GGG

CDMTCS
Research
Report
Series

Formulating Graph Covering
Problems for Adiabatic
Quantum Computers

Michael J. Dinneen
Richard Hua

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-495
February 2016 (Updated October 2016)

Centre for Discrete Mathematics and
Theoretical Computer Science

Formulating Graph Covering Problems for
Adiabatic Quantum Computers

MicHAEL J. DINNEEN and RICHARD HuaA

Department of Computer Science, University of Auckland,
Auckland, New Zealand

mjd@cs.auckland.ac.nz rwan0740@aucklanduni.ac.nz

Abstract

We provide efficient quadratic unconstrained binary optimization (QUBO) formu-
lations for the Dominating Set and Edge Cover combinatorial problems suitable for
adiabatic quantum computers, which are viewed as a real-world enhanced model of
simulated annealing (e.g. a type of genetic algorithm with quantum tunneling). The
number of qubits (dimension of QUBO matrices) required to solve these set cover prob-
lems are O(n+nlgn) and O(m+nlgn) respectively, where n is the number of vertices
and m is the number of edges. We also extend our formulations for the Minimum
Vertex-Weighted Dominating Set problem and Minimum Edge-Weighted Edge Cover
problem. Experimental results for the Dominating Set and Edge Cover problems using
a D-Wave Systems quantum computer with 1098 active qubit-coupled processors are
also provided for a selection of known common graphs.

1 Introduction

Adiabatic quantum computing is based on the process of evolving a ground state of a Hamil-
tonian representing a problem to a minimum-energy solution state [12, 11]. It has been
shown to be equivalent to the more traditional quantum “circuit model” [2]. Other intro-
ductory details about the application of adiabatic quantum computing may be found in
20, 5]. The current family of D-Wave computers can solve problems formulated in either
Ising form or Quadratic Unconstrained Binary Optimization (QUBO) form, defined later.
There is a simple translation between the variable spin values -1/+1 of the Ising (physics)
model and the binary values 0/1 of QUBO (logic) model (see [7]). The focus of this paper is
to use the mathematical QUBO formulation to solve hard combinatorial problems and not
to be overly concerned about the actual physics theory required for actual computation. The
paper by Lucas [18] provides a good foundation of Ising/QUBO formulations of many hard
combinatorial problems. Some of these initial formulations have recently be improved by
several authors, including us, motivated by the limitations on the number of actual available
qubits in existing machines.

mailto:mjd@cs.auckland.ac.nz?subject=CDMTCS-495_paper
mailto:rwan074@aucklanduni.ac.nz?subject=CDMTCS-495_paper

We study two main optimization problems in this paper. One is NP-hard and the other
is polynomial-time solvable, but our QUBO formulations are very similar in complexity
(e.g. the two problems require O(n+nlgn) and O(m +nlgn) qubits respectively for graphs
of order n and size m). Given a graph G = (V, E), a dominating set D of G is a subset of
V', such that for every vertex v € V, either v € D or w € D, where w is a neighbor of v. An
edge cover C of G is a subset of F, such that for every vertex v € V', v is incident to at least
one edge in C'. The two problems defined below involve finding the smallest such D and C,
that is, a dominating set with the minimum number of vertices and an edge cover with the
minimum number of edges. For convenience, we assume all graphs are connected and have
at least one edge.

Dominating Set Problem:

Instance: A graph G = (V, E).
Question: What is the smallest subset D of V' such that
D is a dominating set of G7

Edge Cover Problem:

Instance: A graph G = (V| E).
Question: What is the smallest subset C' of F such that C' is an edge cover of G?7

The decision version of the Dominating Set problem was one of the original classic prob-
lems included by Garey and Johnson [14]. It is also one of the harder NP-complete problems
being classified as W[2]-hard when considering parameterized complexity [3]. An extensive
history on this problem may be found in [16]. Contrastly, solving the Edge Cover problem
for graphs (without isolated vertices) is easily achievable in polynomial time. This is done by
observing that the smallest edge cover is equal to the order of the graph minus its maximum
matching size [19].

The paper is organized as follows. In Section 2, we present efficient QUBO formulations,
along with proofs of correctness, of the Dominating Set and Edge Cover problems. Then in
Section 3, we address the weighted version of the combinatorial problems. Finally, in Sec-
tion 4 we present our experimental results and some discussion about using actual quantum
annealing hardware.

2 QUBO Formulation

QUBO is an NP-hard mathematical optimization problem of minimizing a quadratic objec-
tive function z* = x7Qx, where x = (29, 21,...,Z,_1) is a n-vector of binary (Boolean)
variables and () is an upper-triangular n x n matrix. Formally, QUBO problems are of the
form:

P mganiQ(ivj)xj, where z; € {0,1}.

1<j

2.1 Dominating Set

We provide a simple QUBO formulation of the Dominating Set problem. The best known
exact algorithm to solve the Dominating Set problem has time complexity O(2°¢10") [13].
Given a graph G = (V, E) with n vertices, let V = {vg,v1,...,v,-1}, A(v) denote the degree
of the vertex v and N(v) denotes the set of neighbors of vertex v. This formulation requires
n+ 3, cy([log(A(v;))] + 1) binary variables, that is, for every vertex v; in GG, we need one
variable z; to represent v; as well as [lg(A(v;))] + 1 redundant binary variables for each
vertex. For the sake of readability, we will label these redundant variables as y;x, where
0 <k < [log(A(v;))]. Thus we have a vector x = (Zo, Z1,. ., Tn-1, Y0,05 - - - » Yn—1, la(A(wn))])
of named variables.

The objective function to be minimized is of the form:

Fix)=Y 2, +AY P,

v; EV v, €V

where)

[lg(A(z4))]
25y, 1 (1)

P, = 1—<xz~+ Z :Ej>+ Z

v; €N (v;) k=0

To obtain a solution of the Dominating Set problem, an additional ‘decoder’ function
D(x) : ZX' — 2" is required where 2V is the power set of V. We take D(x) = {v; | z; = 1},
a subset of V' as the dominating set. In the objective function, A > 1 is a positive real
constant, the term ZviEV x; represents a penalty for the size of the chosen set, and P;
serves as a penalty if a non-dominating set is chosen. If the assignment of the variables
is a dominating set, then for each vertex v; in G, we have x; + Zvj eNwn T = 1. And

therefore 1 — (z; + X, cn(y,) ¥j) < 0. Finally, we use the term Z,EE%A(I”))J 2y, & to counter
balance the penalty if more than one vertex in the set v; U N(v;) is chosen (as it does not
violate the definition of a dominating set and should not be penalized). In the worst case,
1=(i+ 32, en(o) ¥i) = —A(vi) where v; and all of its neighbors are chosen, so a total number
of (|lg(A(v;))] + 1) redundant variables are needed to represent integers up to A(v;). Hence
the total number of binary variables of this formulation is O(n + nlgn) in the worst case.

Theorem 1. The objective function (1) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set into a
dominating set with a smaller value in the objective function.

Suppose we have * = miny, F'(x) and D(x*) is not a dominating set where x* corresponds
to a variable assignment yielding z*. Then there must exist some vertices such that these
vertices themselves nor any of their neighbors are present in D(x*). Then the corresponding
penalty P; for each of these vertices will be 1. Therefore, if we set the corresponding z; of
these vertices to 1, then for each one of them, a penalty of size 1 will be added to the term
> v,ev Ti While the corresponding P; will be reduced to 0 and so F(x*) will be reduced by
at least A — 1. Hence the solution from z* = min, F'(x) will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces a smaller
dominating set will have a smallest value in the objective function. This is trivial as if D(x)
is a dominating set, then each P; will have to be 0, so the value of the objective function
solely depends on the size of D(x). O

2.2 Dominating Set ()3 example

In this subsection, we will provide an example of the QUBO formulation (1) on 3. Formally,
The hypercube @3 is defined as follows. The vertices of Q3 are V = {0, 1,...,7} and the edges

are £ = {{0,1},{0,2},{0,4},{1,3},{1,5},{2,3},{2,6},{3,7},{4,5},{4,6},{5,7},{6,7}}.
It can be visualized as a 3-dimensional cube where the each corner of the cube is a vertex.
Now, by expanding the bracket in objective function (1), we get

i))] Lg(A(z:))]

[lg(A
Zmi—l—AZ 1—x; — Z xj + Z 2yzk Ti+aita; Z Tj—T; Z 2kyi7k

vieV v €V v; EN(v;) v;EN(v;) k=0
[lg(A(z:))]
Z rj+x; Z x; + (xj) Z Z; Z yi,k
v; €N (v;) v; €N (v;) N(v;) v; €N (v;)
lg(A(z:))] Ug(A(z:))] lg(A(z:))] Ug(A(z:))] 2
+ Y Py—a > y— > @ 25y + (> 2kyi,k) (2)
k=0 k=0 v; €N (v;) k= k=0

Technically, the objective function of a QUBO problem can only contain quadratic terms,
so a few terms in (1) have to be modified. Firstly, any constant terms can be ignored.
Removing a constant does not have any impact over the optimal solutions of the QUBO
problem. As removing this constant (e.g. nA) will reduce the value of the objective function
by a fixed amount across all different assignments of all the binary variables, therefore even
though the value of the objective function will decrease, the assignment of variable will
remain the same regardless. Secondly, all linear terms will be converted into quadratic
terms, that is, we will replace all x; and y;; by x? and yg . respectively. Since all variables
are binary, we have z; = 7 and y;, = 37, for z;,y;x € {0,1} so it will not affect the value
of the objective function.

After applying the two steps described in the paragraph above and summing up similar
terms, we get

v, €V v, €V

lg(A(z:))]

—2x; Z Qkyi,k—i—(

quadratic term from the objective function.

variables

k=0

2. @

v; €N (v;

v; €N (v;)

llg(A

A ap+AY (=2 > a2 Yo 2 42w Y

v; €N (v;)

[1s(
yi,k + <

(z:))]

k=0

[g(A(zi))]

—22%2

v;€N(v

Table 1: Dominating Set QUBO matrix for Q)3

Az;))]

2

k=0

2
2kyi,k)

(3)

Now, we can finally obtain a valid matrix representation of the objective function. Let A = 2,
the matrix representation of the quadratic objective function (3) for @3 is shown in Table 1.
The entries (); ; where ¢+ < j in the matrix is computed by extracting the coefficient of each

Lo L1 T2 T3 Tg Ty Te L7 Yo,0 Yo,1 Y1,0 Y1,1 Y20 Y2,1 Y3.0 Y3,1 Y4,0 Y41 Y50 Ys5,1 Y6,0 Y6,1 Y70 Y7.1

Zo
Tl
X2
xs3
T4
Ts
Te
X7
Y0,0
Yo,1
Y10
Y11
Y2.0
Y21
Y3,0
Y31
Ya,0
Ya1
Ys,0
Ys,1
Y6,0
Y6,1
Y7.0
Y71

After solving for 2* = miny F'(x), we obtain four optimal solutions.

-7 8 8 8 8 8
-7 8 8 8 8
-7 8 8 0
-7 0 8
-7 8
7

=[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]

x» = [0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
x5 = [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

~J 00 G0 GO 0o O OO

=~y 00 00 CO 0O 0O 0O O©

-4
-4

0
-4

Dooo

-8
-8
-8
0
-8
0
0
0
8
16

-4
0
-4
0
-4

SDoocoO

-8
-8
0
-8
0
-8

DwooOoO

0
-4
-4

0

DO OCDCOCDOO RO

-8

0
-8
-8

1
DO ODDODDODDODWDO O

-

OO ODODODODOROOO

0
4
4
4

0
-8
-8
-8

DV ODODDODDODODDODWODOO

-

-4

Lo
OO0k OoOO

-8

0
0
0

-8
-8

-

1
S O

(=2l NN NN NN

0
-4
0
0
-4
-4

o

1
DO DODODDODDODODODODODOO

0
-8
0
0
-8
-8

1
S oo O

DV DODODODDODODODODODODOO

-

0
0
-4
0
-4
0
-4
-4

[~ NeoNoNeNoNoNoNoloNoNoNoNo)

0
0
-8
0
-8
0
-8
-8

DV ODODDODDODDODDODDODDODODODODODOO

-

0

DO OO0k kOO O

0
0
-8
0
-8
-8

1
(0]

DV ODODDODDODDDODDODDODDODDODDODODODO O

[

and
x4 = [0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]

And we have D(x;) = {0,7}, D(x2) = {1,6}, D(x3) = {2,5} and D(x4) = {3,4}. It can be
verified quite easily that these four solutions (pairs of vertices of distance 3) are all minimum
dominating sets of ()3 with the same size.

2.3 Edge Cover

The QUBO formulation of the Edge Cover problem here is quite similar to the Dominating
Set problem given in the previous subsection. The Edge Cover problem can be solved in
polynomial time by exploiting the relationship between an Edge Cover and a Maximum
Matching [10, 19]. Recall a matching in a graph is a set of edges that are not incident to
each other.

Proposition 2. The order of a graph G is equal to the size of its mazimum matching plus
the size of its minimum edge cover.

Given a graph G = (V| E) with n vertices and m edges, let V = {vg,v1,...,v,_1} and
E = {e;j | v; € N(v;)}. Since digraphs are not considered here, we will take e;; and e;;
as the same element and only one of them will appear in E for each edge in the graph.
We will use A(v) to denote the degree of the vertex v and I(v) to denote the set of edges
incident to v. This formulation requires one binary variable z; ; for each e; ; € E, as well as
[lg(A(v;) — 1)] 4+ 1 redundant binary variables for each v; € V.

The objective function to be minimized is of the form:

F(x) = Z xi’j+AZPz’

e ;€E v, €V

where
Ug(A(xi)—1)]

P=(1- > @+ Y 2y (4)
ei,jel(vi) k=0
The ‘decoder’ function we use this time is C(x) : ZX — 27 where 2 is the power set
of E and we take C'(x) = {e;; | z;; = 1} as the edge cover of G. Again, choosing A > 1 is
sufficient for this formulation to be correct.

The structure and purpose of each term in the objective function is almost identical to
the Dominating Set problem. One thing to note is that the number of redundant variables
required for each vertex is slightly smaller in some cases. As1=3"_ ;) @i < —(A(v;) —1),
only [1g(A(v;) —1)| +1 redundant variables are needed to counter balance in case more than
one edge incident to a vertex v; is chosen as the edge cover when A(v;) > 1. If A(v;) = 1,
then no redundant variables are needed at all as the only edge incident to v; must be chosen
in the edge cover set. In all cases, 1 — Zei’jel(i) x;; has to be 0. The argument for the
correctness of this formulation is quite similar to the proof in the previous subsection.

Theorem 3. The objective function (4) is correct.

Proof. First, we show that a solution from z* = miny F'(x) will always be an edge cover.
Suppose we have * = min, F'(x) with corresponding binary vector x* and C(x*) is not an
edge cover. Then there must exist a set of vertices {uy, ua, ..., u;} such that I(u;)NC(x*) =0
for all 1 <4 <[. That is, for each wu;, none of the edges incident to u; is in C'(x*). Hence,
for each u;,1 <1 <, the corresponding P; is 1. If we change the variable z; ; corresponding
to one of these edges to 1, then again, we reduce F'(x) by at least A — 1.

Now since C'(x*) where z* = miny F'(x) has to be an edge cover as shown in the previous
paragraph, it also has to be the smallest edge cover. When C(x) is an edge cover, each P; in
F(x) has to be 0 and therefore the value of F(x) is the size of C'(x). Hence by minimizing
F(x), we also minimize the size of the edge cover set C(x). O

2.4 Edge Cover S5 Example

Similar to the Dominating Set problem, we will provide an example of the actual encoding
of the objective function (4) to a QUBO matrix here. The Star graph S,, with n+ 1 vertices
is defined as follows. The vertices are V' = {0,1,2,...,n} and the edges are E = {{0,i} |
1 <i < n}. Once again, the objective function (4) can not be encoded straight away into
QUBO, and constant and linear terms have to be replaced just like in the Dominating Set
problem. Doing so will give us the expression

lg(Azi)-1))

Z I?’j—f—AZ —2 Z I?’j—f—Q Z 2kyz‘2,k+ Z T Z Xij

eiijE v, eV eiJEI(’Ui) k=0 ei,jel(vi) ei’jEI(vi)
lg(A(zi)-1)] lg(A(zi)—1)] 2
SIPIIETED DR TR G ol el T
€i,j EI(’Ui) k=0 k=0

The encoded QUBO matrix corresponding to objective function (5) is shown in Table 2.
The solution to the minimum Edge Cover problem is trivial for the family of star graphs,
since all vertices labeled from 1 to n are all of degree 1 and connected to vertex 0, any
edge cover in star graphs would have to consist of all the edges in the graph. By solving
¥ = miny Zi<j 7;Q(i,5)T;, we obtain an unique solution:

x=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1] and C(x) = E

which can be verified quite easily to be the only minimum edge cover for Si5. Note that the
only zero value in x corresponds to the variable g o, which allows for Py = (1—15+2+4+8)? =
0.

3 Weighted Problems

The formulations provided in the previous section can be modified quite easily to adapt to
weighted graphs. The definitions of the input and output of the Dominating Set and Edge
Cover problems are slightly different in weighted graphs. For the Weighted Dominating Set
problem, each vertex v; in the graph is assigned a real positive weight w; and the goal is to
find a dominating set that has a minimum sum of the weights. Likewise, in the Weighted
Edge Cover problem, each edge e; ; in G is associated with a real positive weight w; ; and
the goal is to find an edge cover that minimizes the sum of the weights of the edges in the
edge cover set. Formally, we have the following definitions.

The input to the Weighted Dominating Set problem consists of a graph G = (V, E)
as well as a weight function W : V' — R* that maps each vertex in G to some positive real
weights. The weighted sum function S : 2V — R* is defined as S(A4) = Y _, W(v). The
goal is to find a dominating set D such that S(D) has the minimum value over all possible
dominating sets.

Similarly, the Weighted Edge Cover problem takes G = (V, E) and W : E — R* as the
input. And this time the weighted sum function S : 2¥ — R* is defined over a subset of
E and S(A) = > .., W(e). Once again, the goal is to find an edge cover C' of G such that
S(C) has the minimum value over all possible edge covers.

In both problems above we restrict to positive weights since otherwise those non-positive
cases would always be added to a minimum solution and we could reduce to a strictly positive
subproblem.

3.1 Weighted Dominating Set

For the Weighted Dominating Set problem, the objective function F'(x) is almost identical
to the unweighted version. With w; = W (v;), we have

v, €V v; eV
where)
Ug(A(z:))]
'UJ'GN(UZ') k=0

Every term serves the same purpose here except that A has to be picked with the property
that A > max{w; | v; € V}. Finally, we take D(x) = {v; | 2; = 1} as the solution at the
end. The following proof of correctness of the above formulation is very similar to the proof
of the unweighted version as well.

Theorem 4. The QUBO formulation in (6) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set into
a dominating set with a smaller value in the objective function. Suppose we have x* =

8

miny F'(x) with corresponding binary vector x* and D(x*) is not a dominating set. If this is
case, then there must exist some vertices such that these vertices themselves nor any of their
neighbors are present in D(x*). Then the corresponding penalty P; for each of these vertices
will be 1. Therefore, if we set the corresponding x; of these vertices to 1, then for each one
of them, a penalty of size w; will be added to the term Zvi ¢y Z; while the corresponding F;
will be reduced to 0 and so F(x*) will be reduced by A —w; > 0 by choice of A. Hence the
solution from x* = miny F'(x) will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces a smaller
dominating set will have a smaller value in the objective function. It is trivial as if D(x) is
a dominating set, then each P; will have to be 0, so the value of the objective function solely
depend on the weights of vertices chosen to be in the dominating set. O]

3.2 Weighted S; Example

Let us use the star graph again to demonstrate the difference for Weighted Dominating Set
problem. The weight function W is defined as follows:

W) = {5, if v =0

1, otherwise

Table 2: Edge Cover QUBO matrix for S5

variables|xo1 %02 T0,3 To4 Tos To,e To,7 To0,8 £0,9 0,10 0,11 L0,12 L0,13 L0,14 L0,15 Y0,0 Y0,1 Y0,2 Yo,
Zo,1 -3 2 2 2 2

Zo,2 -3 2 2 2

Zo,3 -3 2 2
2

3

20,4 -3

Zo,5 -

0,6 -
Zo,7 -
Zo,8 -
Zo,9
20,10
Zo,11
Z0,12
0,13
Zo,14
Zo,15
Y0,0
Yo,1
Yo,2
Y0,3 160

W NN NN DN

WO NN NN
QDO NN DN NN
WM N N DN DN DN

DN DN DN DN N DN

NN DN DN DN DN

1
WMo DN NN DN DN NN
N NN DN DN DN DN DN DN DN DN DN

NN DNNDNDNDNDNDNDNDN DN DN

1
1
WRONDNDRNRDNDNDNDDNDNDNDNDN DN DN

DO DDDODDDDODDODDODDODDODODODODODODODO O

O ODODODDODDODDDDDDODDDDODODOOO

OO DD O DDDODDODDDDODDODDODO OO Ow

[
I ODODDDODDODDODDODDODDODDODODODODODODOO

B =

The encoded QUBO matrix is shown in Table 3. Solving x* = miny Zigj Q)T
this time gives two different solutions with identical value objective function (6). The two
solutions are x; = [1,0,0,0,0,0,0,0,0,0,0,0,0,0] and x, = [0,1,1,1,1,1,0,0,1,0,0,0,0,0].
The number of vertices in these two dominating sets is different, D(x;) has only one vertex
while D(x5) has five vertices.

Table 3: Dominating Set QUBO matrix for weighted Ss

variables| o 1 T2 T3 T4 s Yoo Yo, Y02 Y1,0 ¥2,0 ¥3.,0 Y4,0 U5,0
To|-115 80 80 80 80 80 -40 -80 -160 -40 -40 -40 -40 -40
T -39 40 40 40 40 -40 -80-160 -40 0 O O O
To -39 40 40 40 -40 -80-160 0 -40 O O O
T3 -39 40 40 -40 -80-160 O 0 -40 o0 O
Ty -39 40 -40 -80-160 O O O -40 O
Ts -39 40 -80-160 O O O 0 -40
90,0 60 8 160 O O O 0 O
Yo,2 480 0 0 0 0 0
Yo 60 0 0 0 0
Y2,0 60 0 0 0
Y30 60 0 0
Ya,0 60 0
Y5,0 60

The solution to the Dominating Set problem is trivial for the family of star graphs .5, in
the unweighted case, since all vertices labeled from 1 to n are all only connected to vertex 0,
choosing just vertex 0 as the dominating set is sufficient to cover all vertices in the graph. In
the weighted case however, if the sum of weights of vertices 1 to n is smaller than the weight
of vertex 0, then the minimum dominating set would actually consists of all vertices labeled
1 to n. In our case provided above, the weight function W is constructed in a way such that
the two cases would have the same weighted sum, and as a result, both are accepted as the
optimal solution.

3.3 Weighted Edge Cover

Similar to the Edge Cover problem, the Weighted Edge Cover problem can be reduced
to Weighted Perfect Matching problem which is solvable in time O(n?) [21, 17]!. As in
the previous subsection for the Dominating Set problem, we only need to do some small
modification to the Edge Cover problem to obtain a QUBO formulation for the weighted

version:
F(x)=) wim;+AY P
eiijE v; EV

where)
lg(A(zi)—1)]

P=(1— > @+ Y 2y (7)

€i,j€I(vi) k=0

Once again, we need to have A > max{w;; | €;; € E'}. The function C : Z|2x| — 2F from
Section 2.3 will be used again to obtain the subset of edges. Although the argument may

"'We want to clarify that the justification of the reduction given in the references only applies to minimal
edge covers (not any edge cover).

10

seem almost identical to the unweighted version, for the sake of completeness, we will present
the theorem and proof formally below.

Theorem 5. The QUBO formulation in (7) is correct.

Proof. First, we show that a solution from z* = miny F'(x) will always be an edge cover.
Suppose we have * = min, F'(x) and C'(x*) is not an edge cover where x* is the correspond-
ing binary variable vector yielding z*. Then there must exist a set of vertices {uy, ua, ..., u}
such that I(u;) N C(x*) =0 for 1 <4 <. That is, for each u;, none of the edges incident
to u; is in C'(x*). Hence, for each u;, 1 <1i <[, the corresponding P; is 1. If we change the
variable z; ; corresponding to one of these edges to 1, then again, we reduce the value of the
objective function F'(x) by at least A —w; ; > 0 since A is larger than all w; ;. Therefore the
optimal solution to the minimization problem of F'(x) will always be an edge cover set.
Thus since C(x*) corresponding to 2* = miny F'(x) has to be an edge cover as shown in
the previous paragraph. It also has to be the smallest edge cover since each P; in F'(x) has

to be 0 and therefore the value of F'(x) is completely dependent on the weights of the edges
chosen to be in C'(x). O

3.4 Weighted W5 Example

A wheel graph W,, with order n + 1 is defined similar to a star graph. To be precise, a star
graph S, with n + 1 vertices is always a subgraph of W,,, with extra edges joining the outer
pendent vertices into a cycle of length n. Taking n = 5, we have V = {0,1,2,3,4,5} and
E ={{0,i} | 1 <i <n}U{{1,2},{2,3},{3,4},{4,5},{5,1}}. For example, the weight
function W : E — R* which assigns a weight to each edge is defined as follows:

6, ife={0,i} wherel <i<n
W(e)={12, ife={1,2}

15, otherwise

Let A = 20, the QUBO matrix encoded from objective function (7) is shown in Table 4. Once
again, we get two optimal solutions which both have the same value in objective function
(7) in this case.

=[0,0,1,
1,1,1

Xp = 0,0,0,0,0,0,0,0,0,0]
xp =[1,1,1, 0,0,0,0,0,0,0,0,0,0

]

—_ =

’]‘7 17070’070707]"07
’170707070707070717 Y M M M

Y Y Y)

The number of edges we obtain in the edge cover are four and five respectively. Although
choosing the edge {1, 2} to cover vertex 1 and 2 may seem better initially, since it covers two
vertices with only one edge. Choosing {0, 1} and {0,2} instead makes no difference in this
case as W({1,2}) = W({0,1}) + W({0,2}), so the weighted sum is identical.

11

Table 4: Edge Cover QUBO matrix for weighted W5

vars|xo,1 To,2 20,3 £0,4 Lo,5 1,2 T1,5 T23 L34 45 Y0,0 Yo,1 Yo,2 Y1,0 Y1,1 Y2,0 Y21 Y30 ¥3,1 Y40 Y41 Y50 ¥Y5,1
Zo1|-34 20 20 20 20 20 20 0 0 0 O 0 0 O 0 O 0 O 0 O 0 O 0
0,2 -34 20 20 20 20 0 20 0 0 O 0 0 O 0 O 0 O 0 O 0 O 0
0,3 -34 20 20 0 0 20 20 0 O 0 0 O 0 O 0 O 0 O 0 O 0
0,4 -34 20 0 0 0 20 20 O 0 0 O 0 0 0 O 0 O 0 O 0
0,5 -34 0 20 0 0 20 O 0 0 O 0 O 0 O 0 O 0 O 0
1,2 -28 20 20 0 0 O 0 0 0 0 O 0 O 0 O 0 0 0
1,5 -25 0 0 20 0 0 0 O 0 O 0 O 0 O 0 O 0
T23 -25 20 0 O 0 0 O 0 O 0 O 0 O 0 O 0
T34 -25 20 O 0 0 O 0 0 0 O 0 O 0 O 0
T4 -25 0 0 0 O 0 O 0 O 0 O 0 0 0
40,0 60 40 80 O 0 O 0 O 0 O 0 O 0
Yo,1 160 160 O 0 O 0 O 0 O 0 0 0
Y0,2 480 O 0 O 0 O 0 O 0 O 0
Y1,0 60 40 O 0 O 0 O 0 O 0
Y1,1 160 O 0 O 0 O 0 O 0
Y2,0 60 40 O 0 O 0 0 0
Y2,1 160 O 0 O 0 0 0
Y3,0 60 40 O 0 0 0
Y31 160 0 0 0 0
Y40 60 40 0 0
Ya,1 160 O 0
Y5,0 60 40
Ys.1 160

4 Experimental Results and Discussion

Experiments were conducted on the D-Wave quantum computer. The chip had 1098 active
qubits and could support problems with up to that many variables in theory. In practice,
before the QUBO formulations could be executed on the D-Wave computer, an embedding on
the hardware must first be found. That is, we need to check if the QUBO instance, referred
to as the guest graph, is a graph minor? of the actual physical qubit architecture which is
an induced subgraph of a specific Chimera host graph. Python scripts which generate the
QUBO instances of the objective functions for Dominating Set and Edge Cover are available
in Appendices A and B. We used the NetworkX graph package [15] in both scripts in addition
to the D-Wave library [8].

4.1 Presentation of Results

For both the Dominating Set and the Edge Cover problem, we did 2500 trials on each of the
graphs listed in Tables 5 and 6. The first three columns of Tables 5 and 6 contain standard
information about the graphs; the order and size are with respect to the input graphs rather
than the QUBO formulations. We used the same graph specifications as in [6]. The next
three columns contains information on the embeddings. Logical qubits is the number of

2A graph G is a minor of a graph H if G is isomorphic to a graph obtained from H by repeatedly deleting
vertices, deleting edges or contracting edges.

12

variables of the formulation and physical qubits is the number of hardware qubits required
after embedding the QUBO instance into the specific Chimera graph. As can be seen from
the table, the difference between the number of variables and the actual number of hardware
qubits needed varies quite a lot. The high scaling factor is mostly due to the high density
of the QUBO matrices. High density means the size (number of non-zero QUBO entries) of
the guest graph which the QUBO matrix represents is high, and since the Chimera graph
has a fixed architecture, it is harder to embed such guest graphs with few edge contractions.
Hence more active physical qubits are needed. The embedding mazx chain column contains
the maximum number of physical qubits a single logical qubit is mapped to.

Note that, deciding minor containment is a well-known NP-complete problem, but since
it is not the focus of study here, we did not implement our own embedding algorithm here.
The algorithm used in the study is provided by the D-Wave software package; more details
about this particular embedding algorithm can be found in [7] and [4]. WE also note that
we did not try to minimize the number of variables nor the density of the QUBO matrix
when developing the objective functions given in Section 2. It is quite possible that better
formulations exist for there problems, that is, formulations with less number of logical qubits
and lower density that will make the minor containment problem on them easier to solve.

The best answer column is the best (smallest) solution, in terms of the size of the covering
set of vertices or edges respectively for each of the problems, the D-Wave machine was able
to find. The optimal answer column is the true optimal solution of the particular graph.
The optimal solutions for the Dominating Set problem was computed by first computing an
Integer Programming formulation of the problem and then Sage Maths [22] software was
used to compute the solution. A script used for computing the optimal solution is given
in Appendix C. The optimal solution to the Edge Cover problem was computed by first
realizing that the order of a graph G is equal to the sum of the number of edges in its
maximum matching and minimum edge cover [19]. The maximum matching for each test
graphs was computed using the built-in function provided by the NetworkX package.

As mentioned before, each QUBO instance was executed 2500 times. The average valid
answer column is the average size of valid covering set found by the machine out of the
the 2500 times and the probability of valid answer column indicates the probability of the
machine finding a valid answer. The last column indicates the proportion in which the best
answer (given by the D-Wave machine), not necessarily optimal, was found out of the 2500
times.

4.2 Scaling the Ising

The Python program in Appendix D access the quantum machine when solving z* =
miny f(x). Note that we explicitly converted the QUBO formulations of each test cases
to its corresponding Ising form as the D-Wave software package API (Application Program
Interface) gives more direct control for more fine tuned test with respect to the Ising model.
The QUBO to Ising transformation function is also provided by the D-Wave API. We then
used two extra parameters s and s, to scale the Ising model.

The parameter s, is used before the embedding is applied. All entries in the Ising model

13

is scaled linearly by f(z) : R — R where f(z) = soz/maxV and maxV is the maximum value
over all entries. This scaling is applied because of the current D-Wave hardware coupling
restrictions need to be in the range [-1,1]. After the embedding is computed, 0 < s < 1 is
used as a factor to scale all entries corresponding to the same logical qubits. Lower values of
s emphasizes that it is more important for physical qubits corresponding to the same logical
qubit to be in a consistent state (spin). The lowering the value of s was recommended in [§]
if the unscaled case s = 1 does not provide expected results.

The scaling is essential the same as multiplying the QUBO objective function by a con-
stant and it should have no affect on the variable assignment of the optimal solution of the
original and modified functions.

4.3 Embedding with Long Chains

The entries highlighted in red in Table 5 and 6 are the test cases where the optimal solution
was never found out of the 2500 trials. An interesting observation we can make here is
that in Table 5, all such entries have a max chain length of bigger than or equal to 10.
It coincides with our expectation that longer chain lengths are more likely to leads to less
accurate solutions. The embedding of the problem can be seen as a transformation to a
different problem which has equivalent optimal solutions. Since one logical qubit could be
mapped to several different physical qubits, new constraints have to be introduced to enforce
all the physical qubits to be in the same consistent states. This is achieved by adding extra
penalties if the set of physical qubits, representing the same logical qubits, are in inconsistent
(different) states [7]. Therefore, doing such transformation will make the annealing process
harder and lead to a lower probability of finding the optimal solution [7].

For for Table 6 some of the highlighted entries have a max chain length of less than
10. However, the best answer for such entries are at most 1 bigger than the true optimal
solution. So in some sense, it does not contradict what we stated in the previous paragraph,
the shorter the chains are, the more accurate (closer to optimal) the solution becomes.

4.4 The Family of Star Graphs

The three rows with dashes in Table 6 corresponds to the test cases where no valid solution
was found out of all 2500 trials.

Recall the definition of the family of Star graphs from Section 2.4. For all n € Z, the only
edge cover of S, = (V, E) is E. Since all vertices V' \ {0} are of degree 1, and all edges are
incident to vertex 0, the only way to cover vertex 1 < i < n is to pick the edge {0,7}. Hence
all edges have to be picked to have a correct covering set. We suspect that this uniqueness
about the solution is what leads to its none-discovery in these three cases. The physical
nature of the computation could make the desired unique configuration of qubits impossible
to reach for the quantum machine. That is why we can see that from Table 6, despite the
fact that the Star graphs we used in the experiments being relatively small, in terms of both
the order and size, the probability of finding a valid edge cover for .S,, decreases dramatically
as n increases when compared with other families of graphs we had.

14

The case of finding a valid dominating set for S, is slightly different. Since all other
vertices are connected with vertex 0, the optimal solution is obviously just the set {0}.
For the dominating set experiment, the optimal solution was found for all S, we tested.
However, a valid dominating set for S, could also include any number of other vertices.
Hence it leads to what we see in Table 5, the probability of finding a valid dominating set
is relatively high for all S, but the probability for finding the optimal solution once again
reduces dramatically as the order increases.

4.5 Final Comments and Future Work

As can be seen from our results, the overall outcome was positive to some extent. In most
of the cases, the D-Wave quantum computer did find the true optimal solutions and the
probability of finding a valid solutions per trial was relatively high. We note that for the two
problems with drastic different classical complexities (Dominating Set being NP-complete
vs Edge Cover being in P), it seems that the quantum annealing solutions seems to be near
equivalent in terms of “solvability”.

Google has recently published a paper that had some experimental result on the new D-
Wave 2X [9], the same model we have used, and had much more successful results. Namely,
they were able to achieve a 99% success rate in which the optimal solution was found.
Although it is difficult to determine what exactly is the cause for such a big difference, the
authors did considered several factors that could have lead to this observation. First of all, in
the experiment Google did [9] problems sizes vary from 200 to around 1000, in terms of the
number of physical qubits. Google had found the best suited annealing time for each case,
that is, the annealing time for each test case that has the highest probability of obtaining
the optimal solution. We used an annealing time of 20 microseconds for all of our test cases
as with a limited access to the machine it was difficult for us to run multiple fine-tuned tests.
Secondly, the test cases Google used in their benchmark paper were hand crafted instances
fitting directly on the actual hardware. In other words, the underlying graphs they used
are subgraphs of the Chimera graph, so the minor containment problem did not need to
be considered. As we mentioned in Subsection 4.3, longer chains appearently lead to less
accurate solutions.

We performed software simulations (e.g. conventional evolutionary search) on our QUBO
matrices to verify optimal dominating sets were possible. The conventional evolutionary
search algorithm we used was also provided by the D-Wave software package [8]. The authors
plan to experiment with new problems whose QUBO matrices have a lower density and
possibly with smaller max chain length. Hopefully, the new results can either confirm or deny
our suspicion about the chain length. We are also planning on testing the weighted covering
problems described in this paper. The weighted version of each problems will obviously
have the same embedding as the original problem, the only difference is the weight on each
couplers (allowing for quasical computations as discussed in [1]). It would be interesting to
see to what extend will the coupler weight affect the solutions.

15

Acknowledgment

This work was supported in part by the Quantum Computing Research Initiatives at Lock-
heed Martin. We thank Cris Calude for useful comments on an earlier draft.

References

1]

2]

3]

[10]

[11]

Alastair A. Abbott, Cristian S. Calude, Michael J. Dinneen, and Richard Hua. Quassical
computing with D-Wave, 2016. In preparation.

Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. Adiabatic quantum computation is equivalent to standard quantum computa-
tion. SIAM J. Comput., 37(1):166-194, 2007.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduc-
tion for dominating set. J. ACM, 51(3):363-384, May 2004.

Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for finding graph
minors. ArXiv e-prints, June 2014. 2014arXiv1406.2741C.

Cristian S. Calude, Elena Calude, and Michael J. Dinneen. Guest column: Adiabatic
quantum computing challenges. SIGACT News, 46(1):40-61, March 2015.

Cristian S. Calude and Michael J. Dinneen. Solving the broadcast time problem using
a D-Wave quantum computer. Technical Report CDMTCS-473, Centre for Discrete
Mathematics and Theoretical Computer Science, University of Auckland, Auckland,
New Zealand, November 2014.

D-Wave. Programming with QUBOs. Technical Report 09-1002A-B, D-Wave Systems,
Inc., 2013. Python Release 1.5.1-beta4 (for Mac/Linux).

D-Wave. Developer guide for python. Technical Report 09-1024A-A, D-Wave Systems,
Inc., 2016. Python Release 2.3.1 (for Mac/Linux).

Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim
Smelyanskiy, John Martinis, and Hartmut Neven. What is the computational value of
finite range tunneling?, 2015. arXive 1512.02206.

Shimon Even and Oded Kariv. An O(n??) algorithm for maximum matching in general
graphs. In Foundations of Computer Science, 1975., 16th Annual Symposium on, pages
100-112. IEEE, 1975.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and
Daniel Preda. A quantum adiabatic evolution algorithm applied to random instances
of an NP-complete problem. Science, 292(5516):472-475, 2001.

16

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum com-
putation by adiabatic evolution. arXiv:quant-ph/0001106, January 2000.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. Journal of the ACM (JACM), 56(5):25, 2009.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11-15, Pasadena, CA USA, August 2008.

Stephen T. Hedetniemi and Renu C. Laskar. Bibliography on domination in graphs and
some basic definitions of domination parameters. Discrete Mathematics, 86(1-3):257—

277, 1990.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2002.

Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2(5),
2014.

Robert Z. Norman and Michael O. Rabin. An algorithm for a minimum cover of a
graph. Proceedings of the American Mathematical Society, 10(2):315-319, 1959.

Geordie Rose and William G. Macready. An introduction to quantum annealing. Tech-
nical Report Document 0712, D-Wave Systems, Inc., 2007.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer Science & Business Media, 2003.

The Sage Developers. Sage Mathematics Software (Version 6.5), 2015.
http://www.sagemath.org.

17

Table 5: Results for some small graphs families for Dominating Set.

Logical Physical Embedding Best Optimal Average Probability of Probability of

Graph Order Size | Qubits Qubits Max Chain | Answer Answer Valid Answer Valid Answer Best Answer
BidiakisCube 12 18 36 180 13 4 4 5.77 87.08 2.20
Bull 5 5 13 35 5 2 2 2.70 74.68 23.56
Butterfly 5 6 16 66 11 1 1 2.81 97.64 2.92
C10 10 10 30 92 7 4 4 5.52 78.28 7.36
C1l1 11 11 33 103 5 4 4 5.52 71.24 7.12
C12 12 12 36 118 7 4 4 6.57 80.04 0.28
C4 4 4 12 30 4 2 2 2.24 85.48 67.08
C5 5 5 15 49 5 2 2 2.58 82.76 37.92
C6 6 6 18 60 6 2 2 3.05 84.84 17.60
c7 7 7 21 67 6 3 3 3.52 77.80 41.80
cs8 8 8 24 81 6 3 3 4.25 86.92 13.44
C9 9 9 27 101 8 3 3 4.77 80.28 3.40
Chvatal 12 24 48 353 19 4 4 7.31 97.60 0.12
Clebsch 16 40 64 745 42 5 4 8.22 89.92 0.28
Diamond 4 5 12 30 4 1 1 1.91 94.48 17.76
Dinneen 9 21 36 244 13 2 2 4.75 96.48 0.32
Dodecahedral 20 30 60 409 20 7 6 10.11 63.20 0.36
Durer 12 18 36 210 11 4 4 5.79 73.08 3.92
Errera 17 45 68 809 30 5 3 8.43 95.88 0.52
Frucht 12 18 36 177 10 4 3 5.61 89.64 7.52
GoldnerHarary 11 27 41 350 20 2 2 5.63 84.72 0.04
Grid2x3 6 7 18 58 6 2 2 3.17 85.04 9.64
Grid3x3 9 12 28 145 12 3 3 4.91 74.48 1.72
Grid3x4 12 17 38 175 10 4 4 6.64 82.08 0.56
Grid4x4 16 24 52 274 17 6 4 9.01 69.64 0.36
Grid4x5 20 31 66 453 17 7 6 10.70 63.64 0.08
Grotzsch 11 20 39 251 14 3 3 5.88 80.96 0.08
Heawood 14 21 42 255 13 4 4 6.36 70.24 0.96
Herschel 11 18 36 197 15 3 3 5.66 79.60 0.40
Hexahedral 8 12 24 98 8 2 2 4.63 66.36 1.84
Hoffman 16 32 64 578 29 5 4 8.74 85.80 0.16
House 5 6 15 57 9 2 2 2.55 89.96 46.16
Icosahedral 12 30 48 391 27 3 2 5.50 96.36 1.08
K10 10 45 50 581 35 1 1 4.92 100.0 0.04
K2,3 5 6 15 53 6 2 2 2.55 80.24 42.80
K2 2 1 4 5 2 1 1 1.01 99.92 98.76
K2x1 3 2 7 13 2 1 1 1.31 92.44 64.20
K3,3 6 9 18 68 7 2 2 4.77 68.00 2.28
K3,4 7 12 24 119 9 2 2 3.33 95.56 9.72
K3 3 3 9 23 4 1 1 1.32 99.48 71.36
K4.,4 8 16 32 190 12 2 2 4.47 98.72 0.64
K4,5 9 20 36 251 16 2 2 4.82 98.84 0.20
K4 4 6 12 39 4 1 1 1.86 99.96 38.48
K5 5 10 20 92 7 1 1 2.41 100.0 9.40
Kb5x5 10 25 40 324 17 2 2 5.03 99.76 0.12
Kb5x6 11 30 44 357 17 2 2 5.38 99.76 0.04
K6 6 15 24 117 9 1 1 2.54 96.44 13.40
K6x6 12 36 48 537 25 2 2 4.85 98.44 0.52
K7 7 21 28 181 10 1 1 4.56 12.00 3.44
K8 8 28 32 260 13 1 1 5.24 75.20 25.84
K9 9 36 45 460 25 1 1 4.39 100.0 0.08
Krackhardt 10 18 34 205 15 3 2 5.69 82.20 0.56
Octahedral 6 12 24 124 9 2 2 3.32 98.32 16.32
Pappus 18 27 54 370 15 6 5 9.81 85.08 0.12
Petersen 10 15 30 161 11 3 3 4.96 79.28 1.08
Poussin 15 39 60 585 27 3 3 7.87 98.04 0.04
Q3 8 12 24 97 8 2 2 6.39 14.40 0.52
Q4 16 32 64 578 26 6 4 9.68 96.80 0.32
Robertson 19 38 76 827 39 6 5 10.58 81.48 0.08
S2 3 2 7 13 3 1 1 1.52 95.28 47.16
S3 4 3 9 17 3 1 1 1.57 96.84 56.32
S4 5 4 12 28 4 1 1 2.31 81.84 11.60
S5 6 5 14 40 4 1 1 2.02 94.36 26.12
S6 7 6 16 49 5 1 1 3.16 98.56 4.80
S7 8 7 18 57 5 1 1 3.06 98.72 3.44
S8 9 8 21 80 8 1 1 3.78 53.64 0.76
S9 10 9 23 95 7 1 1 3.94 78.76 1.44
S10 11 10 25 107 10 1 1 4.22 81.36 0.44
Shrikhande 16 48 64 785 37 4 3 7.09 90.56 0.32
Sousselier 16 27 53 390 19 5 4 8.42 64.88 0.24
Tietze 12 18 36 191 10 4 3 5.74 87.84 1.96
Wagner 8 12 24 106 9 3 3 4.97 47.56 0.24

18

Table 6: Results for some small graphs families for Edge Cover.

Logical Physical Embedding Best Optimal Average Probability of Probability of
Graph Order Size | Qubits Qubits Max Chain | Answer Answer Valid Answer Valid Answer Best Answer

BidiakisCube 12 18 42 149 6 6 6 7.98 64.92 3.48
Bull 5 5 10 22 3 3 3 3.24 47.12 36.04
Butterfly 5 6 12 33 7 3 3 3.63 63.16 24.20
C10 10 10 20 55 5 5 5 5.42 89.24 53.88
C11 11 11 22 51 7 6 6 6.48 71.76 39.36
C12 12 12 24 53 5 6 6 6.98 77.52 12.00
C4 4 4 8 13 2 2 2 2.05 98.56 93.64
C5 5 5 10 16 2 3 3 3.01 98.92 97.88
C6 6 6 12 23 3 3 3 3.10 61.84 55.96
Cc7 7 7 14 31 4 4 4 4.03 70.36 68.16
C8 8 8 16 28 3 4 4 4.21 64.20 51.32
c9 9 9 18 34 3 5 5 5.12 74.40 66.16
Chvatal 12 24 48 227 7 7 6 11.05 69.60 0.96
Clebsch 16 40 88 653 22 13 8 19.02 78.48 0.20
Diamond 4 5 11 25 3 2 2 2.50 92.12 47.56
Dinneen 9 21 42 283 12 5 5 8.77 71.04 0.08
Dodecahedral 20 30 70 245 6 11 10 13.63 47.84 1.64
Durer 12 18 42 143 6 6 6 8.66 74.76 0.60
Errera 17 45 96 633 15 13 9 21.28 80.64 0.04
Frucht 12 18 42 139 6 6 6 8.09 39.12 0.56
GoldnerHarary 11 27 54 411 17 8 6 12.81 46.12 0.04
Grid2x3 6 7 15 33 3 3 3 3.42 90.64 56.68
Grid3x3 9 12 26 73 5 5 5 5.75 74.40 32.48
Grid3x4 12 17 37 113 6 6 6 7.36 58.20 8.52
Grid4x4 16 24 52 191 8 8 8 11.28 69.80 0.44
Grid4x5 20 31 67 265 13 10 10 14.02 47.64 0.08
Grotzsch 11 20 43 207 10 7 6 10.12 53.28 0.76
Heawood 14 21 49 179 8 7 7 9.41 64.88 0.64
Herschel 11 18 40 144 7 6 6 7.75 60.48 6.40
Hexahedral 8 12 28 114 10 4 4 5.74 66.52 4.56
Hoffman 16 32 64 325 11 9 8 12.90 46.52 0.08
House 5 6 13 28 3 3 3 3.15 82.68 70.44
Icosahedral 12 30 66 508 22 8 6 13.53 78.96 0.08
K2,3 5 6 13 28 3 3 3 3.14 7772 67.24
K3,3 6 9 21 70 5 3 3 4.39 89.92 12.84
K3,4 7 12 26 103 7 4 4 5.00 81.44 23.00
K3 3 3 6 10 2 2 2 2.00 83.20 83.08
K4,4 8 16 32 149 11 4 4 6.46 92.48 4.16
K4,5 9 20 42 251 12 5 5 8.69 62.04 0.04
K4 4 6 14 49 5 2 2 2.32 83.16 58.76
K5,5 10 25 55 417 18 7 5 11.87 83.88 0.20
K5,6 11 30 63 576 22 8 6 12.15 73.36 0.80
K5 5 10 20 87 6 3 3 4.17 86.24 2.32
K6,6 12 36 72 719 31 9 6 15.18 87.12 0.04
K6 6 15 33 187 11 3 3 6.61 86.12 0.08
K7 7 21 42 338 14 4 4 8.65 91.16 0.04
K8 8 28 52 546 19 6 4 11.15 91.72 0.24
K9 9 36 63 801 27 7 5 13.30 95.36 0.08
Krackhardt 10 18 38 172 9 6 5 9.16 46.36 0.44
Octahedral 6 12 24 89 6 3 3 5.20 83.12 1.52
Pappus 18 27 63 224 8 9 9 12.60 50.72 0.08
Petersen 10 15 35 129 7 5 5 6.96 66.88 1.00
Poussin 15 39 82 692 21 12 8 18.42 70.00 0.08
Q3 8 12 28 95 5 4 4 5.42 77.92 8.00
Q4 16 32 64 431 17 8 8 12.81 71.24 0.04
Robertson 19 38 76 443 13 10 10 15.43 52.12 0.04
S2 3 2 3 4 2 2 2 2.00 97.68 97.68
S3 4 3 5 8 2 3 3 3.00 65.12 65.12
S4 5 4 6 14 3 4 4.00 10.32 10.32
S5 6 5 8 22 3 5 5 5.00 1.52 1.52
S6 7 6 9 30 5 6 6 6.00 0.84 0.84

ST 8 7 10 39 4 - 7 - - -
S8 9 8 11 44 5 8 8 8.00 0.04 0.04

S9 10 9 13 64 6 - 9 - - -

S10 11 10 14 T 7 - 10 - - -
Shrikhande 16 48 96 864 26 14 8 20.90 88.20 0.04
Sousselier 16 27 60 256 11 10 8 13.93 48.40 0.24
Tietze 12 18 42 146 6 6 6 8.39 50.44 0.20
‘Wagner 8 12 28 97 7 4 4 5.44 54.60 5.44

19

A Python Program to Generate QUBO Formulation
of the Dominating Set Problem

import sys, math, networkx as nx

def read_graph():
n=int (sys.stdin.readline () .strip())
G=nx.empty_graph(n,create_using=nx.Graph())
for u in range(n):
neighbors=sys.stdin.readline () .split ()
for v in neighbors:
G.add_edge (u,int (v))
return G

def generateQUBO(G):
Q = {}
num0OfRedVars = 0
stores the number of redundant variables each vertex has
redVarsDict = {}
order = G.order ()

for v in G:
redVars = int(math.log(nx.degree(G,v) ,2))+1
num0OfRedVars += redVars
redVarsDict[v] = redVars

numOfRedVars = int (numOfRedVars)
totalNumOfVars = G.order () + numOfRedVars
redVarsIndexDict = {}

compute index of y_i,k in Q
for v in G:
temp = 0
for i in range(v):
temp += redVarsDict[il]
redVarsIndexDict[v] = order + temp

initialize Q
for i in range(totalNumOfVars):
for j in range(totalNumOfVars):
Qli,jl = o0

pick constant A > 1
A =2

for v in G:
(1-A)x_1i
Q [V, V] -= 1

-2A sum x_j

for u in G.neighbors(v):
Qlu,u] -= 2*A

20

starting index of redundant variables of vertex v in Q
index = redVarsIndexDict [v]

num is the number of redundant variables vertex v has
num = redVarsDict [v]

2A sum 27 ky_i,k
for i in range (num):
temp = int (2*A*math.pow(2,1))
Qlindex+i, index+i] += temp
2A x_1i sum x_j
for u in G.neighbors(v):
Qlv, ul += 2x*A
-2A x_i sum 2"ky_i,k
for i in range(num):
Q[v,index+i] -= int (2*A*math.pow(2,1i))
A sum x_j sum x_j
for u in G.neighbors(v):
for w in G.neighbors(v):
Qlu, wl += A
-2A sum x_j sum 2"ky_i,k
for u in G.neighbors(v):
for i in range (num):
Q[u, index+i] -= int (2*xAx*math.pow(2,1i))
A sum 2"ky_i,k sum 2"ky_i,k
for i in range(num):
for j in range (num):
Qlindex+i,index+j] += int (A*math.pow(2,i)*math.pow(2,j))

move all entries to the upper triangle of the matrix
for i in range(totalNumOfVars):
for j in range(totalNumOfVars):

if j o> i
Qli,jl += Q[j,i]
Qlj,il = o0

print a symmetric form of Q
for i in range(totalNumOfVars):
for j in range(totalNumOfVars):
if i<= j:
print Q[i,j],
else:
print Q[j,i],
print

main program
G=read_graph ()
generateQUBO (G)

listings/DS_generate_QUBO.py

21

B Python Program to Generate QUBO Formulation
of the Edge Cover Problem

import sys, math, networkx as nx
def generateQUBO(G):

map each edge of G to some index in Q
Q = {3
edgeDict = {}
index = 0
for (u,v) in G.edges():
if (u,v) in edgeDict:
edgeDict [(v,u)] = edgeDict[(u,v)]
elif (v,u) in edgeDict:
edgeDict [(u,v)] = edgeDict[(v,u)]
else:
edgeDict [(u,v)]
edgeDict [(v,u)]
index+=1

index

index

compute the index of redundant variables in Q
size = G.size()

num0OfRedVars = 0

redVarsDict = {}

for v in G:
if nx.degree(G,v) != 1:
redVars = int(math.log(nx.degree(G,v)-1,2))+1
else:
redVars = 0
num0OfRedVars += redVars
redVarsDict [v] = redVars

num0OfRedVars = int (numOfRedVars)
totalNumOfVars = G.size () + numOfRedVars
redVarsIndexDict = {}

for v in G:
temp = O
for i in range(v):
temp += redVarsDict[il]
redVarsIndexDict [v] = size + temp

initializing Q
for i in range(totalNumOfVars):

for j in range(totalNumOfVars):
Qli,jl =0

pick constant A > 1
A =2

22

sum x_1i,j
for e in G.edges ():
Q[edgeDict [e] ,edgeDict[e]l] = 1

sum P_i
for v in G.nodes():

I is the set of edges incident to v
I = G.edges(v)

-2A sum x_1i,]j
for e in I:
Q[edgeDict [e] ,edgeDict[e]l] -= 2x*A

starting index of redundant variable corresoponding to v in Q
index = redVarsIndexDict [v]

num is the number of redundant variables vertex v has

num = redVarsDict [v]

2A sum 27k y_i,k
for k in range (num):
Q[index+k, index+k] += int (2*A*math.pow(2,k))
A sum x_i,j sum x_i,]j
for el in I:
for e2 in I: # -2A sum x_i,j sum 2"k y_i,k
QledgeDict [el] ,edgeDict [e2]] += A
for e in I:
for k in range (num):
Q[edgeDict [e], index+k] -= int (2*A*math.pow(2,k))
A sum 2"k y_i,k sum 27k y_i,k
for k1 in range (num):
for k2 in range (num):
Qlindex+k1l,index+k2] += Axint(math.pow(2,kl)*math.pow(2,k2))

move all entries to the upper triangle of the matrix
for i in range(totalNumOfVars):
for j in range(totalNumOfVars):

if j > i:
Qli,jl += Qlj,1i]
Qlj,il =0

print a symmetric form of Q
for i in range(totalNumOfVars):
for j in range(totalNumOfVars):
if i<= j:
print Q[i,j]l,
else:
print Q[j,i],
print

G=read_graph ()
result = generateQUBO(G)

listings/EC_generate_QUBO.py

23

C Sage Math Program to Compute the Exact Solution
to the Dominating Set Problem

import sys, networkx as nx

def read_graph():
n=int (sys.stdin.readline () .strip())
G=nx.empty_graph(n,create_using=nx.Graph())
for u in range(n):
neighbors=sys.stdin.readline () .split ()
for v in neighbors: G.add_edge(u,int(v))
return G

G=read_graph ()

n=G.order ()

p=MixedIntegerLinearProgram(solver="GLPK", maximization=False)
x=p.new_variable (binary=True)

for v in G.nodes ():

c = x[v]
for u in G.neighbors(v):
c = c + x[u]

p-add_constraint (c >= 1)
p-set_objective(sum(x[j] for j in range(m)))
try:

sz=p.solve ()
except sage.numerical.mip.MIPSolverException as e:

pass
else:
pass
print "Minimum dominating set is", int(sz)
for i in p.get_values(x).items():
print 1

listings /DS _sage.py

24

D Python Program to Scale the Ising Instances

QUBO (with embedding) -> Scaled Ising -> DWave
import sys, time, math, traceback

from dwave_sapi2.remote import RemoteConnection

from dwave_sapi2.util import get_hardware_adjacency

from dwave_sapi2.embedding import embed_problem, unembed_answer
from dwave_sapi2.util import qubo_to_ising

from dwave_sapi2.core import solve_ising

coupler strength for embedded qubits of same variable
s,s82=0.9,1.0

if (len(sys.argv)==2): s = float(sys.argv[1l])

if (len(sys.argv)==3): s,s2 = float(sys.argv[1]),float(sys.argv[2])
print ’Embed scale:’,s,s2

assert 0 <= s <=1

read input QUBO
line=sys.stdin.readline () .strip() .split ()
n=int (line [0])

print ’Logical qubits used=’, n

Q = {}
for i in range(mn):
line=sys.stdin.readline () .strip () .split ()
for j in range(n):
t = float(line[j])
if j>=i and t!=0: Q[(i,j)]=t

convert to Ising

(H,J,ising_offset) = qubo_to_ising(Q)
print ’orig H=’,H

print ’orig J=’,J

print ’ising_offset=’,ising_offset

scale by maxV and s2

if len(H): maxH=max (abs (min(H)),abs(max(H)))

else: maxH=0.0

maxJ=max (abs (min (J.values ())),abs(max(J.values())))
maxV=max (maxH ,maxJ)

for i in range(n):
if len(H)>i: H[i]=s2*H[i]/maxV
for j in range(n):
if j>=i and (i,j) in J:
JI(i,3)]=s2%J[(i,j)]/maxV
print ’scaled H=’,H
print ’scaled J=’,7J

read minor embedding
embedding=eval (sys.stdin.readline ())

25

print ’embedding=’, embedding
print ’Physical qubits used= %s’ % sum(len(embed) for embed in embedding)

create a remote connection using url and token and connect to solver
print ’Attempting to connect to network...’

remote_connection = RemoteConnection(url, token)
solver = remote_connection.get_solver (solver_name)
#print ’Solver properties:\n%s\n’ % solver.properties
A = get_hardware_adjacency(solver)

Embed problem into hardware and scale non-minor couplers by s
(h0, jO, jc, new_emb) = embed_problem(H, J, embedding, A)
hi= [val*s for val in hO]
j1 = {}
for (key, val) in jO.iteritems():
jll[keyl=valx*s
j1.update(jc)
print ’hil=’,hl
print ’jl1=’,j1

call the dwave solver

annealT=20 # annealing_time_range = [20, 2000]

progT=500 # programming_thermalization_range = [0,10000]
readT=10 # readout_thermalization_range = [0,10000]

print ’annealT=’,annealT,’progT=’,progT,’readT=’,readT

result = solve_ising(solver, hl, jl1, num_reads=100, annealing_time=annealT
, programming_thermalization=progT, readout_thermalization=readT)

print ’result:’, result

newresult = unembed_answer (result[’solutions’], new_emb, broken_chains=’
discard’, h=H, j=7J)

#newresult = unembed_answer (result[’solutions’], new_emb, broken_chains=’
vote’, h=H, j=7J)

#newresult = unembed_answer (result[’solutions’], new_emb, broken_chains=’
minimize_energy’, h=H, j=J)

print ’newresult:’, newresult

print unembed solutions in QUBO format
for i, (embsol, sol) in enumerate(zip(result[’solutions’], newresult)):
print "solution %d:" % 1,
for j, emb in enumerate (embedding):
if sol[jl==-1: print "O",
if sol[jl==1: primnt "1",
print

listings/scale_Ising.py

26

