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Abstract

Normalization helps us find a database schema at design time that can process
the most frequent updates efficiently at run time. Unfortunately, relational nor-
malization only works for idealized database instances in which duplicates and null
markers are not present. On one hand, these features occur frequently in real-world
data compliant with the industry standard SQL, and especially in modern applica-
tion domains. On the other hand, the features impose challenges that have made
it impossible so far to extend the existing forty year old normalization framework
to SQL. We introduce a new class of functional dependencies and show that they
provide the right notion for SQL schema design. Axiomatic and linear-time al-
gorithmic characterizations of the associated implication problem are established.
These foundations enable us to propose a Boyce-Codd normal form for SQL. In-
deed, we justify the normal form by showing that it permits precisely those SQL
instances which are free from data redundancy. Unlike the relational case, there
are SQL schemata that cannot be converted into Boyce-Codd normal form. Nev-
ertheless, for an expressive sub-class of our functional dependencies we establish a
normalization algorithm that always produces a schema in Value-Redundancy free
normal form. This normal form permits precisely those instances which are free
from any redundant data value occurrences other than the null marker. Experi-
ments show that our functional dependencies occur frequently in real-world data
and that they are effective in eliminating redundant values from these data sets
without loss of information.
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Figure 1: The relation purchase

Figure 2: Lossless decomposition of purchase

1 Introduction

Background of idealized instances. The relational normalization framework enables
us to derive a database schema at design time that permits exactly those relations as
instances that are free from any redundant data value occurrences at run time. This
distinguished feature makes it possible to process updates efficiently. De-normalization
refers to the process in which different relation schemata are joined in order to pro-
cess frequent queries more efficiently. The original techniques for this (de-)normalization
framework are based on the fundamental notions of functional dependency, data redun-
dancy, and Boyce-Codd normal form. As a simple running example consider the relation
schema Purchase with four attributes o(rder id), i(tem), c(atalog), and p(rice), which
store information about items that have been ordered from a catalog for a price. Any
reasonable instance is expected to satisfy the business rule that the same item from the
same catalog cannot have different prices, which we can express as the functional de-
pendency (FD) item, catalog→ price. As an example, the relation purchase in Figure 1
satisfies this FD. The example also shows that {item, catalog} does not form a key over
Purchase, because there are items from a catalog that occur in different orders. This
example illustrates the exact situation in which a schema permits instances in which
redundant data values occur. Here, each bold occurrence of 240 in the price column
is redundant in the sense that any change of one 240-value to a different value would
result in a relation that violates the FD item, catalog → price. The Boyce-Codd normal
form (BCNF) condition provides a syntactic characterization of those schemata which
permit exactly those instances in which no redundant data values occur. In fact, a given
relation schema T is in BCNF with respect to a given set Σ of FDs if and only if for
every non-trivial FD X → Y in Σ it is the case that X → T is implied by Σ. Our
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Figure 3: Instance satisfying all FDs and no keys

Purchase example schema violates BCNF, and our relation purchase is an example of
an instance in which redundant data values occur. Redundant data value occurrences
can incur prohibitively expensive costs under updates, as all occurrences of a redundant
data value must be modified consistently. In relational databases it is always possible to
obtain a lossless BCNF decomposition of a given schema. That is, if a given schema is not
in BCNF, then we can always convert it into a schema that is. The foundation for this
technique is the result that a T -relation I that satisfies a given FD X → Y is the lossless
join of its projections on XY and X(T − XY ), that is, I = I[XY ] ./ I[X(T − XY )].
In our example, we can decompose purchase into its two projections purchase[oic] and
purchase[icp] as shown in Figure 2, without loss of information. The remarkable re-
sult of this decomposition is an exact representation of the original relation in which no
redundant data values occur anymore. This magic is possible as the FD X → Y over
T has become a key on the projected schema XY , which ensures that Y -values that
occurred redundantly in I are now only stored once in the projected relation I[XY ]. In
our example, the projected relation purchase[icp] over {item, catalog, price} stores the
two redundant occurrences of the price 240 from purchase only once. Note that the
occurrence of 240 in the second tuple of purchase[icp] does not result from a redundant
occurrence of 240 in the purchase relation. In addition, purchase[icp] satisfies the key
{item, catalog} over {item, catalog, price}. These are the original fundamental ideas for
the framework of relational normalization on which we will focus. Further developments
of the relational normalization framework, such as other normal forms and classes of
data dependencies, are outside the scope of this article. In particular, we defer the treat-
ment of Third normal form and dependency-preservation to future work. We remark
that dependency-preserving BCNF decompositions can always be obtained by attribute
splitting [30].
Challenges of real-world instances. While Codd’s relational model of data provides
a sound foundation for relational database systems, the de-facto industry standard SQL
exhibits features that have made an extension of the relational normalization theory
to SQL-compliant data challenging. For example, SQL permits occurrences of a null
marker in database instances, which makes it possible in practice to store and process
incomplete information. In our example, catalog information may not exist for some
ordered item or be unknown at the time of the order. Both interpretations of incomplete
information are represented uniformly by the SQL null marker, here denoted by NULL
or ⊥, thereby consciously trading a loss of information for a gain in the efficiency of data
management. The handling of null markers in query answering has been a long-standing
problem in database research that has attracted continued interest since the beginnings,
with remarkable insights and results produced over the years. While schema design has
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Figure 4: Lossy decomposition based on the pFD item, catalog s→ price

attracted some research, even the basics as mentioned above have not been adequately
addressed so far. An additional challenge is caused by another distinguished feature of
SQL. While the relational model is set-based and duplicates must not occur, SQL does
permit duplicate tuples. The main reason is the importance of duplicates for aggregation
queries, and another reason is that duplicate removal becomes prohibitively expensive
in some situations. While duplicates offer opportunities for extending query languages,
they incur additional challenges for schema design. We will now illustrate the challenges
on our running example.

The first challenge is that the presence of duplicate tuples means that keys cannot
be expressed by functional dependencies anymore. When duplicate tuples cannot be
present, a relation I over relation schema T satisfies the key kX if and only if I satisfies
the FD X → T . When duplicate tuples may be present, I still satisfies the FD X → T
whenever it satisfies the key kX, but not vice versa. That is, I may satisfy the FD
X → T but violate the key kX. A simple and powerful illustration is the instance in
Figure 3 which satisfies every FD but violates every key over {item, catalog, price}. The
challenge means that FDs must be studied together with keys, because FDs can incur
the presence of data redundancy while keys guarantee their absence. For example, the
schema {item, catalog, price} with the FD item, catalog → price satisfies the traditional
BCNF condition, but admits instances (with duplicate tuples) in which redundant data
values occur, e.g., the instance above. As SQL permits the specification of attributes
as NOT NULL, the actual challenge is to study the combined class of keys, FDs, and NOT

NULL constraints.
The second challenge concerns the definition of the semantics of keys and functional

dependencies in instances with duplicate and partial information. The challenge here is
to define the semantics in such a way that i) many constraints that hold in an application
domain can be expressed, ii) occurrences of null markers are handled appropriately by
the dependencies, iii) the dependencies can be reasoned about efficiently, and iv) the
dependencies are useful for designing SQL schemata. While the literature on functional
dependencies in incomplete databases is rather rich, the only class of functional depen-
dencies that has had a notable impact on schema design is that proposed by Lien [28].
We refer to these as possible FDs (p-FDs) and denote them by X s→ Y . An instance
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Figure 5: Lossless decomposition and redundant values in bold based on the cFD
item, catalog w→ price

I satisfies the p-FD X s→ Y if and only if all tuples t, t′ ∈ I have matching values on
all the attributes in Y whenever they have strongly similar values on all the attributes
in X, that is, when t[X] ∼s t

′[X] ⇒ t[Y ] = t′[Y ]. Here, t[X] ∼s t
′[X] means that

t and t′ have the same matching non-null values on all the attributes in X, that is,
⊥ 6= t(A) = t′(A) 6= ⊥ for all A ∈ X. The impact of this definition on schema design can
be explained as follows. The X-total part of an instance I over schema T that satisfies
the p-FD X s→ Y is the lossless join of the X-total projection IX [XY ] and the X-total
projection IX [X(T −XY )]. The usefulness of p-FDs for schema design is therefore lim-
ited as a) their lossless join property does not extend to tuples in which null markers
occur in X, as the example in Figure 4 illustrates. Indeed, while the given instance I
satisfies the p-FD item, catalog s→ price, it is not the lossless join of I[oic] and I[icp]. In
fact, the usefulness of p-FDs for schema design is further limited as b) lossless decompo-
sitions do exist for instances with null marker occurrences, and c) p-FDs cannot capture
many redundant data value occurrences. We illustrate these deficiencies on the example
in Figure 5. Here, the given instance I satisfies a stronger notion of an FD, which we
call a certain FD or c-FD for short. We say that two tuples t, t′ are weakly similar on
attribute A if t(A) = ⊥ or t(A) = t′(A) hold. Indeed, the first and second, as well as
the second and third tuples in I are weakly similar on item,catalog and have matching
values on price. That is, they satisfy the c-FD item, catalog w→ price. This also makes
the occurrence of the value 240 in the second tuple redundant. Note the difference: The
instance also satisfies the p-FD item, catalog s→ price, but the occurrence of the value
240 in the second tuple is not redundant with respect to this p-FD. This illustrates point
c) above. To see point b), instance I in Figure 5 is indeed the lossless join of the two
projections I[oic] and I[icp], where the join condition is based on matching values (and
not weak similarity) on common attributes.

While the new notion of certain FDs is the right notion for SQL schema design, there
are further challenges that must be dealt with. While the decomposition of the instance
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I in Figure 5 is lossless, it has not eliminated all data redundancy from the projected
instance I[icp]. Indeed, each occurrence of the value 240 is redundant, as changing one of
them to a different value will violate the c-FD item, catalog w→ price. The reason is that
the projection of I onto icp did not imply that item, catalog is a key on I[icp], in contrast
to relations. This showcases again the necessity of studying keys and FDs together, but
also the need to handle the semantics of keys in instances with null marker occurrences.
As it turns out, the notions of possible and certain keys from [21] are very useful in our
context. Indeed, a p-key p 〈X〉 (c-key c 〈X〉, respectively) holds on I if there are no two
different tuples in I that are strongly (weakly, respectively) similar on all the attributes
in X. In instance I[cip] of Figure 5, for example, the first two tuples are weakly, but not
strongly similar on catalog, which means that I[cip] satisfies the p-key p 〈item, catalog〉
but not the c-key c 〈item, catalog〉. Indeed, the redundant data values 240 occur in I[cip]
because this instance does not satisfy the c-key c 〈item, catalog〉.

The major challenges are therefore to identify syntactic conditions that characterize
SQL schemata that permit precisely those instances in which no redundant data values
occur, and to identify when and how a given SQL schema can be transformed into one
that satisfies these conditions.
Contributions. Main contributions of our research are:
1. We introduce the new class of c-FDs as a natural complement to Lien’s class of p-FDs.
C-FDs can express constraints not expressible by previously studied data dependencies.
We show that c-FDs are the right notion for SQL schema design.
2. We establish axiomatic and linear-time algorithmic characterizations for the impli-
cation problem of the combined class of p-FDs, c-FDs, p-keys, c-keys, and NOT NULL

constraints. This combination covers the main features of SQL instances in which du-
plicate and partial information readily occur. Duplicates make it necessary to include
keys as these are no longer subsumed by FDs. Null markers make it necessary to inves-
tigate possible and certain variants of these constraints, and also to include NOT NULL

constraints which largely determine the interaction of these constraints. Our results sub-
sume and unify previous results by Lien on p-FDs [28], by Atzeni/Morfuni on p-FDs
and NOT NULL constraints [5], and by Köhler/Link/Zhou on p- and c-keys [21], under
our combined class of constraints, without time penalties to reason about them. These
foundations enable us to propose a normal form for well-designed SQL schemata, and to
justify it semantically by the absence of data redundancy.
3. Indeed, we propose a normal form in terms of our constraints and show that it
syntactically characterizes SQL schemata that permit precisely those instances in which
no data redundancy occurs. Our normal form reduces to the well-known Boyce-Codd
normal form in the idealized special case where no duplicate tuples and null markers
occur, that is, when all attributes are NOT NULL and some key holds on the schema. Our
normal form condition is invariant under different representations of the given constraints,
and can be verified in time quadratic in the input, thanks to our efficient algorithms to
reason about the constraints.
4. In contrast to the idealized relational model, there are cases of SQL schemata that
cannot be transformed into ones that satisfy our normal form condition. Nevertheless,
we identify total FDs as an expressive sub-class of c-FDs, and combine them with c-
keys, to establish a normal form condition that syntactically characterizes SQL schemata
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that permit precisely those instances in which no redundant data values occur except
for redundant null markers. We further establish an algorithm that transforms any
given SQL schema with total FDs and c-keys into one that satisfies this normal form
condition. Our algorithm reduces to the classical BCNF decomposition algorithm in
the idealized special case where all attributes are NOT NULL and some key holds on the
schema. Thanks to our algorithms to reason about the constraints, our normalization
algorithm is as efficient as the classical BCNF decomposition algorithm.
5. We have applied a data mining algorithm to discover c- and p-FDs in publicly available
data sets. These experiments show that both c- and p-FDs frequently occur in practice,
that c-FDs are often total, and that c-FDs are effective in eliminating data redundancy
from real-world data sets, without loss of information.
Organization. Preliminaries are given in Section 2. Related work is discussed in Sec-
tion 3. Schema design foundations are treated in Section 4. Normal forms are proposed
and justified in Section 5. Section 6 introduces SQL schema normalization. Experimental
results are presented in Section 7. We conclude in Section 8.

2 Possible and Certain FDs

Our data model and constraints are introduced in this section. Essentially, we will follow
the no information NULL approach by [5, 17, 18, 21, 28], but extend it by introducing
a new type of functional dependency which we call certain. The remainder of the article
will establish the significance of certain functional dependencies for SQL schema design.

We begin with basic terminology. Let A = {A1, A2, . . .} be a (countably) infinite set
of distinct symbols, called attributes. Attributes represent column names of tables. A
table schema is a finite non-empty subset T of A. Each attribute A of a table schema T
is associated with an infinite domain dom(A) which represents the possible values that
can occur in column A. In order to encompass incomplete information the domain of
each attribute contains the null marker, denoted by ⊥. The interpretation of ⊥ is to
mean “no information” [5, 17, 18, 21, 28]. We stress that the null marker is not a domain
value. In fact, it is a purely syntactic convenience that we include the null marker in the
domain of each attribute as a distinguished element.

For attribute sets X and Y we may write XY for their set union X ∪ Y . If X =
{A1, . . . , Am}, then we may write A1 · · ·Am for X. In particular, we may write A to
represent the singleton {A}. A tuple over T is a function t : T →

⋃
A∈T dom(A) with

t(A) ∈ dom(A) for all A ∈ X. For X ⊆ T let t[X] denote the restriction of the tuple t
over T to X. We say that a tuple t is X-total if t[A] 6= ⊥ for all A ∈ X. A tuple t over
T is said to be a total tuple if it is T -total. A table I over T is a finite multiset of tuples
over T . A table I over T is a total table if every tuple t ∈ I is total. Let t, t′ be tuples
over T . We define weak/strong similarity of t, t′ on X ⊆ T as follows:

t[X] ∼w t
′[X] :⇔ ∀A ∈ X.

(t[A] = t′[A] ∨ t[A] = ⊥ ∨ t′[A] = ⊥)
t[X] ∼s t

′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] 6= ⊥)
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Hence, strong similarity of t, t′ on X means for each attribute A of X that the two
values t[A] and t′[A] are both total and identical, and weak similarity of t, t′ on X means
for each attribute A of X that the two values t[A] and t′[A] are identical or at least one
of them is ⊥. Weak and strong similarity coincide for tuples that are X-total. In such
“classical” cases we denote similarity by t[X] ∼ t′[X]. We will use the phrase t, t′ agree
interchangeably for t, t′ are similar.

A null-free subschema (NFS) over table schema T is an expression TS where TS ⊆ T .
The NFS TS over T is satisfied by a table I over T iff I is TS-total. In SQL, we can
declare attributes to be NOT NULL, and the set of these attributes forms an NFS over the
table schema. We sometimes refer to the pair (T, TS) as table schema.

We say that X ⊆ T is a key for the total table I over T , denoted by I ` X, if there
are no two different tuples t, t′ ∈ I that agree on X. The following notions of possible
and certain keys were introduced in [21]. Given a table I on T , we say that X ⊆ T is
a possible/certain key for I, denoted by p 〈X〉 and c 〈X〉 respectively, if no two tuples
in I with distinct tuple identities are strongly (weakly) similar on X. In this paper, we
introduce the following notions of possible and certain functional dependencies.

Definition 1 (Possible/Certain FD)
Let X, Y ⊆ T . We call an expression of the form X s→ Y a possible functional depen-
dency (p-FD), and an expression of the form X w→ Y a certain functional dependency
(c-FD) on T . A possible (certain) FD X s→ Y (X w→ Y ) holds for a table I over T , if
for every pair of tuples t, t′ ∈ I strong (weak) agreement on X implies equality on Y .

I ` X s→ Y :⇔ ∀t, t′ ∈ I. t[X] ∼s t
′[X]⇒ t[Y ] = t′[Y ]

I ` X w→ Y :⇔ ∀t, t′ ∈ I. t[X] ∼w t
′[X]⇒ t[Y ] = t′[Y ]

Intuitively, possible FDs hold if it is possible to satisfy the FD classically, that is, there
is some replacement of ⊥ occurrences in columns of the LHS by some domain values that
will satisfy the FD classically; and certain FDs hold if it is certain to satisfy the FD
classically, that is, every replacement of ⊥ occurrences in columns of the LHS by some
domain values will satisfy the FD classically. We do not impose weak or strong similarity
for the RHS, in contrast to [24]. Intuitively, the LHS identifies a sub-entity (possibly or
certainly), and the (possible or certain) FD expresses that matching sub-entities must
have the same RHS value - this may be known or unknown (i.e., ⊥), but if we know it in
one case it should not be stored as unknown in the other. While p-FDs were introduced
by Lien [28], and further investigated by Atzeni/Morfuni [5], and Hartmann/Link [18],
c-FDs are new to the best of our knowledge.

For a set Σ of constraints over table schema T we say that a table I over T satisfies
Σ if I satisfies every σ ∈ Σ. If for some σ ∈ Σ the table I does not satisfy σ we say that
I violates σ (and violates Σ). A table I over (T, TS) is a table I over T that satisfies TS.
A table I over (T, TS,Σ) is a table I over (T, TS) that satisfies Σ.

One may wonder at this point whether our definition of c-FDs is practical, that is,
whether it allows us to express “desirable” constraints that cannot be expressed with
other notions of FDs. For this, consider Example 1.
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Example 1 Consider the following relation where name and appointment are NOT NULL:

n(ame) d(ob) a(ppointment)
John Smith 19/05/1969 DB Admin
John Smith 01/04/1971 Finance Manager
John Smith ⊥ Programmer

James Brown ⊥ Programmer

A reasonable constraint would be that every employee should be uniquely identifiable by
their name and date of birth. This is violated in the table above: While rows 1, 2 and 4
clearly refer to distinct employees, it is not clear which of the two John Smiths the third
row refers to, if either.

Our constraint can be expressed as the c-FD nd w→ d. To satisfy it, we would have to
(e.g.) assign a date of birth to the third row, identifying the employee as one of the two
previous John Smiths (or as a distinct third John Smith). None of the previously studied
notions of FD can express this constraint, as further explained in Section 3. While the
c-key c 〈nd〉 comes close, it would prevent an employee from having two appointments,
which may not be desirable.

The example shows that non-trivial c-FDs of the form X w→ X can be practical.
Going further, we expect that one will be hard-pressed to find an example where a c-FD
of the form X w→ Y is sensible, but X w→ XY is not. In Section 6 we will see that
c-FDs, and particularly those of the form X w→ XY , enable SQL schema decomposition.

3 Related Work

Schema design is a core research topic for many data models: Relational [26, 31, 34],
conceptual [37], nested [23, 34], object-oriented [9, 36], XML [3, 41], and RDF [20,
22]. Our main question asks how to generalize relational schema design to SQL, where
duplicate and partial information readily occur, in particular in modern applications.
The fact that only little research has been reported in over forty years is already witness
to the challenges that this question poses.

As main enabling results we consider the lossless decomposition property of relations
that satisfy FDs [35], the Boyce-Codd normal form (BCNF) [10, 19] and its semantic
justification [7, 15, 40], the BCNF-decomposition [38], Armstrong’s axioms [4] and linear-
time algorithms to decide FD implication [6, 13] as tools that facilitate decompositions
[8].

We review the most significant extensions of classical FDs in data models with partial
information. The two most prolific interpretations of the null marker are “value unknown
at present” [11] and “no information” [28]. First we discuss the former interpretation,
which has a possible world semantics as its foundation but cannot express non-existing
data. In [39] a three-valued model of FD satisfaction is explored. Here, all possible worlds
over an instance I are considered, and an FD either holds, does not hold, or may hold on
I, iff it holds for all, none or some (but not all) possible worlds, respectively. In [24] the
notions of weak and strong FDs are introduced. A weak FD holds on some possible world,
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while a strong FD holds on every possible world. The authors show that the combined
class of weak and strong FDs does not enjoy any finite axiomatization. In [25] the same
authors study several database design problems for partial relations. Here, a set of FDs
is satisfied by such a partial relation, if there is some possible world in which all FDs
of the given set are satisfied. Under such assumption, the issue of decomposing partial
relations is avoided altogether. This, however, is the main focus in practice and of our
current work. Secondly, we discuss proposals related to the “no information” approach,
which encompasses unknown as well as non-existing data [28] and has therefore been
adopted by SQL. Lien defined FDs in this context to hold if strong similarity on the LHS
of an FD implies equality on its RHS [28]. Our p-FDs thus correspond to Lien’s notion
of an FD. P-FDs enjoy a partial decomposition theorem in the sense that the X-total
projection of a partial relation I over schema T that satisfies the p-FD X → Y is the
lossless join of the X-total projections of I[XY ] and I[X(T − XY )]. The work in [16]
proposed an SQL normal form with respect to p-FDs, but lossless decompositions are only
achievable with respect to p-FDs X s→ Y where all attributes in X are NOT NULL. What
we show in our work is that c-FDs enjoy a full decomposition theorem. Atzeni/Morfuni
characterized the implication problem for p-FDs together with NOT NULL constraints [5],
and Hartmann/Link extended this work to include “possible” multivalued dependencies
[17, 18]. Our notions of p-FDs and c-FDs are built on the notions of p-keys and c-keys
recently introduced by Köhler/Link/Zhou [21]. Since duplicate information is present,
p-FDs and c-FDs cannot express p-keys or c-keys. Hence it is necessary to consider all
four notions together to accommodate partial and duplicate information that occur in
SQL data.

Our main novelty are certain FDs (Definition 1) which have not been studied be-
forehand. Our results show that c-FDs are the right notion for SQL schema design.
Previously studied notions of FDs are not suitable for decompositions. Indeed, c-FDs
allow us to generalize the main enabling results from relational to SQL schema design.
This is impossible to achieve with the other notions of FDs, as they cannot express many
constraints that can be expressed by c-FDs. A brief comparison of the different notions
is given by the following example.

Example 2 Consider the following relation:

e(mployee) d(ept) m(anager) s(alary)
Turing CS von Neumann ⊥
Turing ⊥ Gödel ⊥

Functional dependencies on this relation are satisfied (T) or violated (F) by the different
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definitions as follows:

[39] [24] [24] [28] here
weak strong possible certain

e→ d unk T F F F
e→ m F F F F F
e→ s unk T F T T
d→ d T T T T F
d→ m unk T F T F
m→ e T T T T T
m→ d unk T T T T

Note that the c-FD d w→ d does not hold.

In summary, the novel notion of a certain functional dependency allows us to develop
the first schema design approach to SQL that generalizes relational schema design. C-
FDs ensure that the problems studied in this paper are substantially different from those
in the research literature.

4 Schema Design Foundations

The same way classical relation schema design is founded on the ability to efficiently
reason about FDs, we will see that SQL schema design is founded on the ability to
efficiently reason about the combined class of p-keys, c-keys, p-FDs, c-FDs and NOT NULL

constraints. This chapter establishes these reasoning tools. Many other data management
tasks, including data profiling, transaction processing, and query optimization, benefit
from the ability to decide the implication problem of semantic constraints.

In our context, the implication problem can be defined as follows. Let (T, TS) denote
the schema under consideration. For a set Σ ∪ {ϕ} of constraints over (T, TS) we say
that Σ implies ϕ, denoted Σ � ϕ, iff every table over (T, TS) that satisfies Σ also satisfies
ϕ. The implication problem for a class C of constraints is to decide, for arbitrary (T, TS)
and Σ ∪ {ϕ} in C, whether Σ implies ϕ.

We will first establish axiomatic and algorithmic characterizations of the implication
problem for the class of p- and c-FDs in the presence of NOT NULL constraints, and then
show how to add p- and c-keys.

4.1 Possible and Certain FDs

Axioms facilitate our understanding and help us reason about constraints. In our case,
the axioms enable us to establish a semantic justification for our normal form proposal of
well-designed SQL schemata in Section 5. The definitions of sound and complete sets of
axioms are standard [34]. Table 1 shows the set F of inference rules which forms a sound
and complete axiomatization for p-FDs, c-FDs and NOT NULL constraints. Here, X → Y
is to mean either X s→ Y or X w→ Y , substituted uniformly for each rule. That is,
either all unspecified FDs X → Y in a rule are certain, or all are possible.
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Reflexivity (R):
X s→ X

L-Augmentation (A):
X → Y

XZ → Y

Strengthening (S):
X s→ Y

X w→ Y
X ⊆ TS

Union (U):
X → Y X → Z

X → Y Z

Decomposition (D):
X → Y Z

X → Y

Pseudo-Transitivity (T):
X → Y XY w→ Z

X → Z

Null-Transitivity (NT):
X s→ Y XY s→ Z

X s→ Z
Y ⊆ TS

Table 1: Axiomatization F of p/c-FDs and NOT NULLs

Theorem 1 The set F of inference rules from Table 1 are sound and complete for the
implication of certain and possible functional dependencies and NOT NULL constraints.

Given Purchase = T = oicp with TS = ocp, let Σ consist of the p-FD oi s→ c
and the c-FD ic w→ p. Applying L-augmentation to ic w→ p results in oic w→ p, and
applying pseudo-transitivity to oi s→ c and oic w→ p results in oi s→ p. As F is sound,
we conclude that Σ implies oi s→ p. For deciding if Σ implies the c-FD oi w→ p, we
could check if oi w→ p can be inferred from Σ using F. This is inefficient and does not
make good use of the given input oi w→ p.

The notion of an attribute closure was instrumental in deriving a linear-time decision
algorithm for traditional FDs [6]. Here, we introduce the notions of p- and c-closures,
and show that they serve the same purpose in the SQL context.

Definition 2 (closure)
Let (T, TS,Σ) be a schema with Σ containing c-FDs and p-FDs. The p-closure (c-closure)
of X ⊆ T is the set of all A ∈ T such that X s→ A (X w→ A) is implied by Σ:

X∗pΣ,TS
:= {A ∈ T | Σ � X s→ A}

X∗cΣ,TS
:= {A ∈ T | Σ � X w→ A}

We simply write X∗p, X∗c when Σ, TS is understood.

Classically, an FD X → Y is implied by an FD set Σ iff Y is a subset of the attribute
closure of X. We establish corresponding properties for p- and c-closures. Hence, the
implication problem reduces to their computations.

Theorem 2 Let (T, TS,Σ) be a schema with Σ containing p-FDs and c-FDs. Then Σ
implies X s→ Y if and only if Y ⊆ X∗p, and Σ implies X w→ Y if and only if Y ⊆ X∗c.
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Algorithm 1 p-Closure
Input: Σ, TS, X
Output: X∗p

1: C := X
2: repeat
3: Cold := C
4: for all Y w→ Z ∈ Σ with Y ⊆ C do
5: C := C ∪ Z
6: for all Y s→ Z ∈ Σ with Y ⊆ (C ∩ TS) ∪X do
7: C := C ∪ Z
8: until C = Cold

9: return C

Algorithm 2 c-Closure
Input: Σ, TS, X
Output: X∗c

1: C := X ∩ TS
2: repeat
3: Cold := C
4: for all Y w→ Z ∈ Σ with Y ⊆ C ∪X do
5: C := C ∪ Z
6: for all Y s→ Z ∈ Σ with Y ⊆ C ∩ TS do
7: C := C ∪ Z
8: until C = Cold

9: return C

In contrast to the relational model, neither (·)∗c nor (·)∗p is an actual closure operator:
X∗c need not contain X, and (X∗p)∗p = X∗p does not hold in general. Nevertheless we will
keep referring to them as closures for the sake of consistency with existing terminology.
Indeed, the following properties are important in establishing the soundness of algorithms
for the computation of p- and c-closures.

Lemma 1 The following statements holds: i) If X ⊆ Y then X∗p ⊆ Y ∗p and X∗c ⊆ Y ∗c,
ii) X,X∗c ⊆ X∗p, and iii) (X∗c)∗c ⊆ X∗c and (X∗p)∗c ⊆ X∗p.

Algorithms 1 and 2 compute the p- and c-closures of a given attribute set for a given
set of p- and c-FDs. Both algorithms are provably correct and operate in quadratic time.
In both cases, linear time complexity is achieved by applying the optimization techniques
of [6].

Theorem 3 Algorithms 1 and 2 are correct, and the implication problem for the com-
bined class of p-FDs, c-FDs, and NOT NULL constraints can be decided in linear time.

Recall our schema Purchase = oicp with TS = ocp and where Σ consists of the
p-FD oi s→ c and the c-FD ic w→ p. We saw that oi s→ p is implied by Σ, which is
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key-Augmentation (kA):
(p/c) 〈X〉

(p/c) 〈XY 〉

key-Strengthening (kS):
p 〈X〉
c 〈X〉

X ⊆ TS

key-Weakening (kW):
c 〈X〉
p 〈X〉

Table 2: The axiomatization K for p/c-keys

confirmed by the p-closure oi∗p = oicp of oi for Σ, and checking that p ∈ oi∗p. To see if
oi w→ p is implied by Σ, we compute the c-closure oi∗c = o of oi for Σ and realize that
p /∈ oi∗c. Hence, Σ does not imply oi w→ p. This is confirmed by the following instance
over (T, TS,Σ) which violates oi w→ p.

4.2 Interaction with Keys

As FDs cannot express keys over instances with duplicate tuples, and keys are funda-
mental in schema design, we extend our results to include p-keys and c-keys. For this
purpose, we recall the axiomatization K from [21] for p-keys, c-keys, and NOT NULL con-
straints, as shown in Table 2. Here, (p/c) 〈X〉 means either p 〈X〉 or c 〈X〉, substituted
uniformly in the key-Augmentation rule.

We now target an axiomatization for p-keys, c-keys, p-FDs, c-FDs, and NOT NULL

constraints together. We use the rules in F for p-FDs and c-FDs, K for p-keys and
c-keys, and the rules in FK from Table 3 that capture the interaction of p/c-keys and
p/c-FDs. Here, X → Y is to mean either X s→ Y or X w→ Y , while (p/c) 〈X〉 is to mean
either p 〈X〉 or c 〈X〉, substituted uniformly for each rule. That is, either all unspecified
keys and FDs are certain, or all are possible.

Theorem 4 The rules from sets F in Table 1, K from Table 2, and FK from Table 3
together are sound and complete for the implication of p-keys, c-keys, p-FDs, c-FDs, and
NOT NULL constraints.

Given Purchase = oicp with TS = ocp, let Σ consist of the p-FD oi s→ c and the
p-key p 〈oic〉. An application of key-Null-transitivity to both elements of Σ is possible as
c ∈ TS, and results in p 〈oi〉, which is thus implied by Σ. The question remains how to
decide implication efficiently, e.g., how to decide if Σ implies oi w→ p.

Theorem 4 can be shown by reducing the implication problem to the class of p/c-keys
and the class of p/c-FDs alone. The reduction is embodied in the following definition.
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key-FD-Weakening (kfW):
(p/c) 〈X〉
X → Y

key-Transitivity (kT):
X → Y c 〈XY 〉

(p/c) 〈X〉

key-Null-Trans. (kNT):
X s→ Y p 〈XY 〉

p 〈X〉
Y ⊆ TS

Table 3: Set FK of inference rules for the interaction of p/c-keys, p/c-FDs and NOT NULL

constraints

Definition 3 (FD-projection/key-projection)
Let Σ be a set of p-keys, c-keys, p-FDs, and c-FDs over T . The FD-projection of Σ,
denoted by Σ|FD, is obtained by replacing each key X with an FD X → T : Σ|FD := {X →
Y ∈ Σ} ∪ {X s→ T | p 〈X〉 ∈ Σ} ∪ {X w→ T | c 〈X〉 ∈ Σ}. The key-projection Σ|key of
Σ contains all keys in Σ: Σ|key := {(p/c) 〈X〉 ∈ Σ} .

FD-projection reduces the implication of an FD by a set of keys and FDs to the
implication of an FD by a set of FDs alone: For a p- or c-FD X → Y over (T, TS) and a
set Σ of p-keys, c-keys, p-FDs, and c-FDs over (T, TS), Σ implies X → Y iff Σ|FD implies
X → Y . Given Purchase = oicp with TS = ocp and Σ = {oi s→ c, p 〈oic〉}, we have
Σ|FD = {oi s→ c, oic s→ p}. Now, Σ implies oi w→ p iff Σ|FD implies oi w→ p. However,
the latter is true iff p ∈ (oi)∗c = o. Consequently, Σ does not imply oi w→ p, as the
following instance witnesses:

Key-projection reduces the implication of a key by a set of keys and FDs to the

implication of a key by a set of keys alone: (i) Σ implies p 〈X〉 iff Σ|key implies c
〈
X∗pΣ|FD

〉
or p

〈
X(X∗pΣ|FD

∩ TS)
〉

, and (ii) Σ implies c 〈X〉 iff Σ|key implies c
〈
XX∗cΣ|FD

〉
. Given

Purchase = oicp with TS = ocp and Σ = {oi s→ c, p 〈oic〉}, we have Σ|key = {p 〈oic〉}.
By (i), Σ implies p 〈oi〉 if Σ|key implies p

〈
oi(oi∗pΣ|FD

∩ ocp)
〉

= p 〈oic〉. Consequently, Σ

does imply p 〈oi〉. Our reduction and our closure algorithms entail the following result.

Theorem 5 The implication problem for the combined class of p-keys, c-keys, p-FDs,
c-FDs, and NOT NULL constraints can be decided in linear time of the input.

5 Normal Forms

Generalizing from the relational model, we stipulate the absence of data redundancy
from any database instance as a semantic criterion for an SQL schema to be well-de-
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signed. Using our axiomatization and linear-time decidability of the implication problem
from Section 4 we establish an effective and efficient syntactic characterization for well-
designed SQL schemata in the form of a Boyce-Codd normal form (BCNF) proposal,
based on p-keys, c-keys, p-FDs, c-FDs, and NOT NULL constraints.

5.1 Normal Form Definitions

We first define the notion of data redundancy, and say that a schema is in Redundancy-
free normal form if it only permits instances in which no data redundancy occurs. Our
notion of data redundancy follows Vincent’s seminal approach [40], which is indepen-
dent from the type of constraint. Informally, an occurrence of a value in an instance
is redundant if every change to a different value results in the violation of some given
constraint.

Definition 4 (redundancy)
Let (T, TS,Σ) be a schema, I an instance over it, and p0 a position (row and column)

in I. A p0-value substitution of I is an instance I ′ over (T, TS,Σ) which differs from I
precisely in the value at position p0. We say that the value at position p0 is redundant
in I if I possesses no p0-value substitution. We call I redundancy-free if it contains no
redundant positions. We say that the schema (T, TS,Σ) is in Redundancy-free normal
form (RFNF) if and only if all instances over the schema are redundancy-free.

Definition 4 stipulates what we want from a schema but does not allow us to identify
schemata that meet the conditions of RFNF since there can be infinitely many instances
over the schema. However, finding some instance with some redundant position tells us
that the given schema is not in RFNF. For example, the schema Purchase = oicp with
PurchaseS = oip and Σ = {ic w→ p} is not in RFNF: the top instance in Figure 5
contains redundant positions (marked bold). In the relational model, BCNF characterizes
syntactically those schemata that are in RFNF [40]. The BCNF condition for schema
(T,Σ) says that for every non-trivial FD X → Y that can be inferred from Σ by the
Armstrong axioms, the FD X → T can also be inferred from Σ by the Armstrong axioms.
Using our axiomatization for p-keys, c-keys, p-FDs, and c-FDs, we can extend the BCNF
condition from relational to SQL databases. Naturally, it requires the left-hand sides of
all inferable and non-trivial p- and c-FDs to be inferable p- and c-keys, respectively.

Definition 5 (BCNF)
Let (T, TS,Σ) be a schema, with Σ consisting of p-keys, c-keys, p-FDs, and c-FDs. We say
that (T, TS,Σ) is in Boyce-Codd Normal Form (BCNF) if and only if (i) for all non-trivial
p-FDs X s→ Y ∈ Σ+, p 〈X〉 ∈ Σ+, and (ii) for all non-trivial c-FDs X w→ Y ∈ Σ+,
c 〈X〉 ∈ Σ+.

Definition 5 is purely syntactic using our axiomatization for p-keys, c-keys, p-FDs,
c-FDs, and NOT NULL constraints. Another important aspect of Definition 5 is its invari-
ance under different representations of the given constraints. Indeed, two schemata are
equivalent iff they have the same set of instances. For equivalent schemata (T, TS,Σ1)
and (T, TS,Σ2), (T, TS,Σ1) is in BCNF iff (T, TS,Σ2) is in BCNF. In fact, (T, TS,Σ1)

16



and (T, TS,Σ2) are equivalent iff the syntactic closures Σ+
1 and Σ+

2 are the same, i.e., the
sets of constraints that can be inferred from Σ by a sound and complete axiomatization.
So, Definition 5 ensures invariance under different constraint representations, but means
we cannot directly decide if a given schema is in BCNF. Fortunately, we can show the
following result.

Theorem 6 The schema (T, TS,Σ) is in BCNF if and only if (i) for all non-trivial
X s→ Y ∈ Σ, p 〈X〉 ∈ Σ+, and (ii) for all non-trivial X w→ Y ∈ Σ, c 〈X〉 ∈ Σ+.

Theorem 6 shows that input p-FDs and c-FDs suffice to decide if a given schema is
in BCNF. The linear-time decidability of the underlying implication problem gives us a
quadratic upper time bound to decide the BCNF condition.

Theorem 7 The problem whether a given schema is in BCNF can be decided in time
quadratic in the input.

The schema Purchase = oicp with PurchaseS = oip and Σ = {ic w→ p} is not in
BCNF as the c-FD ic w→ p is non-trivial, and the c-key c 〈ic〉 is not implied by Σ. Given
PurchaseS = ∅ and Σ = {oic w→ p, c 〈oicp〉} instead the schema is indeed in BCNF:
the c-key c 〈oic〉 is implied by Σ because p ∈ (oic)∗cΣ|FD

.
Theorem 7 ensures that we can decide efficiently if a given schema is in BCNF.

However, deciding if the projection of a given schema (T, TS,Σ) onto a given attribute
set X ⊆ T is in BCNF is co-NP complete. Here, the projection of a given schema
(T, TS,Σ) onto a given attribute set X ⊆ T is defined as the schema (X,X ∩ TS,Σ[X])
where Σ[X] = {Y → Z ∈ Σ+ | Y Z ⊆ X} ∪ {(p/c) 〈Y 〉 ∈ Σ+ | Y ⊆ X}.

Theorem 8 The problem of deciding whether the projection of a given schema onto a
given attribute set is in BCNF (RFNF) is co-NP complete.

5.2 Semantic Justification

We now pinpoint what our BCNF proposal achieves: It captures schemata that permit
exactly those instances that are free from data redundancy.

Theorem 9 A schema (T, TS,Σ) is in RFNF if and only if (T, TS,Σ) is in BCNF.

It is a corollary of Theorem 7 and Theorem 9 that we can decide efficiently whether
a given schema is in RFNF.

Theorem 10 The problem whether a given schema is in RFNF can be decided in time
quadratic in the input.

Purchase = oicp with PurchaseS = oip and Σ = {ic w→ p} is not in RFNF, as it
is not in BCNF. However, Purchase with PurchaseS = ∅ and Σ = {oic w→ p, c 〈oicp〉}
is in RFNF, since it is in BCNF as observed earlier.

The proof of Theorem 9 requires us to construct instances with data redundancy
whenever the BCNF condition is violated. This is achieved by the following lemma.
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Lemma 2 (construction lemma) Consider a schema (T, TS,Σ) and table I = {t0, t1}
over (T, TS).

i) Let Σ 2 p 〈X〉 and t0, t1 constructed as

ti[A] =


0 if A ∈ X∗p and A ∈ X ∪ TS
⊥ if A ∈ X∗p and A /∈ X ∪ TS
i if A /∈ X∗p

Then Σ holds on I.

ii) Let Σ 2 c 〈X〉 and t0, t1 constructed as

ti[A] =


0 if A ∈ XX∗c and A ∈ TS
⊥ if A ∈ XX∗c and A /∈ TS
i if A /∈ XX∗c

Then Σ holds on I.

6 SQL Schema Normalization

In practice we cannot expect that our first attempt at designing a suitable SQL schema
meets the BCNF condition. Hoping to achieve BCNF with a new attempt is doomed
for failure and a waste of resources. Instead, it is desirable to transform the current
schema design into one that meets the normal form condition. This process is well-
known as normalization, whose primary goal is the elimination of data redundancy. In
relational databases, one can always transform a given schema into BCNF, without loss of
information. The two enabling properties for this lossless BCNF decomposition process
are that i) T -relations which exhibit an FDX → Y are the lossless join of their projections
on XY and X(T −XY ), and ii) if X was not a key over T , then X will be a key over the
schema XY . We now show that normalization of SQL schemata is more involved. First
we show that c-FDs enable us to generalize the decomposition theorem from relations
to SQL instances, using multiset/set-projections. Unlike the idealized special case of
relations, decompositions do not always ensure that the resulting projected schema is
in BCNF. For this purpose, we identify total FDs as an expressive sub-class of c-FDs
that ensure the elimination of redundant data value occurrences different from the null
marker. As the null marker is not a data value, we re-define RFNF to exclude null markers
from redundant data value occurrences and term this normal form Value redundancy-free
normal form (VRNF). We then propose SQL-BCNF as a normal form that characterizes
VRNF syntactically. SQL-BCNF is invariant under different representations of constraint
sets, and can be decided in quadratic time. Finally, we establish an algorithm that
transforms a given schema into one in VRNF (SQL-BCNF).
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6.1 Lossless Decompositions

In relational databases, FDs play a vital role in schema decomposition. The central
decomposition theorem states that, given an FD X → Y over table schema T , we can
decompose T into X(T −XY ) and XY without losing information, i.e., every instance I
that satisfies X → Y also satisfies I = I[X(T −XY )] ./ I[XY ]. Here, I[X] denotes the
set projection of I onto X. SQL instances can be multi-sets and we thus require different
notions of projection.

Definition 6 (multi-set notations)
We denote multi-sets using the notation {{a, a, b}}. Let I be a table over T , and X ⊆ T .
We denote the multi-set projection of I onto X by I[[X]] := {{t[X] | t ∈ I}}. As usual,
set projection is denoted by I[X].

Accordingly, sub-schemata of a decomposition may contain set as well as multi-set
projections.

Definition 7 (decomposition)
Let T be a schema and D = {[Ti], . . . , [[Tj]], . . .} consist of a set of sub-schemata with⋃
D = T , where the different notations indicate set and multi-set projection, respectively.

Then D is a decomposition of T .

Similar to the relational model, we can introduce lossless decompositions of instances
and schemata. Intuitively here, a decomposition is lossless when it recovers the original
instance by joining the projected components of its decomposition. We mean by join an
equality join, that is we only require equality of data values on common attributes and
not strong similarity.

Definition 8 (lossless)
We call a decomposition of an instance I lossless if a join of its components results in
I. We call a schema decomposition lossless if it induces a lossless decomposition for all
instances. We call a schema decomposition a BCNF decomposition if all its components
are in BCNF.

Lien studied only p-FDs and showed that lossless decomposition can only be done for
p-FDs X s→ Y where X ⊆ TS [28]. Hence, we will focus on c-FDs. Theorem 11 shows
that c-FDs X w→ Y over T enable lossless schema decompositions into [[X(T −XY )]]
and [XY ]. It subsumes the classical decomposition theorem for relations.

Theorem 11 Let (T, TS,Σ) be a schema with Σ � X w→ Y , and I an instance over
(T, TS,Σ). Then the following holds: I = I[[X(T −XY )]] on I[XY ] .

For example, consider Purchase with c-FD ic w→ p and the top instance purchase

from Figure 5. The decomposition of purchase into purchase[[oic]] and purchase[icp],
as shown at the bottom of Figure 5, is lossless.

Theorem 11 shows the significance of c-FDs for achieving lossless SQL schema decom-
positions. However, the goal of schema design is to eliminate data redundancy. In our

19



example, purchase[icp], shown at the bottom right of Figure 5, still contains redundant
data value occurrences. The reason is that purchase[icp] does not satisfy the c-key c 〈ic〉.
In fact, c 〈ic〉 does not hold on purchase[icp] because the c-FD ic w→ icp does not hold
on purchase, even though ic w→ p does hold. Intuitively, the next result shows that
c-FDs of the form X w→ XY eliminate data redundancy on the [XY ] component of a
lossless decomposition.

Theorem 12 Let (T, TS,Σ) be a schema with Σ � X w→ Y,X ∩ Y = ∅, and I an
instance over (T, TS,Σ). If Σ � X w→ XY , then c 〈X〉 holds on I[XY ].

Theorem 12 establishes the significance of c-FDs X w→ XY for SQL schema design.
Accordingly, we name them.

Definition 9 (total FD)
We call a certain FD of the form X w→ XY total.

We will focus on schema decompositions based on total FDs and c-keys. As this
includes p-FDs X s→ Y where X ⊆ TS, our decomposition approach generalizes that for
p-FDs [28]. Still, our initial goal of obtaining lossless BCNF decomposition is elusive,
even if we consider only total FDs.

Theorem 13 There are schemata for which no lossless BCNF decomposition exists, even
if only total FDs are given.

The following example provides a proof for Theorem 13.

Example 3 Consider the following variation of our running example:

(oicp, oip, {oic w→ cp}).

Here, the same item may be ordered from different catalogues at different prices (e.g.
promotions with purchase limits), as long as all catalogues are known. Applying Theorem
11, we get

oicp
{oic w→ cp}

[[oic]]
{oic w→ c}

[oicp]
{c 〈oic〉}

Here the sub-schema oic contains a non-trivial c-FD but no keys, and cannot be decom-
posed further.
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6.2 Eliminating Value Redundancy

Theorem 13 showed that decomposing SQL schemata into BCNF without loss of informa-
tion is elusive. While this makes it impossible to always eliminate all data redundancy,
it is useful to investigate the type of data redundancy that resists elimination. For this
purpose, consider the following instance over [oic] from Example 3:

Here, the only redundant positions are those in which the null marker NULL (⊥)
occurs. Substituting one occurrence of ⊥ by any domain value will result in an instance
that violates oic w→ c. However, neither position of Kingtoys is redundant: After
substituting one position by Amazon the given c-FD oic w→ c is still satisfied.

While it would be nice to also avoid redundant ⊥-positions, it may not be appropriate
to speak of redundant data occurrences in this case. In fact, ⊥ is a marker not to be
confused with a domain value. Furthermore, the amount of information duplicated by
redundant ⊥-positions is intuitively less than for any actual domain value. This insight
provides a strong motivation to revise our original semantic normal form proposal of
RFNF to the following.

Definition 10 (VRNF)
We say that a position in an instance I is value redundant if it is not ⊥ and redundant.
We call I free from value redundancy if it contains no positions that are value redundant.
We say that the schema (T, TS,Σ) is in Value redundancy-free normal form (VRNF) if
and only if all instances over the schema are free from value redundancy.

We want to efficiently decide whether a given schema is in VRNF. Based on our
findings on lossless decompositions we will focus on c-keys and c-FDs, and propose a
syntactic normal form that we show to be equivalent to VRNF. For this purpose, we
require one more definition that helps us distinguish between trivial FDs in the relational
model (where an FD of the form X → Y with Y ⊆ X is satisfied by all relations) from
trivial c-FDs.

Definition 11 (internal/external FD)
We call a functional dependency X → Y internal if Y ⊆ X. Otherwise we call it external.

Indeed, an internal c-FD X w→ Y is only trivial if Y ⊆ TS. For example, on
(T = oicp, TS = oip) the internal c-FD oic w→ c is not trivial since c /∈ TS. We
now propose SQL-BCNF as another syntactic normal form, requiring the LHS of each
inferable external c-FD to be an inferable c-key.
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Definition 12 (SQL-BCNF)
Let (T, TS,Σ) be a schema, with Σ consisting of c-keys and c-FDs. We say that (T, TS,Σ)
is in SQL-BCNF if and only if for every external c-FD X w→ Y ∈ Σ+, c 〈X〉 ∈ Σ+.

As for our BCNF, the SQL-BCNF condition is invariant under equivalent constraint
representations, and using our linear-time decidability of the implication problem for c-
keys and c-FDs, we can show that it is decidable in quadratic time in the input if a given
schema is in SQL-BCNF.

Theorem 14 A schema (T, TS,Σ) is in SQL-BCNF if and only if for every external
c-FD X w→ Y ∈ Σ, c 〈X〉 ∈ Σ+. It can therefore be decided in time quadratic in the
input whether a given schema is in SQL-BCNF.

The schema (T = oicp, TS = oip,Σ = {oic w→ cp}) of Example 3 is not in SQL-
BCNF because the c-FD oic w→ cp is external but the c-key c 〈oic〉 is not implied by Σ.
However, both schemata (T1 = oic, T1,S = oi,Σ1 = {oic w→ c}) and (T2 = oicp, T2,S =
oip,Σ2 = {c 〈oic〉}) are in SQL-BCNF.

Our semantic justification for proposing SQL-BCNF is its ability to permit exactly
those instances that are free from redundant data value occurrences.

Theorem 15 A schema (T, TS,Σ) is in VRNF if and only if it is in SQL-BCNF.

For examples, the given schema (T = oicp, TS = oip,Σ = {oic w→ cp}) is not in
VRNF, but both schemata (T1 = oic, T1,S = oi,Σ1 = {oic w→ c}) and (T2 = oicp, T2,S =
oip,Σ2 = {c 〈oic〉}) are in VRNF.

6.3 Lossless VRNF decompositions

We are now ready to compute lossless VRNF decompositions, based on any given set of
total FDs and certain keys. Algorithm 3 generalizes the classical BCNF decomposition
algorithm from relational databases, which is given by the special case where TS = T and
Σ implies some p- or c-key. Already the classical algorithm runs in exponential time in
the input, due to computing the set of constraints that hold on a sub-schema. Algorithms
that produce lossless BCNF decompositions in polynomial time [38] decompose projected
schemata that are already in BCNF, thereby making the de-normalization effort more
difficult.

Algorithm 3 always returns a lossless VRNF decomposition of the given input in time
exponential in the input.

Theorem 16 Algorithm 3 is correct and terminates in exponential time in the input.

The correctness of Algorithm 3 is ensured as the totality of (LHS-minimal) FDs on
sub-schemata is preserved during decomposition. That is, for every LHS-minimal FD
X w→ Y implied by a set Σ of total FDs and certain keys, the total FD X w→ XY is
also implied by Σ.
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Algorithm 3 VRNF decomposition
Input: Schema (T, TS ,Σ) where Σ consists of certain keys and total FDs.
Output: Lossless VRNF decomposition D.
1: Initialize D := { [[T ]] }
2: while D is not in VRNF do
3: pick [[Ti]] ∈ D or [Ti] ∈ D not in VRNF, remove from D
4: pick external X w→ XY on Ti implied by Σ where Σ 2 c 〈X〉
5: if [[Ti]] picked then
6: add [[X(Ti −XY )]] and [XY ] to D
7: else
8: add [X(Ti −XY )] and [XY ] to D
9: return D

Continuing Example 3, on input (T = oicp, TS = oip,Σ = {oic w→ cp}), Algorithm 3
would return the lossless VRNF decomposition: (T1 = oic, T1,S = oi,Σ1 = {oic w→ c})
and (T2 = oicp, T2,S = oip,Σ2 = {c 〈oic〉}).

Deciding if the projection of a given schema onto a given attribute set is in VRNF
(SQL-BCNF) is co-NP complete.

Theorem 17 The problem of deciding whether the projection of a given schema onto a
given attribute set is in SQL-BCNF (VRNF) is co-NP complete.

7 Experiments

We conducted experiments to get some indication of how frequent certain FDs are, and
how often they can be used for schema decomposition. We also use a public data set to
illustrate our techniques and their benefits, and comment on the overheads of discovering
certain FDs from data sets. Experiments were run in Ubuntu 14.04 LTS on an AMD
FX(tm)-8350 Eight-Core Processor with 15.6 GB memory.
Quantitative Insights. We mined a total of 130 tables from the following publicly
available data sets:

• GO-termdb (Gene Ontology)
www.geneontology.org/

• IPI (International Protein Index)
www.ebi.ac.uk/IPI

• LMRP (Local Medical Review Policy)
www.cms.gov/medicare-coverage-database/

• PFAM (protein families)
pfam.sanger.ac.uk/

• RFAM (RNA families)
rfam.sanger.ac.uk/

• Naumann (benchmarks for FD mining)

https://hpi.de/naumann/projects/repeatability/data-profiling/fd.html
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• UCI (Machine Learning Repository)
https://archive.ics.uci.edu/ml/datasets.html

We classify FDs into possible FDs (p-FDs), certain FDs (c-FDs) and not-null FDs
(nn-FDs) containing no NULL columns in the LHS of the FD. Furthermore we record
the number of certain FDs which are total (t-FDs), and the number of total FDs which
(1) contain RHS attributes that do not occur on the LHS, and (2) are not certain keys.
These criteria ensure that the FD can be utilized for VRNF decomposition, and we
denote them as λ-FDs. Our results are given below. We record all non-trivial FDs with
minimal LHSs, and only once per LHS (multiple FDs of the same type with identical
LHS are combined and reported once).

nn-FDs p-FDs c-FDs t-FDs λ-FDs

847 557 419 205 83

Two factors are likely to have a significant impact on the figures above. First, con-
straints may only hold accidentally, especially when the tables examined are small. Sec-
ond, constraints that should sensibly hold may well be violated due to lack of enforcement.
We thus consider our results qualitative rather than quantitative. Still, they indicate that
c-FDs do appear frequently in practice, and are helpful in decomposing schemas further
to eliminate redundancy.

We report the relative size of tables projected onto λ-FDs, as this suggests the amount
of data redundancy avoided by decomposing into VRNF. By eliminating data redundancy
we minimize the overhead to maintain data consistency, which is the primary goal of
normalization. Our results for the 83 λ-FDs (and the 620 nn-FDs whose LHSs are not
keys) are visualized in Figure 6.

We observe a large gap in the distribution for λ-FDs, with no relative projection
sizes between 52% and 78%. Closer manual examination of the FDs and tables involved
reveals that for the majority of λ-FDs with projection size of 78% and over, the LHSs
should really be certain keys, but are not due to dirty data (e.g. identical contact
details being stored multiple times). This leaves 27 λ-FDs which could sensibly be used
for decomposition to eliminate a significant number of redundant data values, plus an
unknown number that should hold but are violated by dirty data. Similar observations
hold for nn-FDs with no clear gap in their distribution but a large number of LHSs that
should be keys.
Qualitative Insights. First, we illustrate the occurrence of a certain functional depen-
dency in a real-world data set and its use for decomposing the data set without loss of
information. For this purpose, we use the contact draft lookup table in the LMRP
database. The actual table contains 14 columns and 124 rows. Figure 7 shows a snippet
I consisting of only 5 columns and 14 rows.

The table contact draft lookup satisfies the λ-FD

σ : first name,last name,city w→
first name,last name,city,state id .

In fact, the contact draft lookup even satisfies the λ-FDs
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Figure 6: Relative sizes of projections on λ-FDs

first name,city w→ first name,last name, city, state id, and
last name,city w→ first name,last name, city, state id,

but this is probably accidental. It can further be observed that a person alone does
not functionally determine the state, because people can move. For example, Stacey
Brennan, M.D. must have moved from Columbia to Indianapolis. In particular, the FD
first name, last name → state id does not hold on contact draft lookup. The possi-
ble and certain variants of this FD coincide because the columns first name, last name,
state id do not contain null marker occurrences in the whole table. A VRNF-decomposition
of contact draft lookup using σ eliminates data redundancy: the set-projection on
[first name, last name, city, state id ] contains 105 rows, i.e., 19 sources of potential in-
consistency are eliminated. The c-key

c 〈first name, last name, city〉

holds on this projection. For snippet I we obtain the decomposition shown in Figure 8.
Finally, the c-FD city → state id already fails to hold on our snippet I, so lossless
decompositions according to this FD are not possible.

As a second example we apply Algorithm 3 to the contractor table of the LMRP
database. This table has 22 columns and 173 rows. We decompose contractor into four
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Figure 7: Snippet I of contact draft lookup

tables with the following λ-FDs (without repeating LHS attributes on the RHSs)
1. city,url w→ dmerc rgn,status
2. cmd name,phone,url w→ contractor version,status flag
3. address1,contractor bus name,contractor type id w→ url.
Table 1 has 4 attributes and 38 rows, table 2 has 5 attributes and 67 rows, table 3 has 4
attributes and 73 rows, and the remaining table has 17 attributes and 173 rows (being the
multi-set projection). In the process we eliminated 448 redundant data values, namely:
1 for dmerc rng, 135 for status, 106 for contractor version, 106 for status flag, and 100
for url. The example shows that VRNF-decomposition can also eliminate null marker
redundancies (but this is not guaranteed), in fact, we eliminated 134 of those in the
dmerc rng column. While storage saving is not the primary goal of normalization, we
can compare the total number of cells over all tables (the sum of rows × columns). The
original data set contains 173 × 22 = 3806 cells, while the decomposed tables contain
173×17+38×4+67×5+73×4 = 3720 cells. Finally, we include a very simple comparison
of the query and update performance between the normalized and non-normalized data
set. Because of the small number of rows, we took the cross product of contractor

with the new column (1, . . . , 1000), called new, in order to obtain a data set of a more
typical size. The new column was then part of each FD and key, and each table in the
decomposition. The time for validating the c-FD new,city,url w→ dmerc rgn,status on the
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Figure 8: VRNF-decomposition of I from Figure 7

non-normalized data set took 122ms, while the time for validating the c-key new,city,url
on the normalized table took 15ms. This shows a clear performance gain in validating
consistency, the main purpose of normalization. In addition, the loss in efficiency when
processing queries is rather small: Selecting all tuples from the non-normalized table
took 2,957ms, while the selection of all tuples from the join of all normalized tables took
3,150ms.
Discovering c-FDs. The problem of computing a cover for the set of c-FDs from a given
data set is not in the scope of this paper. Nevertheless, we provide some brief insight
related to the performance of our discovery algorithm for c-FDs. Reference [33] contains a
detailed performance analysis of the seven most popular algorithms that discover classical
FDs (treating nulls as any other domain value). The following table shows for three of
the Naumann data sets the number of classical FDs discovered, the time of the best
performing algorithm to compute them according to [33], as well as the number of c-FDs
we discovered and the time required by our algorithm.

data set columns rows FDs time c-FDs time
[#] [#] [#] [s] [#] [s]

breast-
cancer 11 699 46 0.5 54 0.1
adult 14 48,842 78 5.9 78 10.4

hepatitis 20 155 8,250 0.8 264 1.2

In general, c-FDs and classical FDs are incomparable which means that data sets may
exhibit different numbers of them, and algorithms to discover them may perform quite
differently. Nevertheless, we can say that the performance of our algorithm is rather
competitive in comparison to that of the best breed discovery algorithms for classical
FDs.
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8 Conclusion and Future Work

The impact of relational normalization theory on database practice has been limited.
Well-known results that enable relational normalization do not apply to SQL-compliant
data in which duplicate and partial information readily occur. We have developed the
first SQL schema design framework based on the new notion of a certain functional
dependency. Coupled with possible keys, certain keys, possible FDs, and NOT NULL

constraints, certain FDs handle duplicate information and null marker occurrences in
SQL data appropriately. These dependencies can express many desirable constraints in
practice, form a rich source of SQL data redundancy, yet can still be reasoned about
in linear time. We have proposed a normal form for well-designed SQL schemata, and
semantically justified the proposal by showing that it permits exactly those instances
that are free from data redundancy. In contrast to relational normalization, SQL schema
normalization is not always achievable. Nevertheless, we identified total FDs for which
we can transform any given SQL schema into one that permits exactly those instances
that are free from redundant data values but not redundant null marker occurrences. Our
experiments confirm that certain and total FDs occur frequently in real data sets, and
our framework is effective in decomposing these data sets such that all data redundancy
is eliminated and no information lost.

Future work will address the scalable discovery of certain FDs from large data sets,
extending [1, 33] in which null markers are treated as any other domain value. Regarding
SQL normalization, it is interesting to define notions of i) dependency-preservation and
extensions of the Third normal form [8], ii) update anomalies and investigate what our
normal forms achieve in terms of these [40], and iii) other dependencies and normal forms
[12, 14, 27]. There are strong relationships with conditional independencies, paramount
in statistics and machine learning [29, 32].
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A Reasoning Tools: Proofs

Lemma 3
The following statements holds:

i) If X ⊆ Y then X∗p ⊆ Y ∗p and X∗c ⊆ Y ∗c.

ii) X,X∗c ⊆ X∗p

iii) (X∗c)∗c ⊆ X∗c and (X∗p)∗c ⊆ X∗p

Proof i) Follows from L-Augmentation.

ii) X ⊆ X∗p follows from Reflexivity. X∗c ⊆ X∗p follows from Reflexivity and Pseudo-
Transitivity:

(R)
X s→ X X w→ Z

(T )
X s→ Z

iii) (X∗c)∗c ⊆ X∗c follows by Union, L-Augmentation and Pseudo-Transitivity:

... (U)
X w→ X∗c

X∗c w→ Z
(A)

XX∗c w→ Z
(T )

X w→ Z

(X∗p)∗c ⊆ X∗p follows similarly:

... (U)
X s→ X∗p

X∗p w→ Z
(A)

XX∗p w→ Z
(T )

X s→ Z

This concludes the proof.

Theorem 18 (Theorem 2 restated)
Let (T, TS,Σ) be a schema with Σ containing p-FDs and c-FDs. Then Σ implies X s→ Y
if and only if Y ⊆ X∗p, and Σ implies X w→ Y if and only if Y ⊆ X∗c.

Proof This are direct consequences of the soundness of the union and decomposition
rules.

Theorem 19 (Theorem 3 restated)
The p- and c-Closure algorithms are correct, and the implication problem for the combined
class of p-FDs, c-FDs, and NOT NULL constraints can be decided in linear time.

Proof The correctness of the Algorithms are shown in Theorems 20 and 21. The linear-
time complexity follows from standard optimization techniques [6], as explained in the
main section.
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Theorem 20 Algorithm p-Closure is correct.

Proof We will show that the invariant C ⊆ X∗p holds, and that C ⊇ X∗p holds upon
termination. Note that C ⊆ X∗p implies Σ � X s→ C by the Union rule.

(C ⊆ X∗p) Initially we have C = X. By Reflexivity we get Σ � X s→ X so the invariant
holds.

Consider now Y w→ Z ∈ Σ with Y ⊆ C. We can derive

X s→ C (D)
X s→ Y

Y w→ Z
(A)

XY w→ Z
(T )

X s→ Z

so the invariant is preserved.

Finally let Y s→ Z ∈ Σ with Y ⊆ (C ∩ TS) ∪X. We can derive

X s→ C (D)
X s→ (Y −X)

Y s→ Z
(A)

X(Y −X) s→ Z
(NT )

X s→ Z

so again the invariant is preserved.

(C ⊇ X∗p) Consider a table I = {t, t′} on (T, TS) with

t[A] ∼s t
′[A]

t[A] = ⊥ = t′[A]

t[A] 6∼w t
′[A]

 for


A ∈ C ∩ (TS ∪X)

A ∈ C − (TS ∪X)

A /∈ C

In particular we have t[X] ∼s t
′[X] and t[A] 6= t′[A] for A /∈ C. We will show that

Σ holds on I.

Let Y w→ Z ∈ Σ. If Y 6⊆ C then t[Y ] 6∼w t
′[Y ] so Y w→ Z holds on I. Otherwise

Z has been added to C in the first for-loop. Thus t[Z] = t′[Z] meaning Y w→ Z
holds on I.

Now let Y s→ Z ∈ Σ. If Y 6⊆ C ∩ (TS ∪X) then t[Y ] 6∼s t
′[Y ] so Y s→ Z holds on

I. Otherwise Y ⊆ C ∩ (TS ∪X) = (C ∩ TS) ∪X, so Z has been added to C in the
second for-loop. Thus t[Z] = t′[Z] meaning Y w→ Z holds on I.

Thus I respects Σ but violates X s→ A for A /∈ C, showing C ⊇ X∗p.

This concludes the proof.

Theorem 21 Algorithm c-Closure is correct.

Proof We will show that the invariant C ⊆ X∗c holds, and that C ⊇ X∗c holds upon
termination.
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(C ⊆ X∗c) Initially we have C = X ∩ TS. We can derive

(R)
X ∩ TS s→ X ∩ TS

(S)
X ∩ TS w→ X ∩ TS

(A)
X w→ X ∩ TS

so the invariant holds.

Consider now Y w→ Z ∈ Σ with Y ⊆ C ∪X. We can derive

X w→ C (D)
X w→ (Y −X)

Y w→ Z
(A)

X(Y −X) w→ Z
(T )

X w→ Z

so the invariant is preserved.

Finally let Y s→ Z ∈ Σ with Y ⊆ C ∩ TS. We can derive

X w→ C (D)
X w→ Y

Y s→ Z
(S)

Y w→ Z
(A)

XY w→ Z
(T )

X w→ Z

so again the invariant is preserved.

(C ⊇ X∗c) Consider a table I = {t, t′} on (T, TS) with

t[A] ∼s t
′[A]

t[A] = ⊥ = t′[A]

t[A] = ⊥ 6= t′[A]

t[A] 6∼w t
′[A]

 for


A ∈ C ∩ TS
A ∈ C − TS
A ∈ X − C
A /∈ C ∪X

In particular we have t[X] ∼w t
′[X] and t[A] 6= t′[A] for A /∈ C. We will show that

Σ holds on I.

Let Y w→ Z ∈ Σ. If Y 6⊆ C ∪ X then t[Y ] 6∼w t′[Y ] so Y w→ Z holds on I.
Otherwise Z has been added to C in the first for-loop. Thus t[Z] = t′[Z] meaning
Y w→ Z holds on I.

Now let Y s→ Z ∈ Σ. If Y 6⊆ C ∩ TS then t[Y ] 6∼s t
′[Y ] so Y s→ Z holds on I.

Otherwise Z has been added to C in the second for-loop. Thus t[Z] = t′[Z] meaning
Y w→ Z holds on I.

Thus I respects Σ but violates X w→ A for A /∈ C, showing C ⊇ X∗c.

This concludes the proof.
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Theorem 22 (Theorem 1 restated)
The set F of inference rules from Table 1 are sound and complete for the implication of
certain and possible functional dependencies and NOT NULL constraints.

Proof The soundness proofs are straightforward.

For completeness, let Σ � X s→ Y or Σ � X w→ Y . Then Y ⊆ X∗p or Y ⊆ X∗c.
However, as we have seen in the correctness proofs for Algorithms p-Closure and c-
Closure, we can derive X s→ X∗p and X w→ X∗c from Σ using the axioms of Theorem
1. The FDs X s→ Y or X w→ Y follow with the Decomposition rule.

Theorem 23
Let X → Y be a possible or certain functional dependency over (T, TS) and Σ a set
of possible and certain keys and functional dependencies over (T, TS). Then Σ implies
X → Y iff Σ|FD implies X → Y .

Proof Since Σ implies Σ|FD, any constraint implied by Σ|FD is implied by Σ.
Conversely, let X → Y be a possible or certain FD implied by Σ but not by Σ|FD.

Then there must exist a table I over (T, TS) such that I respects Σ|FD but violates
X → Y , and in particular there exist two tuples t, t′ ∈ I such that {t, t′} violates X → Y
but respects Σ|FD, so we may assume I = {t, t′}. As Σ implies X → Y , I must violate
Σ and hence some key (p/c) 〈Z〉 ∈ Σ. This is only possible if t[Z] ∼ t′[Z], and since I
respects Z → T ∈ Σ|FD, we must have t = t′. However, this means that I does not
violate X → Y . Contradiction.

Theorem 24
Let Σ be a set of possible and certain keys and functional dependencies over (T, TS).
Then

(i) Σ implies p 〈X〉 iff Σ|key implies c
〈
X∗pΣ|FD

〉
or p

〈
X(X∗pΣ|FD

∩ TS)
〉

, and

(ii) Σ implies c 〈X〉 iff Σ|key implies c
〈
XX∗cΣ|FD

〉
.

Proof In both cases, the ‘if’ direction follows directly from the correctness of the key-
Transitivity and key-NULL-Transitivity rules. For the ‘only if’ direction, assume that
the RHS conditions are false.

(i) Consider a table I = {t, t′} over (T, TS) with

t[A] ∼s t
′[A]

t[A] = ⊥ = t′[A]

t[A] 6∼w t
′[A]

 for


A ∈ X(X∗pΣ|FD

∩ TS)

A ∈ X∗pΣ|FD
− X(X∗pΣ|FD

∩ TS)

A /∈ X∗pΣ|FD

Let c 〈Y 〉 ∈ Σ|key. Since Σ|key 2 c
〈
X∗pΣ|FD

〉
, we cannot have Y ⊆ X∗pΣ|FD

. Thus

t[Y ] 6∼w t
′[Y ], so c 〈Y 〉 holds on I. Let p 〈Y 〉 ∈ Σ|key. Since Σ|key 2 p

〈
X(X∗pΣ|FD

∩ TS)
〉
,
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we cannot have Y ⊆ X(X∗pΣ|FD
∩ TS). Thus t[Y ] 6∼s t

′[Y ], so p 〈Y 〉 holds on I. To-

gether this gives us that I respects Σ|key.

Now let Y w→ Z ∈ Σ|FD. If t[Y ] 6∼w t
′[Y ] then Y w→ Z holds on I. If t[Y ] ∼w t

′[Y ]
we must have Y ⊆ X∗pΣ|FD

. As Y w→ Z ∈ Σ|FD this means Z ⊆ (X∗pΣ|FD
)∗cΣ|FD

⊆
(X∗pΣ|FD

)∗pΣ|FD
= X∗pΣ|FD

. Thus t[Z] = t′[Z] and Y w→ Z holds on I. Finally let

Y s→ Z ∈ Σ|FD. If t[Y ] 6∼s t
′[Y ] then Y w→ Z holds on I. If t[Y ] ∼s t

′[Y ]
we must have Y ⊆ X(X∗pΣ|FD

∩ TS). Due to Y s→ Z ∈ Σ|FD it follows that Z ⊆
(X(X∗pΣ|FD

∩ TS))∗pΣ|FD
⊆ (X∗pΣ|FD

)∗pΣ|FD
= X∗pΣ|FD

. Thus t[Z] = t′[Z] and Y s→ Z holds

on I. Together this gives us that I respects Σ|FD.

As I respects both Σ|key and Σ|FD, it respects Σ. But p 〈X〉 is violated by I, so
p 〈X〉 is not implied by Σ.

(ii) Consider a table I = {t, t′} over (T, TS) with

t[A] ∼s t
′[A]

t[A] = ⊥ = t′[A]

t[A] 6∼w t
′[A]

 for


A ∈ (XX∗cΣ|FD

) ∩ TS
A ∈ (XX∗cΣ|FD

)− TS
A /∈ XX∗cΣ|FD

Let c 〈Y 〉 ∈ Σ|key. Since Σ|key 2 c
〈
XX∗cΣ|FD

〉
, we cannot have Y ⊆ XX∗cΣ|FD

. Thus

t[Y ] 6∼w t
′[Y ], so c 〈Y 〉 holds on I. Let p 〈Y 〉 ∈ Σ|key. Since Σ|key 2 c

〈
XX∗cΣ|FD

〉
, we

cannot have Y ⊆ (XX∗cΣ|FD
)∩TS. Thus t[Y ] 6∼s t

′[Y ], so p 〈Y 〉 holds on I. Together

this gives us that I respects Σ|key.

Now let Y w→ Z ∈ Σ|FD. If t[Y ] 6∼w t
′[Y ] then Y w→ Z holds on I. If t[Y ] ∼w t

′[Y ]
we must have Y ⊆ XX∗cΣ|FD

. As Y w→ Z ∈ Σ|FD this means Z ⊆ (XX∗cΣ|FD
)∗cΣ|FD

⊆
XX∗cΣ|FD

. Thus t[Z] = t′[Z] and Y w→ Z holds on I. Finally let Y s→ Z ∈ Σ|FD.

If t[Y ] 6∼s t
′[Y ] then Y w→ Z holds on I. If t[Y ] ∼s t

′[Y ] we must have Y ⊆
(XX∗cΣ|FD

) ∩ TS. Due to Y s→ Z ∈ Σ|FD it follows that Z ⊆ ((XX∗cΣ|FD
) ∩ TS)∗pΣ|FD

=

((XX∗cΣ|FD
)∩TS)∗cΣ|FD

⊆ XX∗cΣ|FD
. Thus t[Z] = t′[Z] and Y s→ Z holds on I. Together

this gives us that I respects Σ|FD.

As I respects both Σ|key and Σ|FD, it respects Σ. But c 〈X〉 is violated by I, so
c 〈X〉 is not implied by Σ.

This concludes the proof.

Theorem 25 (Theorem 4 restated)
The union of the inference rules from sets F in Table 1, K from Table 2, and FK from
Table 3 are sound and complete for the implication of possible and certain keys, functional
dependencies, and NOT NULL constraints.

Proof (Theorem 1, completeness)
Let Σ � X → Y . Then by Theorem 23 we have Σ|FD � X → Y . Every FD in

Σ|FD − Σ can be derived from Σ using the key-FD-Weakening rule. And since the rules
in F are a subset of the rules in FK, X → Y can be derived from Σ|FD by Theorem 1.
This shows completeness for FDs.
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Let Σ � (p/c) 〈X〉. By Theorem 24 we have Σ|key � c
〈
X∗pΣ|FD

〉
or Σ|key � p

〈
X(X∗pΣ|FD

∩ TS)
〉

in case (i), and Σ|key � c
〈
XX∗cΣ|FD

〉
in case (ii). Since the rules in K are a subset of the

rules in FK, the aforementioned keys can be derived from Σ|key by the completeness of
K [21]. Due to completeness of our axiomatization for FDs, we can derive X s→ X∗pΣ|FD

,

X s→ X(X∗pΣ|FD
∩TS) and X w→ X∗cΣ|FD

from Σ. Thus p 〈X〉 or c 〈X〉 can be derived using
key-Transitivity or key-Null-Transitivity rules in each case. This shows completeness for
keys.

B Normal Forms: Proofs

Theorem 26 (Theorem 6 restated)
The schema (T, TS,Σ) is in BCNF if and only if (i) for all non-trivial X s→ Y ∈ Σ,
p 〈X〉 ∈ Σ+, and (ii) for all non-trivial X w→ Y ∈ Σ, c 〈X〉 ∈ Σ+.

Proof (only if) This direction follows directly from the definition of BCNF as Σ ⊆ Σ+.

(if) Here, we need to show that if (i) for all non-trivial X s→ Y ∈ Σ, p 〈X〉 ∈ Σ+, and
(ii) for all non-trivial X w→ Y ∈ Σ, c 〈X〉 ∈ Σ+, then it is also true that (i’) for all
non-trivial X s→ Y ∈ Σ+, p 〈X〉 ∈ Σ+, and (ii’) for all non-trivial X w→ Y ∈ Σ+,
c 〈X〉 ∈ Σ+. We show that not (i’) implies not (i), and not (ii’) implies not (ii),
each by induction over the inference length. For that purpose, we assume w.L.o.G.
that Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σk = Σ+ where Σi+1 results from Σi by application of
one of the inference rules in FK to elements from Σi. If k = 0, then Σ = Σ+ and
there is nothing to show. Otherwise, we assume that our hypothesis holds for all
j = 0, . . . , i < k, and we establish that both claims also hold for j = i + 1. The
proof proceeds by analyzing all inference rules in FK which could have produced
the single dependency in Σi+1−Σi. Due to lack of space we illustrate the proof on
an interesting case.

Assume that the non-trivial p-FD X s→ Z ∈ Σi+1−Σi was inferred from X s→ Y
and XY w→ Z by application of (T). As X s→ Z is non-trivial there must be
some A ∈ Z − X. If A ∈ Y , then the p-FD X s→ Y ∈ Σi is non-trivial. As
p 〈X〉 /∈ Σ+ the claim follows in this case. If A /∈ Y , then A ∈ Z −XY and the c-
FD XY w→ Z ∈ Σi is non-trivial. If c 〈XY 〉 ∈ Σ+, then X s→ Y, c 〈XY 〉 ∈ Σ+ and
an application of (kT) would show that p 〈X〉 ∈ Σ+, a contradiction. Consequently,
the claim follows also in this case.

Assume that the non-trivial c-FD X w→ Z ∈ Σi+1−Σi was inferred from X w→ Y
and XY w→ Z by application of (T). As X w→ Z is non-trivial there must be some
A ∈ Z−(X∩TS). If A ∈ Y , then the c-FD X w→ Y ∈ Σi is non-trivial. As c 〈X〉 /∈
Σ+ the claim follows in this case. If A /∈ Y , then A ∈ Z− (XY ∩TS) and the c-FD
XY w→ Z ∈ Σi is non-trivial. If c 〈XY 〉 ∈ Σ+, then X w→ Y, c 〈XY 〉 ∈ Σ+ and an
application of (kT) would show that c 〈X〉 ∈ Σ+, a contradiction. Consequently,
the claim follows also in this case.

This concludes the proof sketch.
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Theorem 27 (Theorem 7 restated)
The problem whether a given schema is in BCNF can be decided in time quadratic in the
input.

Proof This follows directly from Theorem 6 and Theorem 3.

Lemma 4
Consider a schema (T, TS,Σ) and table I = {t0, t1} over (T, TS).

i) Let Σ 2 p 〈X〉 and t0, t1 constructed as

ti[A] =


0 if A ∈ X∗p and A ∈ X ∪ TS
⊥ if A ∈ X∗p and A /∈ X ∪ TS
i if A /∈ X∗p

Then Σ holds on I.

ii) Let Σ 2 c 〈X〉 and t0, t1 constructed as

ti[A] =


0 if A ∈ XX∗c and A ∈ TS
⊥ if A ∈ XX∗c and A /∈ TS
i if A /∈ XX∗c

Then Σ holds on I.

Proof For each case, we consider the different types of constraints in Σ. We may assume
here that FDs are of the form Y → A, with A denoting a single attribute.

i) • p 〈Y 〉 ∈ Σ violated: Then Y ⊆ X, so p 〈Y 〉, and thus Σ, implies p 〈X〉. Contra-
diction.

• Y s→ A ∈ Σ violated: Then Y ⊆ X, so A ∈ Y ∗p ⊆ X∗p. But then t0[A] = t1[A]
so Y s→ A holds on I.

• c 〈Y 〉 ∈ Σ violated: Then Y ⊆ X∗p, so Σ � c 〈X∗p〉. But by Theorem 24 this mean
Σ � p 〈X〉.
• Y w→ A ∈ Σ violated: Then Y ⊆ X∗p, so A ∈ Y ∗c ⊆ (X∗p)∗c ⊆ X∗p by Lemma

3. But then t0[A] = t1[A] so Y w→ A holds on I.

ii) • p 〈Y 〉 ∈ Σ violated: Then Y ⊆ XX∗c∩TS, so Σ � p 〈XX∗c ∩ TS〉 � c 〈XX∗c ∩ TS〉 �
c 〈XX∗c〉. By Theorem 24 it follows that Σ � c 〈X〉, a contradiction.

• Y s→ A ∈ Σ violated: Then Y ⊆ XX∗c ∩ TS, so A ∈ (XX∗c ∩ TS)∗p = (XX∗c ∩
TS)∗c ⊆ (XX∗c)∗c = X∗c with the equalities following from the Strengthening (S)
and Pseudo-Transitivity (T) rules, respectively. But then t0[A] = t1[A] so Y s→ A
holds on I.

• c 〈Y 〉 ∈ Σ violated: Then Y ⊆ XX∗c, so Σ � c 〈XX∗c〉. But by Theorem 24 this
mean Σ � c 〈X〉.
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• Y w→ A ∈ Σ violated: Then Y ⊆ XX∗c, so A ∈ Y ∗c ⊆ (XX∗c)∗c = X∗c (by
Pseudo-Transitivity). But then t0[A] = t1[A] so Y w→ A holds on I.

This concludes the proof.

Theorem 28 (Theorem 9 restated)
A schema (T, TS,Σ) is in RFNF if and only if (T, TS,Σ) is in BCNF.

Proof By definition 4, redundancy-freeness means existence of a p0-value substitution
for every I and p0.

(if) Let Σ imply p 〈X〉 or c 〈X〉 for every non-trivial possible or certain FD X → Y ∈ Σ+,
respectively. Let further I be any instance over (T, TS,Σ) and p0 any position in
I. We construct a p0-value substitution I ′ of I by assigning a new value v′0 6= ⊥ to
p0 which does not occur in I. To show that I ′ is indeed a p0-value substitution of
I, we must show that Σ holds on I ′.

Assume there exist tuples t′0, t1 ∈ I ′ that violate some key or FD σ ∈ Σ+. As σ
holds on I, either t′0 or t1 must contain p0, say t′0, and denote by t0 the tuple in I
containing p0. If σ = (p/c) 〈X〉 is a key, then t′0[X] ∼ t1[X] implies t0[X] ∼ t1[X],
so t0, t1 would already violate σ. If σ = X → Y is a non-trivial FD, and p0 /∈ X1,
then t′0[X] = t0[X] 6∼ t1[X] as (p/c) 〈X〉 holds on I by assumption. That leaves the
case p0 ∈ X. If σ = X s→ Y is a possible FD, then t′0[X] 6∼s t1[X] due to choice
of v′0, so X s→ Y is not violated by t′0, t1. If σ = X w→ Y is a certain FD, then
t′0[X] ∼w t1[X] can only hold if t1[p0] = ⊥. But this implies t0[X] ∼w t1[X], which
would violate c 〈X〉 in I, and thus Σ.

(only if, possible) Let Σ not imply p 〈X〉 for a non-trivial possible FD X s→ Y ∈ Σ+.
Consider the instance I = {t0, t1} over (T, TS,Σ) with

ti[A] =


0 if A ∈ X∗p and A ∈ X ∪ TS
⊥ if A ∈ X∗p and A /∈ X ∪ TS
i if A /∈ X∗p

which is valid by Lemma 4.

As X s→ Y is non-trivial, there must exist some attribute A ∈ Y −X. Consider
now the position p0 := (t0, A). If we substitute the value at p0 with any other value,
then this new instance I ′ violates X s→ Y . Hence no p0-value substitution exists,
so p0 is redundant and (T, TS,Σ) not redundancy-free.

(only if, certain) Let Σ not imply c 〈X〉 for a non-trivial certain FD X w→ Y ∈ Σ+.
Consider the instance I = {t0, t1} over (T, TS,Σ) with

ti[A] =


0 if A ∈ XX∗c and A ∈ TS
⊥ if A ∈ XX∗c and A /∈ TS
i if A /∈ XX∗c

1Here, and in the following, we silently identify p0 with its column.
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which is valid by Lemma 4. As X w→ Y is non-trivial, there must exist some
attribute A ∈ Y − (X ∩ TS). Consider again the position p0 := (t0, A). If we
substitute the value at p0 with any other value, then this new instance I ′ violates
X w→ Y : t0[A] 6= t1[A] and t0[X] ∼w t1[X] hold whether A /∈ X or A /∈ TS. Hence
no p0-value substitution exists, so p0 is redundant and (T, TS,Σ) not redundancy-
free.

This concludes the proof.

C Normalization: Proofs

Theorem 29 (Theorem 11 restated)
Let (T, TS,Σ) be a schema with Σ � X w→ Y,X ∩ Y = ∅, and I an instance over
(T, TS,Σ). Then

I[[X(T −XY )]] on I[XY ] = I

Proof Let t occur in I exactly n times. Then t[X(T−XY )] appears in I[[X(T −XY )]] at
least n times, and t[XY ] appears in I[XY ]. Thus t appears in I[[X(T −XY )]] on I[XY ]
at least n times, showing I[[X(T −XY )]] on I[XY ] ⊇ I.

Conversely, let t occur in I[[X(T −XY )]] on I[XY ] exactly n times. Then there
must exist exactly n tuples ti ∈ I with ti[X(T −XY )] = t[X(T −XY )]. Furthermore,
there must exist some tuple tY ∈ I with tY [XY ] = t[XY ]. Since X ⊆ X(T −XY ) and
X w→ Y holds on I, we have ti[Y ] = tY [Y ] = t[Y ] for all ti ∈ I with ti[X(T −XY )] =
t[X(T − XY )]. Hence t = ti occurs in I exacty n times, showing I[[X(T −XY )]] on
I[XY ] ⊆ I.

Theorem 30 (Theorem 12 restated) Let (T, TS,Σ) be a schema with Σ � X w→
Y,X ∩ Y = ∅, and I an instance over (T, TS,Σ). If Σ � X w→ XY , then c 〈X〉 holds on
I[XY ].

Proof Let Σ � X w→ XY , and let tXY , t
′
XY ∈ I[XY ] with tXY [X] ∼w t′XY [X]. Then

there must exist t, t′ ∈ I with t[XY ] = tXY [XY ] and t′[XY ] = t′XY [XY ]. It follows that
t[X] ∼w t

′[X]. Since X w→ XY holds on I we have t[XY ] = t′[XY ] and thus

tXY [XY ] = t[XY ] = t′[XY ] = t′XY [XY ]

Since I[XY ] is a set, this means t =id t
′. Thus c 〈X〉 holds on I[XY ].

Theorem 31 (Theorem 14 restated)
A schema (T, TS,Σ) is in SQL-BCNF if and only if for every external c-FD X w→ Y ∈
Σ, c 〈X〉 ∈ Σ+. It can therefore be decided in time quadratic in the input whether a given
schema is in SQL-BCNF.

Proof (only if) This direction follows directly from the definition of SQL-BCNF as
Σ ⊆ Σ+.
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(if) Here, we need to show that if (i) for all external c-FDs X w→ Y ∈ Σ, c 〈X〉 ∈ Σ+,
then it is also true that (i’) for all external c-FDs X w→ Y ∈ Σ+, c 〈X〉 ∈ Σ+.
We show that not (i’) implies not (i) by induction over the inference length. For
that purpose, we assume w.L.o.G. that Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σk = Σ+ where Σi+1

results from Σi by application of one of the inference rules in FK to elements from
Σi. If k = 0, then Σ = Σ+ and there is nothing to show. Otherwise, we assume that
our hypothesis holds for all j = 0, . . . , i < k, and we establish that both claims also
hold for j = i+ 1. The proof proceeds by analyzing all inference rules in FK which
could have produced the single dependency in Σi+1 − Σi. Due to lack of space we
illustrate the proof on an interesting case.

Assume that the external c-FD X w→ Z ∈ Σi+1 − Σi was inferred from X w→ Y
and XY w→ Z by application of (T). As X w→ Z is external there must be some
A ∈ Z−X. If A ∈ Y , then the c-FD X w→ Y ∈ Σi is external. As c 〈X〉 /∈ Σ+ the
claim follows in this case. If A /∈ Y , then A ∈ Z−XY and the c-FD XY w→ Z ∈ Σi

is external. If c 〈XY 〉 ∈ Σ+, then X w→ Y, c 〈XY 〉 ∈ Σ+ and an application of
(kT) would show that c 〈X〉 ∈ Σ+, a contradiction. Consequently, the claim follows
also in this case.

This concludes the proof sketch.

Theorem 32 (Theorem 15 restated)
A schema (T, TS,Σ) is in VRNF if and only if it is in SQL-BCNF.

Proof For ease of presentation we shall assume that all FDs in Σ are singular (of the
form X → A). Absence of value redundancy means existence of a p0-value substitution
for every I and p0 where I[p0] 6= ⊥.

(if) Let Σ imply c 〈X〉 for every external FD X w→ A ∈ Σ, respectively. Let further
I be any instance over (T, TS,Σ) and p0 any position in I with I[p0] 6= ⊥. We
construct a p0-value substitution I ′ of I by assigning a new value v′0 6= ⊥ to p0

which does not occur in I. To show that I ′ is indeed a p0-value substitution of I,
we must show that Σ holds on I ′.

Assume there exist tuples t′0, t1 ∈ I ′ that violate some key or FD σ ∈ Σ. As σ
holds on I, either t′0 or t1 must contain p0, say t′0, and denote by t0 the tuple in I
containing p0. If σ = c 〈X〉 is a key, then t′0[X] ∼w t1[X] implies t0[X] ∼w t1[X],
so t0, t1 would already violate σ. If σ = X w→ A and p0 6= A then σ holds on I ′

since it holds on I. If σ = X w→ A and p0 = A /∈ X then σ is external, so by
assumption c 〈X〉 holds on I. Thus t′0[X] = t0[X] 6∼w t1[X], so σ holds trivially on
I ′.

That leaves the case σ = X w→ A and p0 = A ∈ X. Here t′0[X] ∼w t1[X] can only
hold if t1[p0] = ⊥. As σ holds on I we must have t0[p0] = ⊥, violating our choice
of p0.

(only if) Let Σ not imply c 〈X〉 for an external certain FD X w→ A ∈ Σ.
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Consider the instance I = {t0, t1} over (T, TS,Σ) with

ti[B] =


0 if B ∈ XX∗c and B ∈ TS
⊥ if B ∈ XX∗c and B /∈ TS
i if B /∈ XX∗c

which is valid by Lemma 4. If A /∈ TS, modify I by setting t0[A] = t1[A] = 0. As
Σ contains only certain keys and FDs, the resulting instance is still valid.

Now consider the position p0 := (t0, A), noting that t0[A] 6= ⊥. If we substitute
the value at p0 with any other value, then this new instance I ′ violates X w→ A:
t′0[A] 6= t1[A] and t0[X] ∼w t1[X]. Hence no p0-value substitution exists, so p0 and
thus (T, TS,Σ) are value redundant.

This concludes the proof.

Lemma 5
Let Σ be a set of total FDs and certain keys over (T, TS). Then for every LHS-minimal
FD X w→ Y implied by Σ, the total FD X w→ XY is also implied by Σ.

Proof By Theorem 23 we may assume that Σ contains only total FDs (no keys). Con-
sider now Algorithm c-Closure, which computes the c-closure C of X. Since X w→ Y
is LHS-minimal, every column A ∈ X − TS must participate in the LHS of some FD
Y w→ Z ∈ Σ with Y ⊆ C ∪X. Since all FDs in Σ are total, we must have A ∈ Z ⊆ C.
Thus Σ impliesX w→ X−TS. This implies Σ � X w→ X and together with Σ � X w→ Y
the claim follows.

Theorem 33 (Theorem 16 restated)
Algorithm 3 is correct, and terminates in exponential time in the input.

Proof By Lemma 5 it follows that a total FD X w→ XY on Ti exists in line 4; if X w→ Y
is not LHS-minimal, replace X with LHS-minimal X ′ ⊂ X. From Theorem 11 it follows
that the decomposition { [[Ti −XY ]], [XY ] } of [[Ti]] is lossless. For decomposition of
[Ti], consider that [Ti] is a relation and Σ � Ti −XY w→ Ti. Thus Ti −XY is a certain
key on [Ti], so projection and multi-set projection onto Ti −XY are identical. It follows
(again by Theorem 11) that { [Ti −XY ], [XY ] } is a lossless decomposition of [Ti]. This
shows losslessness as loop invariant. The condition of the while loop ensures that any
returned decomposition is in VRNF.

Next we show termination. Consider the following partial order between subschemas:

[Ti] < [[Tj]]⇔ Ti ⊆ Tj

[Ti] < [Tj]⇔ Ti ⊂ Tj

[[Ti]] < [[Tj]]⇔ Ti ⊂ Tj

During each iteration, a subschema is replaced with strictly smaller subschemata. As the
number of distinct subschemata is finite, no infinite replacement chains can exist. Thus
Algorithm 3 terminates.
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The exponential time bound is a result of having to compute the projected set of
constraints Σ[X] to determine whether a sub-schema is in VRNF. For this purpose, it is
enough to check for all subsets Y ⊆ X whether Σ implies p 〈Y 〉 and/or c 〈Y 〉, and to check
for all subsets Y A ⊆ X whether Σ implies Y s→ A and/or Y w→ A. As implication can
be decided in linear time for each of the exponentially many cases, the claim follows.

Theorem 34 (Theorem 17 restated)
The problem of deciding whether the projection of a given schema onto a given attribute
set is in SQL-BCNF (VRNF) is co-NP complete.

Proof We prove the claim for SQL-BCNF, and the claim for VRNF then follows by
Theorem 15.

Co-NP hardness follows by a reduction from the co-NP hard problem of deciding
whether the projection of a given relation schema is in BCNF [2].

The problem is in co-NP as we can guess an external c-FD X w→ Y ∈ Σ and verify
in polynomial time that c 〈X〉 /∈ Σ+.
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