exist formulae with neither a proof
of themselves nor of their negation, so in some sense these theorems are weaker than their
classical counterparts.

4.1.1 Example: double negation elimination
(= = g — q) is not intuitionistically provable

This we know because of an understanding of the definitions of the inference rules of intu-
itionistic logic, or by formal analysis of what is provable using some semantics. Essentially, if
it were intuitionistically provable, then intuitionistic logic would be no different from classi-
cal logic in what is provable. Double negation elimination is equivalent (both classically and
intuitionistically) to the law of the excluded middle, which is commonly pointed to as specifi-
cally something that is not intuitionistically provable and which separates intuitionistic logic

24

from classical logic.
Because of such reasons, it is clear that (= = ¢ — ¢) is not intuitionistically provable.

- (= — g — q) is not intuitionistically provable

There are a number of ways to show this, a few are given here.

(1) Because if it were, then L would be provable:
For example, below is a Coq proof of (= (= —=¢—¢q)) — L.

Parameter ¢:Prop. Let ¢ be an arbitrary proposition.

Lemma double_neg_example : (- (-~ —q¢— q)) — L.

Proof. firstorder. Qed. Coq is able to automatically verify this lemma. Note that Coq’s
core logic which is being used here is intuitionistic.

We can do the same proof more manually using Coq as shown below.
Lemma double_neg_example’ : (= (- —-q¢—¢q)) — L.

Proof.

unfold not.

intros. apply H.

intros. ezfalso. apply HO.

intros. apply H.

intros. apply H1.

Qed.

(2) As an alternative, here is a natural deduction-style proof of the same result:
The natural deduction-style proof below mimics the reasoning of the Coq proof above. It
makes use only of intuitionistically valid inference rules.

25

—— 2. =(=1g9—Qq) Ass
— 5. =Aq Ass
—9. (¢ Ass
12. =Aq Ass
(13. q 9
11. (=~g—q) 12-13, —-I
10. 1L 2, 11, -E
7] 9'10, I
8. 1 5,7, -E
6. ¢ 8, LE
4. (1ng—q) 5-6, —I
3. L 2, 4, 0E
1 (7(7mg—q)—L1) 2-3, I

Figure 4.1: NJ proof, created using the Natural Deduction Planner by Declan Thompson [15].

The above three proofs show that = = (= = ¢ — ¢) is intuitionistically provable. This
implies that = (= = ¢ — ¢) is not intuitionistically provable because if it were, we would
clearly then have a proof for | which is not possible. Thus = (= = ¢ — ¢) is not intuition-
istically provable.

(3) Other results which show that double negation elimination is unprovable intuitionistically:

We can also see this is the case using the fact that every intuitionistic tautology is a classical
tautology, and so if = (= = ¢ — ¢) was intuitionistically provable then it would be classically
provable, but it is classically false. Thus = (= = ¢ — ¢) is not intuitionistically provable.
One additional way, would be to use Glivenko’s Theorem [16], using the fact that p is classi-
cally true iff = = p is intuitionistically provable. Thus = = (= = ¢ — ¢) is intuitionistically
provable, because (= = ¢ — ¢) is a classical tautology. So as before, = (= = ¢ — ¢) is not
intuitionistically provable.

4.1.2 Completeness theorems

Completeness is a notion which in some sense does differ in meaning between classical [17,

, 19, p. 46] and intuitionistic [16, 19, p. 171]| contexts, although it also retains many as-
pects of its meaning. One example of a difference is that in classical logic if some system
is complete, then we can conclude that for every formula either it or its negation is prov-
able. This however, is not the definition of completeness, but rather a consequence of it in
classical contexts. For instance, in classical propositional logic, the fact that it is complete
is generally defined to mean that every formula that is valid semantically is provable. For

26

classical logic this then means that if we take an arbitrary formula, we can show that either
it or its negation must be provable as follows, the key being the fact that p vV —p is valid in
classical logic for all propositions.

Consider classical propositional logic, with semantics and provability (or deduction) defined
such as in the Stanford Encyclopedia of Philosophy article on classical logic [20].

Here, if a formula p is valid semantically this is denoted by E p. If a formula ¢ is provable
this is denoted I q.

Classical propositional logic is complete, so every valid formula is provable, if F p then - p.

1. Let p be an arbitrary propositional formula.
2. pV —pisvalid, E (p V —p)
3. Thus, by the definition of satisfaction, £ p or F —p
4. Suppose F p
a. Then, by completeness we have that b p so p is provable. We are done. (Either
p or —p is provable.)

5. Suppose F —p
a. Then, by completeness we have that - —p so —p is provable. We are done. (Either
p or —p is provable.)

6. Therefore either p or —p is provable.

We see here that completeness for classical logic implies that for every p, either p or —p is
provable. For intuitionistic logic however, since we relied on p V —p as being valid in step 2
the above reasoning would not work since p V —p is not valid in intuitionistic logic.
Clarifying this was helpful in the process of gaining a greater understanding of the key
notions of the Martin-L6f Theorem.

4.2 Failed attempts

The Martin-Lof theorem considers all notions with regards to “the intuitionistic concep-
tion” |, p. 4] and so it seems plausible that formalising the theorem in a way which works
solely with intuitionistic proofs might best capture the ideas in Martin-Lo6f’s proof. Coq’s
core logic itself is intuitionistic and embodies many of the notions expressed in relation to
the Martin-Lof theorem. This section explores two failed attempts at using Coq’s default
intuitionistic logic to formalise key notions of the Martin-Lo6f Theorem.

4.2.1 A failed Coq formalisation that oversimplifies the notion ‘un-
decidable’

In Martin-Lo6f’s paper [5], the conclusion is that there are no absolutely undecidable propo-
sitions, on the intuitionistic interpretation. A key step in formalising the theorem is to
adequately represent the statement of the conclusion formally.

27

A possible definition of ‘absolutely undecidable’:

An absolutely undecidable proposition has no proof or disproof. This appears to
be the most natural way to define ‘absolutely undecidable’, but it is important to bear in
mind the proposition = = ¢ — ¢ as discussed in section 4.1. In Coq this definition could be
formalised as follows:

Definition absolutely_undecidable (p : Prop) : Prop := — ((3 (pf : p), True) vV (3 (pf : —
p), True)).

An immediate issue with this formalisation of the notion ‘absolutely undecidable’ is that in
Coq (by default) the negation is intuitionistic. As a result the definition above does not
correctly capture the meaning of ‘no’ in the notion ‘no proof or disproof’.

Another possible issue is that the definition is very similar to V p, = (p V = p) which seems
to oversimplify the notion it is attempting to capture. This is shown by the lemmas below.
First we proof that there exists a proof of p if and only if p is true.

Lemma proof_exists_iff_true : ¥ p:Prop, (3 pf:p, True) < p.
Proof.
split.
- intros. destruct H. exact z.
- intros. 4 H. apply L
Qed.

Now we can show that absolutely_undecidable p is equivalent to — (p V = p). This is not
necessarily a problem, as it may only be showing that absolutely_undecidable p is false (since
= (p V — p) is false). But of concern is the simplicity of the proof, which highlights that
absolutely_undecidable p may have a similar meaning to — (p V = p). This would seem to
be an oversimplification of the intended meaning of the notion ‘absolutely undecidable’.

Lemma absolutely_undecidable_is_oversimplified :
Y p, absolutely_undecidable p <> = (p V — p).

Proof.

intros.

unfold absolutely_undecidable.

rewrite! proof_exists_iff_true.

split. intros. exact H. intros. exact H.

Qed.

We can define here the conclusion of the Martin-Lof Theorem: that there are no absolutely
undecidable propositions. However, as shown below, in this formalisation the statement is
equivalent to V p, = (= (p V = p)) by a fairly simple proof. This, again, appears to potentially
hint that the notion it is trying to formalise has been oversimplified. The meaning of the
statement of the Martin-L6f Theorem in this formalisation would be just the meaning of V
p, = (= (p V = p)) or close to it.

Definition ML_theorem := ¥ p, = (absolutely_undecidable p).

28

Lemma ML_theorem_equivalence : ML_theorem <> ¥ p, = (= (p V = p)).

Proof.

unfold ML_theorem.

split.

- intros. pose proof H p. rewrite absolutely_undecidable_is_oversimplified in H(. exact
Ho.

- intros. rewrite absolutely_undecidable_is_oversimplified. apply H.

Qed.

Further work would be needed to confirm that this oversimplification is definitely an issue,
but it does seem to be problematic.

4.2.2 A failed Coq formalisation that oversimplifies the notion ‘know-
able’

Here a formalisation is given of the key notion of knowability. This is then extended to a
formalisation of Martin-Lo6f’s Third Law. The key issue is that the meaning of the Third
Law in this formalisation is closest to “if a proposition is false then that proposition is false”
rather than it’s expected meaning: “if a proposition cannot be known to be true then it can
be known to be false.” |5, p. 10]

Definitions

In Coq and in intuitionistic logic more generally, a proposition is true, by definition, iff there
exists a proof for it. The precise meaning of “exists” can be debated, but the general idea
remains. So a Coq lemma of the form V p ¢, p <> ¢ can be taken to mean for all propositions
p is true iff ¢ is true, or it can be taken to mean p has a proof iff ¢ has a proof. (Or a
mixture: p is true iff ¢ has a proof).

With this in mind, we can define knowability, K, as follows

Definition K (p : Prop) : Prop := p. Meaning, K(p) = ‘p has a proof.’
This definition of K means = K(p) = ‘(p — L) has a proof” as shown in the lemma below.

Lemma not-Kp : Vp, (- K p)=(p — L).
Proof. firstorder. Trivially. Qed.

That p — L has a proof means that we have an algorithm which takes a proof of p and gives
a proof of L. So, = K(p) means there is an algorithm which takes a proof of p and gives a
proof of L.

It is important to note that = K(p) # ‘p has no proof’, because, as mentioned before, it is
possible for a formula to have no proof and also its negation to have no proof (e.g. = — ¢ —
q).

Martin-L6f’s Third Law can be formalised using these definitions, however issues arise as
discussed below. The Third Law states that “if a proposition cannot be known to be true
then it can be known to be false.” [5, p. 10]

29

Definition ML_Third_Law :=V¥ p, (=~ K p) — K (= p).

Lemma problem_with_ MLThirdLaw : ML_Third_Law =¥ p, (= p — — p).
Proof.

unfold ML_Third_Law.

unfold K.

reflexivity.

Qed.

The above lemma shows that the ML_Third_Law statement is in fact the same proposition
asV p, (= p — — p) (not merely equivalent to it). When the definition of K is unpacked the
statement of the theorem becomes exactly ¥V p, (= p — — p). This shows that the meaning
of the ML_Third_Law in this formalisation is that if there exists a proof for = p then there
exists a proof for — p. This appears to be much weaker than the intended meaning: “if a
proposition cannot be known to be true then it can be known to be false.” |5, p. 10]

30

Chapter 5

Formalising the Martin-Lof theorem -
Formalisation in CS4-+Int

Here a potentially adequate formalisation of the Martin-Lof Theorem is explored, a formal-
isation in the axiom system of CS4 + intuitionistic logic.

CS4 is ‘Constructive S4’ discussed in Alechina et al (2001)[2]. Here we consider ¢ to mean
‘can be known’ or ‘is knowable’. Only one axiom of CS4 is required in the proof of the
Martin-Lof Theorem. The axiom required is A — ¢ A. Informally: if a formula is true then
it is knowable.

5.1 Axioms

5.1.1 From CS4
OT:A—0A

5.1.2 From intuitionistic logic

A1 from Introduction to Intuitionistic Logic [21, p. 18]:
(A=B)=((B=0C)=(4=0)))
Property 11 from Introduction to Intuitionistic Logic |21, p. 24]:
(A= B)= (- B=-4))
Modus Ponens:

if (A = B) and A are true, then B is true

31

5.2 Proof of Martin-Lof’s Third Law

The proof below is by Monica Marcus, (personal communication, October 10, 2017).

L=0p==p)=(-p=200Ep)==0p=0(—p))
2.p=00p

3.p=0p)=(=0p=-p)

4. 20O p=-p

5.(np=00p)==0p=0(~p)

6. - p=0(-p)

7.

“Op=>9(-p)

(A
(0 T CS4 axiom

1)

)

(property 11)
(Modus Ponens, 2, 3)
(Modus Ponens 4,1)
(0 T CS4 axiom)
(Modus Ponens 6,7)

This proves the formula = ¢ p = ¢ (= p) in CS4 plus a propositional intuitionistic axiom

systermn.

5.3 Coq definitions

The next sections form a Coq version of the above proof. The Coq proof assistant checks
that the definitions are used correctly and that the steps in the proof (tactics) are correct,

giving an even greater level of rigour.

First it is necessary to define propositional formulas, which can then be reasoned about.

5.3.1 Propositional atoms

Inductive Atoms :—
| a: Atoms
| S : Atoms — Atoms.

This definition of the type Atoms is a straightforward way to capture the notion of there

being infinitely many propositional atoms. Here a, S a, S (S a), ...

atoms.

5.3.2 Modal formula syntax

Inductive modal_formula =
| atom : Atoms — modal_formula
| and : modal_formula — modal_formula — modal_formula
| or : modal_formula — modal_formula — modal_formula
| implies : modal_formula — modal_formula — modal_formula
| falsum : modal_formula
| box : modal_formula — modal_formula
| dia : modal_formula — modal_formula.

32

are all propositional

Here the syntax of a modal formula is defined. For example, or (atom a) (atom (S a)) is a
syntactically correct modal formula. As is implies (dia (atom (S a))) (atom a).

5.3.3 Notation

Infix “A” := and (at level 79).

Infix “V” := or (at level 79).

Infix “=" := implies (at level 99).
Notation “1” := falsum.

Notation “— A” := (A = L) (at level 74).
Notation “¢” :— dia.

Notation “[J7 := box.

Here notation is introduced so that formulas can be written more naturally. Now we can
write (atom a) V (atom (S a)) and also (O (atom (S a))) = (atom a).

5.3.4 Using Coq’s logic as a meta-language

In Coq, logical statements have the type Prop. So in order to use Coq’s logic as a meta-
language, a predicate of type modal_formula — Prop is needed. This is declared as a
Parameter (or Axiom) which essentially declares that there is a predicate in the Coq meta-
language that describes which modal_formulas are true. At this stage no modal_formulas
are considered true, it is only when the axioms below are added that certain modal_formulas
are considered true.

Parameter True : modal_formula — Prop.

5.3.5 Axioms in Coq

Here the same axioms as earlier are defined, however these axioms are now written in Coq.
There are other axioms that would be necessary for fully describing CS4 and intuitionistic
logic but these have been omitted for brevity and only the axioms relevant to the proof below
have been included.

These axioms declare what is provable in the Coq meta-language with respect to the predicate
True.

Axiom A1 : VA BC, True (((A= B)= (B= C)= (4= 0)))).
Axiom diaT : ¥V A, True (A = (¢ A)).

Axiom propertyl1_p24 : ¥ A B, True (((A= B)= (-~ B =-4))).
Axiom mp : V¥V {A} {B}, True (A = B) — (True A) — True B.

33

5.4 Proof of Martin-Lof’s Third Law

Martin-Lof’s Third Law states that "From the unknowability of the truth of a proposition,
its falsity may be inferred” |5, p. 12|. Using ¢ to represent ‘can be known’, we can formulate

the Third Law as ((= (O p))) = ((O (= p))). Below is a Coq proof of the Third Law
formulated in a way that mirrors the structure of Marcus’ proof from earlier in this chapter.

5.4.1 Proof mirroring the structure of Marcus’ proof

Lemma m!ThirdLaw-forwards_reasoning : ¥ p, True (((= (O p))) = ((O (= p)))).
Proof.
intro p.
pose proof (A1 (= (O p)) (=p) (O (=p))) as Linel.
pose proof (diaT p) as Line2.

pose proof (propertyl1_-p24 p (O p)) as Line3.

pose proof (mp Line8 Line2) as Line.

pose proof (mp Linel Linej) as Lineb.

pose proof (diaT (— p)) as Line6.

pose proof (mp Line5 Line6) as Line7.

exact Line7.

Qed.

At each line in the above proof, the output from Coq when stepped through interactively is
exactly each line from Marcus’ original proof. For instance after “pose proof (diaT p) as
Line2.” the output is “Line2 : True (p = ¢ p)”. The reasoning is also mirrored, with Line2
in Coq containing “diaT” where Marcus’ proof contained “{ T CS4 axiom” for example.

5.4.2 Alternate proof of Martin-Lo6f’s Third Law

Here an alternate version of the above proof is given. It uses a more typical Coq proof
structure, reasoning backwards from the goal rather than takings steps towards the goal.

Lemma m!ThirdLaw-backwards_reasoning : ¥ p, True (((= (O p))) = ((O (= p)))).
Proof.
intros.
apply @mp with (A:=(~p = O (= p))).
- apply @mp with (A:=(- (0 p)) = (= p)) -
+ apply Al.
+ apply @mp with (A:= (p = O p)).
X apply propertyll_p2j.
x apply diaT.
- apply diaT.
Qed.

34

5.5 Reasonableness of the axioms

The purpose of considering the statements and lemmas below is to test whether “can be
known” is an adequate interpretation for .

5.5.1 Considering the axioms themselves

Axiom diaT : V A, True (A = (¢ A)).

This axiom claims that for all propositions in CS4 and intuitionistic logic, if they are true
then they can be known. This seems reasonable, however at the same time it also seems
very close to saying there are no undecidable propositions (if everything that is true can be
known then surely nothing is unknowable). So perhaps the axiom is stating too much.

Axiom A1 : VA BC, True (((A= B)= ((B= C)= (A= (0)))).

This axiom appears to be similar to the cut elimination rule. It seems acceptable and
does not directly refer to (. It appears to be unlikely to cause any issues relating to the
interpretation of ¢ as “can be known”.

Axiom propertyll_p24 : ¥ A B, True (((A= B)= (-~ B =-4))).
This axiom, stating that an implication implies its contrapositive is unlikely to have any
impact on the reasonableness of treating ¢ as “can be known”.

Axiom mp : V {A} {B}, True (A = B) — (True A) — True B.
The axiom of Modus Ponens is very unlikely to affect the reasonableness of treating ¢ as
“can be known”.

So, the main axiom that requires consideration is diaT which states V A, True (A = (O A)).

5.5.2 Considering some lemmas

The goal of considering these lemmas is to test the reasonableness of treating { as “can be
known”. The focus will be on the diaT axiom which was identified above as the axiom which
is likely to require the most consideration.

Lemma Lemma-one : ¥ A, True (((O (O (O A)))) = (O (O (O (0 A4))))).
Proof. intro. apply diaT. Qed.

This lemma states that for all propositions, if it can be known that it can be known that it
can be known then it can be known that it can be known that it can be known that it can
be known. More generally, it should be provable that for any length of n “can be known”
repeats one further repeat would also be true. This seems reasonable, although the case A
= { A still may be stating too much. For this lemma however, treating ¢ as “can be known”
seems to be fine.

Lemma Lemma-two : ¥V A, True (= A= (= A)).
Proof. intro. apply diaT. Qed.

35

This lemma states that for all propositions, if their negation is true then the negation can
be known. This seems to fit well with the interpretation of ¢ as “can be known”. However
it may be stating too much. — A being true is essentially the definition of A being false and
so this lemma states that if any statement is false then it is knowable that it is false. This
seems to indicate that the axiom dia1' is too strong.

5.6 Extending to Martin-Lo6f’s Theorem

In order to prove Martin-Lof’s Theorem, two additional axioms are required. They are
similar to Fact 2 and Fact 4 from Martin-Lof’s argument as discussed in chapter 2 and in
the Logicomp 301 slides [6].

Fact 2 states: "If A can be known to be true and B can be known to be true, then AN B
can be known to be true.” It turns out that slightly altered versions of Fact 2 and Fact 4 are
required. The axioms needed are more basic. Informally, for Fact 2 we instead have "If A is
true and B is true, then AN\ B is true.”.

Axiom fact_2 : ¥ A B, (True A A\ True B) <> True (A N B).

Fact 4 states: "One and the same proposition A cannot both be known to be true and be
known to be false.". Instead we have “For any proposition A, it is not the case that A N\ (=
A) is true.”.

Axiom fact_4 : ¥V A, = (True (A A (= A))).

Note here that the outermost — is in the Coq meta-language and captures the meaning of
“cannot” in Fact 4, whereas the innermost — is part of a modal_formula and captures the
meaning of “to be false”.

Both Fact 2 and Fact 4 are now axioms added to Coq (as fact_2 and fact_4). They are needed
in the proof of Martin-Lof’s Theorem, mi_theorem_backwards_reasoning / forwards_reasoning,
below.

Fact 1 is Martin-Lo6f’s Third Law which states: "From the unknowability of the truth of a
proposition, its falsity may be inferred”. This has been proven earlier.

Definition fact_1 := mlThirdLaw_forwards_reasoning.

Here is a Coq-style proof of Martin-Lof’s Theorem which states "There is no proposition
which can neither be known to be true nor be known to be false, i.e. there is no absolutely
unprovable proposition.”

Theorem ml_theorem_backwards_reasoning : ¥ A, = True ((= (O A) A (= (O (= 4))))).
Proof.

intro.

unfold not.

intro.

apply fact_2 in H. destruct H.

apply (fact-4 (O (= 4))).

apply fact_2.

36

exact ((conj (mp (mlThirdLaw_forwards_reasoning A) H) HO)).
Qed.

Axioms used in the above proof:

propertyl1_p24 : ¥ A B : modal_formula, True (A = B) = (- B = = A))
mp : ¥V A B : modal_formula, True (A = B) — True A — True B

fact_4 ¥ A : modal_formula, = True (A N = A)

fact_2 : ¥ A B : modal_formula, True A N\ True B <> True (A A B)

diaT : ¥V A : modal_formula, True (A = { A)

True : modal_formula — Prop

Al : Y A B C : modal_formula, True (A= B) = ((B = C) = (A = ()))

Here is another proof of the Martin-Lof Theorem which has a more similar structure to the
informal proof given in the Logicomp 301 slides [6].

Lemma ml_theorem_forwards_reasoning : ¥ A, = True ((= (O A) A (= (O (= 4))))).
Proof.
intro.

“If A is a proposition which cannot be known to be true, then by Fact 1, A can be known to
be false, ...”

assert (True (= (O A) = (O (= A)))). apply fact_1.
unfold not. intro. apply fact_2 in H(. destruct H(. apply (mp H) in HO.

“

.. a contradiction.”

pose proof (fact-2 (O (= A4)) (= (0 (= 4)))).
pose proof (conj HO H1). apply H2 in H3.
apply fact_4 in HS.

contradiction.

Qed.

The two proofs above prove the Martin-L6f theorem in this system, CS4 + intuitionistic
propositional logic + fact_2 + fact_j. It should be possible to derive fact_2 and fact_4
from intuitionistic logic, this could be verified in the future.

37

Chapter 6

Formalising the Martin-Lof Theorem -
Formalisation of Intuitionistic Logic

6.1 Motivation and background

The Martin-Lof theorem involves intuitionistic logic and so a technique for formalising the
theorem could be to formalise an embedding of intuitionistic logic in Coq and then use Coq as
a meta-language to prove results about intuitionistic logic. This technique is explored in this
chapter. The Third Law and the Martin-L6f Theorem are both proved in this formalisation.
This technique has some similarities to the bi-modal logic embedding in Coq in that an
embedding of a logic is defined with Coq as the meta-language.

6.2 Defining an embedding of intuitionistic logic

6.2.1 Atoms

Here we define a countably infinite set of atoms.

Inductive Atoms :—
| a: Atoms
| §: Atoms — Atoms.

Parameter AtomValuation : Atoms — bool. Here we assume a valuation for the atoms
exists.

6.2.2 Propositions

Here we define the syntax of a proposition.

Inductive proposition :—
| Atom : Atoms — proposition
| Implies : proposition — proposition — proposition

38

| Or : proposition — proposition — proposition

| And : proposition — proposition — proposition

| L : proposition

| Not : proposition — proposition

| K : proposition — proposition. “K” for representing ‘can be known’ or ‘knowable’ is
included here.
No notations have yet been defined so each proposition must be written in prefix notation,
for example Implies (S S a) (And a (S a)) rather than (5 S a) — (a A (S a)).

6.2.3 Proofs

Next we define what constitutes a proof of a proposition.

Due to complications discussed below, the rules for what constitutes a proof of an implication
must be defined in a roundabout manner. First, we assume the existence of a predicate in
the Coq meta-language of arity 2 named Implication_Is_True. An axiom will be added later
to define the meaning of Implication_Is_ True.

Parameter Implication_Is_True : proposition — proposition — Prop.

Now we define what constitutes a proof of a proposition. By using an inductively defined
proposition, the notion that these rules are the only possible ways to obtain a proof is
captured.

Inductive Proof : proposition — Prop :=
| atom_ev : Y (A:Atoms), AtomValuation A = true — Proof (Atom A)
| and_ev : Y (p q : proposition), Proof p — Proof ¢ — (Proof (And p q))
| orl_ev : Y (p q : proposition), Proof p — (Proof (Or p q))
| orr_ev : ¥ (p q : proposition), Proof ¢ — (Proof (Or p q))
| not_ev : ¥ (p : proposition), Proof (Implies p 1) — (Proof (Not p))
| K_ev : Y (p : proposition), Proof p — (Proof (K p))
| implies_ev : Y (p q : proposition), Implication_Is_True p ¢ — (Proof (Implies p q)).

Axiom implies_ev’ : ¥ p q, Implication_Is_True p q <> (3 (f: Proof p — Proof q), True).
Here we declare that a proposition of the form Implies a b has a proof iff there exists a
function which takes a proof of a to a proof of b. This defines the meaning of Implica-
tion_Is_True.

The rule for Implies is added as an extra axiom because Coq gives the error “Non strictly
positive occurrence ...” when trying to add it to the above definition of Proof. Further
work is needed to ensure that adding this axiom (implies_ev’) and the Implication_Is_True
predicate as done here does not give rise to a contradiction or other unintended consequences.

39

In a similar way to the bi-modal logic embedding, the definitions required to embed intu-
itionistic logic are now all defined. Only notation, lemmas and theorems are defined below
and these do not alter what propositions are expressible and provable in this embedding of
intuitionistic logic in Coq.

6.2.4 Notation

Infix “A” := And (at level 79).

Infix “v” := Or (at level 79).

Infix “=" := Implies (at level 99).
Notation “1” := Falsum.

Notation “— A” := (A = L) (at level 74).

6.2.5 Lemmas

With an embedding of intuitionistic logic now defined, we can prove some relevant results.

Lemma falsum_unprovable : — (Proof L).

Proof.

unfold not.

intros.

inversion H. In our inductive definition for Proof we did not include a case where 1 was
provable. As a result we can use the tactic inversion to obtain a contradiction from a
hypothetical Coq proof of Proof L.

Qed.

Using similar methods we can prove that we cannot have a proof of a proposition and its
negation.

Lemma non_contradiction : ¥V A, = (Proof A A Proof (Not A)).
Proof.

unfold nof.

intros.

destruct H.

inversion HO.

inversion H2.

apply implies_ev’ in H/.

destruct H4.

apply falsum_unprovable.

apply .

40

apply H.
Qed.

Here Fact 2 from Cristian Calude’s explanation of the Martin-Lof Theorem in chapter 2 is
proven. Fact 2 states that “If A can be known to be true and B can be known to be true,
then A A B can be known to be true.” [0]

Lemma fact_2 : V A B, Proof (K A) A Proof (K B) — Proof (K (A A B)).
Proof.

intros.

destruct H.

apply K_ev.

apply and_ev.

inversion H. exact H2.

inversion H(. exact H2.

Qed.

It will also be useful to prove the similar statement fact_2’ which states that for all propo-
sitions A and B, there is a proof for A and a proof for B if and only if there is a proof for
(A N B).
Lemma fact_2’ : V A B, Proof (A) A Proof (B) <> Proof ((A A B)).
Proof.
intros.
split.
- intro.
destruct H.
apply and_ev.
exact H.
exact HO.
- intro.
inversion H.
split.
exact H2.
exact HS3.
Qed.

Here is a proof of Fact 3, which states that “The proposition L cannot to be known to be
true.” [6]

Lemma fact_3 : — Proof (K 1).

Proof.

unfold not. intros.

inversion H.

inversion HI.
Qed.

Here Fact 4 is proven. It states “One and the same proposition A cannot both be known to

41

be true and be known to be false.” [0]

Lemma fact_4 : V A, = ((Proof (K A)) A Proof (K (— A))).
Proof.

intro.

unfold not.

intro.

destruct M.

inversion H. clear HI1. clear p.
inversion H(. clear HI1. clear p.
apply not_ev in H3.

apply (non_contradiction A).
split. exact H2. exact H3.

Qed.

6.3 Proof of Martin-Lof’s Third Law

Lemma ml3rdLaw : ¥ p, Proof (Not (K p)) — Proof (K (Implies p 1)) .
Proof.

intro p.

intros.

apply K_ev. apply implies_ev. apply implies_ev’.
inversion H. inversion HI. apply implies_ev’ in H3.
destruct HS3.

assert(Proof p — Proof (K p)).

intros. apply K_ev in H). exact H).

assert(Proof p — Proof 1).

intros.

apply z.

apply H5.

exact H6.

3 H6.

apply L

Qed.

6.4 Proof of the Martin-Lof Theorem

We can now prove the Martin-L6f Theorem which states, in one rendering, that “it is impossi-
ble to find a counterexample to the law of the excluded middle in its positive formulation” [,
p. 14]. Here this is rendered as ‘for all propositions, it is not the case that it is provable that
the proposition both cannot be known to be true and cannot be known to be false’.

Theorem MLTheorem : ¥ A, = Proof ((= (K A) A (= (K (= 4))))).

42

Proof.
intro.
unfold nof.
intro.
apply fact_2’ in H. destruct H.
apply (non_contradiction (K (= A))).
split.
- apply miSrdLaw.
apply not_ev.
exact H.
- apply not_ewv.
exact HO.
Qed.

6.5 Comments on this formalisation

A key advantage of this formalisation is that it does not rely on axioms other than those
fundamental to intuitionistic logic. The only two non-standard axioms are found in the
definition of what constitutes a proof in the system.

K_ew is essentially an axiom which states that

Y(p : proposition),Proofp — (Proof(Kp)).

This potentially does not capture the notion of knowability properly. It is part of an induc-
tive definition, so implicit in the axiom is that the only way one can show that a proposition
is knowable is by exhibiting a Coq proof for Proof p. It may be that there are other ways
of knowing that are not captured by this axiom. For instance we may be able to know by
analysing the axioms of intuitionistic logic that double negation elimination, = = ¢ — ¢, is
not knowable, yet we would not be able to prove Proof = (K (= (= ¢) — q)).

The second non-standard axiom is that the only way to show that Proof (A = B) is true
is to show that (3 (f: Proof p — Proof ¢), True). This can be simplified to Proof p
— Proof ¢. A possible concern with this axiom is it allows Proof (A = B) to be proven
whenever the implication Proof p — Proof ¢ is true rather than when there is indeed a
function that takes a proof of p and returns a proof of g. This means that alterations to the
meta-language logic could sometimes filter down into the embedding of intuitionistic logic,
potentially causing issues.

Overall however, this formalisation does a good job at capturing certain elements from
Martin-Lo6f’s proof and is useful for gaining a deeper understanding of the Martin-L6f The-
orem.

43

Chapter 7

Open Questions

7.1 Double negation elimination and the Martin-L6f The-
orem

In chapter 4, double negation elimination was considered with regards to the completeness
theorems. (— — ¢ — ¢) also has interesting considerations in relation to the Martin-Lof
Theorem.

For instance, Martin-Lof claims that “it is impossible to find a counterexample to the law of
the excluded middle in its positive formulation” [, p. 14]. If we consider

(m=g¢— @)V (=(=—g— q))

we would think this must not be true, since neither disjunct is provable intuitionistically.
However this would then count as “a counterexample to the law of the excluded middle in
its positive formulation”.

What then resolves this? A possible answer is that the reasoning used to justify that neither
disjunct is provable intuitionistically is not itself intuitionistic reasoning. That is, analysing
the axioms of intuitionistic logic to conclude that (= = ¢ — ¢) is not intuitionistically
provable does not give us a canonical proof of L from (= = ¢ — ¢). This means that
although we know neither disjunct is provable we do not know this intuitionistically and
thus we do not have “a counterexample to the law of the excluded middle in its positive
formulation” after all.

Nevertheless, this example does show that care needs to be taken when interpreting the
implications of the Martin-L6f Theorem.

7.2 Simplifying the axioms in the CS4 + Int formalisa-
tion

In the proof of Martin-Lof’s Theorem in chapter 5, both Fact 2 and Fact 4 are added as
axioms. It may be possible however to derive these facts from more fundamental rules for

44

intuitionistic logic, in a similar way to how this is done in the intuitionistic logic formalisation
in chapter 6.

The advantage of this would be that the trustworthiness of the proof of the Martin-Lof
Theorem would rest upon the fundamental rules rather than the correctness of Fact 2 and
Fact 4. However both Fact 2 and Fact 4 (shown below) are fairly primitive axioms so this is
not too great a concern.

Axiom fact_2 : ¥V A B, (True A N\ True B) <> True (A A B).
Axiom fact_4 : ¥V A, = (True (A A (= A))).

7.3 Implications of the ‘Non-strictly positive occurrence’
error in the intuitionistic logic formalisation

In the definition of what constitutes a proof in the intuitionistic logic embedding in chapter
6 the most natural definition for the proof rule for implication results in the Coq error ‘Non
strictly positive occurrence of “Proof” in “¥ p ¢ : proposition, (Proof p — Proof ¢) — Proof
(Implies p q)” ’. A shorter example of a definition that gives the same error is shown below.
From further reading [22, 23| it does unfortunately seem that that circumventing the error
as done in the intuitionistic logic formalisation is very likely to enable 1 to be provable.
Further work would be needed to ensure this is the case and to check whether a slightly
altered definition for implies_ev might be able to avoid the issue. Also, the proofs in the
chapter (as far as I am aware) do not make use of the flaw that is introduced and so it is
possible that the reasoning in the chapter is still useful.

Inductive Proof : proposition — Prop :=
| implies_ev : Y (p q : proposition), (Proof p — Proof ¢) — (Proof (Implies p q)).

45

Bibliography

[1] P. Martin-Lof, “Verificationism then and now,” in The Foundational Debate, pp. 187
196, Springer, 1995.

[2] N. Alechina, M. Mendler, V. De Paiva, and E. Ritter, “Categorical and Kripke semantics
for constructive S4 modal logic,” in International Workshop on Computer Science Logic,
pp.- 292-307, Springer, 2001.

[3] “The Coq proof assistant.” https://coq.inria.fr/

[4] H. Herbelin, F. Kirchner, B. Monate, and J. Narboux, “Coq version 8.0 for the clueless.”
http://flint.cs.yale.edu/cs428 /coq/doc/faq.html#htoc?

[5] P. Martin-Lo6f, “Verificationism then and now,” in Judgement and the Epistemic Foun-
dation of Logic, pp. 3-14, Springer, 2013.

[6] C. S. Calude, “Logicomp 301 slides.”
http: //www.cs.auckland.ac.nz/ " cristian /301/301 _beamer.pdf

[7] H. Wang, From mathematics to philosophy. International library of philosophy and
scientific method, London, New York: Routledge & Kegan Paul; Humanities Press,
1974.

[8] K. Godel, “Collected works, vol. II,” New York: Ozford UP, 1990.

[9] K. Godel, “Some basic theorems on the foundations of mathematics and their implica-
tions,” Collected Words, pp. 304-323, 1995.

[10] A. Urquhart, “Emil post.,” Logic from Russell to Church, vol. 5, pp. 617-666, 2009.

[11] E. L. Post, “Formal reductions of the general combinatorial decision problem,” American
journal of mathematics, vol. 65, no. 2, pp. 197-215, 1943.

[12] S. Feferman, “Are there absolutely unsolvable problems? — Godel’s dichotomy,”
Philosophia Mathematica, vol. 14, no. 2, pp. 134-152, 2006.

[13] C. Benzmiiller and B. W. Paleo, “Interacting with modal logics in the Coq proof assis-
tant,” in International Computer Science Symposium in Russia, pp. 398411, Springer,
2015.

46

https://coq.inria.fr/
http://flint.cs.yale.edu/cs428/coq/doc/faq.html#htoc7
http://www.cs.auckland.ac.nz/~cristian/301/301_beamer.pdf

[14] M. Fitting and R. L. Mendelsohn, First-order modal logic, vol. 277. Springer Science &
Business Media, 2012.

[15] D. Thompson, “Natural deduction planner.”
https:/ /sourceforge.net /projects/proofassistant /

[16] J. Moschovakis, “Intuitionistic logic,” in The Stanford Encyclopedia of Philosophy (E. N.
Zalta, ed.), Metaphysics Research Lab, Stanford University, spring 2015 ed., 2015.

[17] “Godel’s completeness theorem - Wikipedia.” https://goo.gl/edJgsW
[18] M. L. Schagrin and H. Wang, “Metalogic.” https://goo.gl/nfalux, Jan 2011.
[19] D. Van Dalen, Logic and structure. Springer, 2004.

[20] S. Shapiro, “Classical logic,” in The Stanford Encyclopedia of Philosophy (E. N. Zalta,
ed.), Metaphysics Research Lab, Stanford University, winter 2017 ed., 2017.

[21] S. B. University, “Introduction to intuitionistic logic.”
http://www3.cs.stonybrook.edu/~pfodor/courses/CSE371 /slides10/10slides.pdf

[22] V. Sjoberg, “Why must inductive types be strictly positive?.”
http://vilhelms.github.io /posts/why-must-inductive-types-be-strictly-positive /

[23] J. Gross, “Would it be inconsistent to relax Coq’s strict positivity checker to not look at
type indices of the inductive type being defined?.” https://goo.gl/Bt3Uwl., Jan 2018.

47

https://sourceforge.net/projects/proofassistant/
https://en.wikipedia.org/wiki/G%C3%B6del%27s_completeness_theorem#G%C3%B6del%27s_original_formulation
https://www.britannica.com/topic/metalogic/Discoveries-about-formal-mathematical-systems#ref65872
http://www3.cs.stonybrook.edu/~pfodor/courses/CSE371/slides10/10slides.pdf
http://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/
https://stackoverflow.com/questions/48191057/would-it-be-inconsistent-to-relax-coqs-strict-positivity-checker-to-not-look-at/48193206

