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Abstract

In standard SQL database management systems primary key columns are NOT
NULL by default. While NULL columns may be included in unique constraints,
such constraints only ensure uniqueness for tuples which do not feature any null
marker occurrences in the columns involved, and do not fulfil the same function
as primary keys. In this work we investigate the notions of possible and certain
keys, which are intuitive and differ only in their treatment of null markers. It
turns out that possible keys capture the unique constraint of SQL, while certain
keys extend primary keys to include NULL columns, and can be used for similar
purposes. In addition to basic characterization, axiomatization, and simple dis-
covery approaches for possible and certain keys, we investigate the existence and
construction of Armstrong tables, extremal set problems, and describe an indexing
scheme for enforcing certain keys. Our experiments show that certain keys with
NULLs do occur in real-world databases, and that related computational problems
can be solved efficiently. Certain keys are semantically well-founded, achieve the
goal of Codd’s entity integrity rule and offer more flexibility for data entry than
primary keys.

Keywords: Armstrong database, Axiomatization, Complexity, Cover, Discovery, Ex-
tremal combinatorics, Implication problem, Index, Key, Null marker, Possible world,
Update

1 Introduction

Entity integrity is one of Codd’s integrity rules which states that every table must have
a primary key and that the columns which form the primary key should be unique and

1



not null [10]. The goal of entity integrity is to ensure that every tuple in the table can be
identified efficiently. In SQL, entity integrity is enforced by adding a primary key clause
to a schema definition. The system enforces entity integrity by not allowing operations,
that is inserts and updates, that produce an invalid primary key. Operations that create
a duplicate primary key or one containing nulls are rejected.

Consider snapshot I of the RFAM (RNA families) data set in Table 1, available at
http://rfam.sanger.ac.uk/. The data set violates entity integrity as every potential
primary key over the schema is violated by I. In particular, column journal carries the
null marker ⊥. Nevertheless, every tuple in I can be uniquely identified by a combination
of column pairs, that is, by (title, journal) or also by (author, journal). This property
cannot be enforced by SQL’s unique constraint, as these cannot always uniquely identify
tuples in which null markers occur in the columns involved. We conclude that the syn-
tactic requirements of primary keys are sufficient to meet the goal of entity integrity, but
not necessary. Indeed, primary keys prohibit the entry of some data without good rea-
son. This should not be underestimated as the inability to enter important data into the
database may force organizations to abandon key validation altogether, exposing their
future database to less data quality, inefficiencies in data processing, waste of resources,
and poor data-driven decision making. In other words, finding a notion of keys that is
sufficient and necessary to meet the goal of entity integrity would bring forward a new
database technology that is more useful in practice.

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R ⊥

Table 1: A snippet of the RFAM data set

These observations have motivated us to investigate keys over SQL tables from a
well-founded semantic point of view. For this purpose, we adopt Codd’s well-accepted
interpretation of null marker occurrences as “value exists, but unknown”, which we denote
by ⊥. This interpretation leads naturally to a possible world semantics, in which a
possible world results from a table by replacing independently each occurrence of ⊥ by
a value from the corresponding domain. A possible world is therefore a multiset of total
tuples. As usual, a possible world w satisfies a key X if and only if there are no two
different tuples in w that have matching values on all the attributes in X. Hence, a key
can only be satisfied by a possible world if it is a set of tuples. This approach naturally
suggests two semantics of keys over SQL tables. A possible key p ⟨X⟩ is satisfied by an
SQL table I if and only if there is a possible world of I in which the key X is satisfied.
A certain key c ⟨X⟩ is satisfied by an SQL table I if and only if the key X is satisfied in
every possible world of I. In particular, the semantics of certain keys does not prevent
the entry of incomplete tuples that can still be identified uniquely, independently of
which values null marker occurrences represent. For examples, the snapshot I in Table
1 satisfies the certain keys c ⟨title, journal⟩ and c ⟨author, journal⟩. In fact, I forms a
subset of the RFAM data set that satisfies the same possible and certain keys and NOT
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NULL columns as the entire data set. For space reasons we have omitted two columns
here and have abbreviated some values.

Our observations provide strong motivation to investigate possible and certain keys
in detail. In particular, it is interesting to find out whether certain keys can meet the
goal of entity integrity to identify tuples efficiently. The contributions of our research
can be summarized as follows:

• We propose a possible world semantics for keys over SQL tables. Possible keys
hold in some possible world, while certain keys hold in all possible worlds. Hence,
certain keys identify tuples without having to declare all attributes NOT NULL. While
primary keys provide a sufficient condition to identify tuples, the condition is not
necessary. Certain keys provide a sufficient and necessary condition, thereby not
prohibiting the entry of data that can be uniquely identified.

• We establish simple syntactic characterizations to validate the satisfaction of pos-
sible and certain keys. In fact, possible keys provide a semantics for SQL’s unique
constraint. That is, unique(X) is satisfied by an SQL table if and only if it satisfies
p ⟨X⟩.

• We characterize the implication problem for the combined class of possible and
certain keys and NOT NULL constraints axiomatically and by an algorithm that
works in linear time in the input. This shows that possible and certain keys can be
reasoned about efficiently. As an important application, we can efficiently compute
the minimal cover of our constraints in order to reduce the amount of integrity
maintenance to a minimal level necessary.

• We address the data-driven discovery of possible and certain keys. Exploiting
hypergraph transversals, we establish a compact algorithm to compute a cover for
the set of possible and certain keys that hold on a given table. The discovery
algorithm allows us to find possible and certain keys that hold on publicly available
biological data sets. In particular, several of the certain keys permit null marker
occurrences, which makes them different from primary keys. Hence, certain keys
do occur in practice, providing strong motivation to do further research on them
and exploit their useful features in future database technology.

• We then investigate structural and computational aspects of Armstrong tables for
our combined class of constraints. In particular, we characterize when Armstrong
tables exist and how to compute them in these cases. We also provide circumstantial
evidence that deciding the existence of Armstrong tables is likely to be intractable
in the general case. Armstrong tables provide a tool for database designers to
communicate effectively with domain experts in order to acquire a more complete
set of semantically meaningful integrity constraints. It is well-known that this re-
sults in better database designs, better data quality, more efficient data processing,
exchange and integration, resource savings and better decision-making [36].

• For a database designer it is a natural question to ask how large non-redundant
families of integrity constraints can potentially be. Answers to this question pro-
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vide the designer with upper bounds on how complex integrity maintenance could
become. This may result in the requirement to restrict the size of keys. One may
then ask how large non-redundant families of restricted keys can become. Using
extremal set theory we identify the non-redundant families of possible and certain
keys that attain maximum cardinality, even when we limit the keys to those that
respect an upper bound on the number of attributes.

• We propose an indexing scheme for certain keys. Our scheme improves the en-
forcement of certain keys on inserts by several orders of magnitude. It works only
marginally slower than the enforcement of primary keys, provided that the cer-
tain keys have only a small number of columns in which null markers can occur.
Exploiting our data-driven discovery algorithm from before, we have found only
certain keys in which at most two columns can feature null markers.

• Besides the discovery of possible and certain keys in real-life data sets we conducted
several other experiments. These confirm our intuition that the computational
problems above can be solved efficiently in practice. For example, we applied our
construction of Armstrong tables to the possible and certain keys we had previously
discovered, resulting in tables containing only seven rows on average, which makes
them particularly useful as a communication tool. Furthermore, their computation
only took a few milliseconds in each of the 130 cases. For only 85 out of 1 million
randomly generated schemata and sets of keys, Armstrong tables did not exist,
otherwise Armstrong tables were computed in a few milliseconds. Although the
computation of Armstrong tables may take exponential time in the worst case,
such cases need to be constructed carefully and occur at best sparingly in practice
or by chance. Finally, experiments with our scheme showed that i) certain keys
in practice are likely to not have more than two columns in which null markers
occur, and ii) such certain keys can be enforced almost as efficiently as primary
keys. Our findings provide strong evidence that certain keys achieve the goal of
Codd’s principle of entity integrity. The choice between primary and certain keys
should be based on the requirements for data entry.

Organization. The remainder of the paper is organized as follows. Section 2 discusses
related work further motivating our research. Possible and certain keys are introduced in
Section 3 where we also establish their syntactic characterization, axiomatic and algorith-
mic solutions to their implication problem, the computation of their minimal cover, and
their discovery from given tables. Structural and computational aspects of Armstrong
tables are investigated in Section 4. Extremal problems of possible and certain keys are
studied in Section 5. An efficient indexing scheme for the enforcement of certain keys is
established in Section 6, and results of our experiments are presented in Section 7. We
conclude and comment on future work in Section 8. Proofs and further material have
been moved to the appendix.
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2 Related Work

Integrity constraints directly address the semantics of data and thereby form one of the
cornerstones of database theory and practice [1]. Besides domain and referential in-
tegrity, entity integrity is one of the three inherent integrity rules proposed by Codd [10].
These three basic types of integrity constraints are special as they are the only ones,
amongst around 100 different classes of constraints [1], that enjoy built-in support by
SQL database management systems. In particular, entity integrity is enforced directly
by the primary key mechanism in SQL [38]. In the relational model, keys have been
extended to more expressive classes of data dependencies, see [1, 19] for some excel-
lent surveys. Core problems that are studied include axiomatic [3] and algorithmic [13]
characterizations of the associated implication problem, Armstrong databases [5, 17, 22],
data dependency discovery [36, 41], and extremal problems [28]. Important applications
include database schema design [16, 36], query optimization [12], transaction processing
[2], view maintenance [29], data exchange [18, 37], data integration [8], data cleaning
[20], and data security [6], to name a few.

One of the most important extensions of Codd’s basic relational model [10] is incom-
plete information. This is mainly due to the high demand for the correct handling of
such information in real-world applications. While there are many approaches to incom-
plete information the focus of this paper is on null markers in SQL. In the literature
many kinds of null markers have been proposed. The two most prolific interpretations
are “value unknown at present” [9] and “no information” [45], on which we will focus in
this section.

We first consider the interpretation “value unknown at present”. In this context,
Levene and Loizou introduced the notions of strong and weak functional dependency
(FD) [33], using a possible world semantics. Our definitions of possible/certain keys take
the same approach, and strong/weak FDs and possible/certain keys are closely related.
However, neither are certain keys special cases of strong FDs, nor are possible keys special
cases of weak FDs. The focus in [33] is on axiomatization and implication of strong/weak
FDs. For keys these problems turn out to be simpler, allowing us to focus on other
issues, in particular those associated with Armstrong tables. While Armstrong tables
are claimed to exist for any set of weak/strong FDs [33], the proof contains a technical
error. In Section 4 we give an example for a set of possible and certain keys and NOT

NULL constraints for which no Armstrong table exists. Since possible/certain keys are
not a special case of weak/strong FDs and NOT NULL constraints are not considered in
[33] the example does not directly contradict the result in [33]. However, our example
requires only minor modification to show that not every set of weak and strong FDs
can be represented in form of an Armstrong table. Such a modified example is given in
Section B of the appendix. Therefore, Armstrong tables require renewed investigation
for weak and strong FDs. The combined class of weak FDs and NOT NULL constraints is
studied in [21] discussing implication, discovery and construction of Armstrong tables.
As mentioned before, already possible keys by themselves are not a special case of weak
FDs.

We turn to the interpretation “no information”, for which FDs and multivalued de-
pendencies (MVDs) have been investigated [4, 25, 35, 45]. The approach is syntactic and
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different from the possible world semantics. However, some classes of constraints enjoy
the same axiomatization under both interpretations of null markers. Keys in the context
of the “no information” interpretation were studied in [31, 32], where implication, dis-
covery and construction of Armstrong tables are considered. These capture exactly the
unique constraint of SQL. One of our results in the present paper therefore also shows
that possible keys do not just capture SQL’s unique constraint but also the keys from
[31, 32]. The class of FDs and MVDs under the “no information” interpretation coincides
with the class of weak FDs and weak MVDs under a possible world semantics [25]. The
existence and computation of Armstrong tables was investigated in [22] for the combined
class of keys, FDs, and NOT NULL constraints under the “no information” interpretation.

As final related work we want to discuss two different approaches. The principle of
entity integrity has been first challenged by Thalheim [43] and later by Levene and Loizou
[34], both following an approach different from ours. As an alternative, they propose the
notion of a key set. A relation satisfies a key set if, for each pair of distinct tuples, there
is some key in the key set on which the two tuples are total and distinct. A certain key
is equivalent to a key set consisting of all the singleton subsets of the key attributes, e.g.,
c ⟨A,B,C⟩ corresponds to the key set {{A}, {B}, {C}}. However, our work is different
in that we study the interaction with possible keys and NOT NULL attributes, establish a
possible world semantics, and study different problems. The implication problem for the
sole class of primary keys is examined in [23]. As the key columns of primary keys are
NOT NULL, the class of primary keys behaves differently from both possible and certain
keys, see Section 3.3.

We emphasize that our findings may also be important for other data models such
as XML [7, 11, 24] and RDF [39] where incomplete information is inherent, probabilistic
databases [27] where keys can be expected to hold with some probability other than 1,
and also description logics [44].

Summary. Certain keys appear to be the most natural approach to address the
efficient identification of tuples in SQL tables. It is therefore surprising that they have
not been considered in previous work. In this paper, we investigate the combined class
of possible and certain keys under NOT NULL constraints. The combination of these
constraints is particularly relevant to SQL, as possible keys correspond to SQL’s unique
constraint. The presence of certain keys also means that the problems studied here are
substantially different from those investigated elsewhere.

3 Possible and Certain Keys

In this section we first give some preliminary definitions before we introduce the notions
of possible and certain keys, based on a possible world semantics. Subsequently, we
characterize these notions syntactically, from which we derive both a simple axiomatic
and a linear time algorithmic characterization of the associated implication problem. We
show that possible and certain keys enjoy a unique minimal representation. Finally, we
exploit hypergraph transversals to discover possible and certain keys from a given table.
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3.1 Preliminaries

We begin with basic terminology. Let A = {A1, A2, . . .} be a (countably) infinite set of
distinct symbols, called attributes. Attributes represent column names of tables. A table
schema is a finite non-empty subset T of A. Each attribute A of a table schema T is
associated with an infinite domain dom(A) which represents the possible values that can
occur in column A. In order to encompass incomplete information the domain of each
attribute contains the null marker, denoted by ⊥. The interpretation of ⊥ is to mean
“value unknown at present”. We stress that the null marker is not a domain value. In
fact, it is a purely syntactic convenience that we include the null marker in the domain
of each attribute as a distinguished element.

For attribute sets X and Y we may write XY for their set union X ∪ Y . If X =
{A1, . . . , Am}, then we may write A1 · · ·Am for X. In particular, we may write A to
represent the singleton {A}. A tuple over T is a function t : T →

∪
A∈T dom(A) with

t(A) ∈ dom(A) for all A ∈ X. For X ⊆ T let t[X] denote the restriction of the tuple t
over T to X. We say that a tuple t is X-total if t[A] ̸= ⊥ for all A ∈ X. A tuple t over
T is said to be a total tuple if it is T -total. A table I over T is a finite multiset of tuples
over T . A table I over T is a total table if every tuple t ∈ I is total.

Definition 1 (Strong/Weak Similarity)
Let t, t′ be tuples over T . We define weak/strong similarity of t, t′ on X ⊆ T as follows:

t[X] ∼w t′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] ∨ t[A] = ⊥ ∨ t′[A] = ⊥)

t[X] ∼s t
′[X] :⇔ ∀A ∈ X.

(t[A] = t′[A] ̸= ⊥)

Weak and strong similarity become identical for tuples that are X-total. In such “clas-
sical” cases we denote similarity by t[X] ∼ t′[X]. We will use the phrase t, t′ agree
interchangeably for t, t′ are similar.

A null-free subschema (NFS) over the table schema T is an expression TS where
TS ⊆ T . The NFS TS over T is satisfied by a table I over T if and only if I is TS-total.
SQL allows the specification of attributes as NOT NULL, so the set of attributes declared
NOT NULL forms an NFS over the underlying table schema. For convenience we sometimes
refer to the pair (T, TS) as table schema.

We say that X ⊆ T is a key for the total table I over T , denoted by I ⊢ X, if and
only if there are no two different tuples t, t′ ∈ I that agree on X. We will now define two
different notions of keys over general tables, using possible world semantics.

Definition 2 (Possible/Certain Key)
Given a table I on T , a possible world of I is obtained by independently replacing every
occurrence of ⊥ in I with a domain value. We say that X ⊆ T is a possible/certain key
for I, denoted by p ⟨X⟩ and c ⟨X⟩ respectively, if the following hold.

I ⊢ p ⟨X⟩ :⇔ X is a key for some possible world of I

I ⊢ c ⟨X⟩ :⇔ X is a key for every possible world of I
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Example 1 For T = {title, author, journal} let I denote Table 1:

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R ⊥

Then I ⊢ p ⟨journal⟩ as ⊥ can be replaced by a domain value that is different from the
two journals listed in I. Furthermore, I ⊢ c ⟨title, journal⟩ as the first two rows can be
distinguished on journal, and the last row can be distinguished on title, independently of
the replacement for ⊥. Finally, I ⊢ c ⟨author, journal⟩ holds for similar reasons: the
first two rows have different values on journal, and the last row has a unique value on
author, independently of the replacement for ⊥.

For a set Σ of constraints over table schema T we say that a table I over T satisfies
Σ if I satisfies every σ ∈ Σ. If for some σ ∈ Σ the table I does not satisfy σ we say that
I violates σ (and violates Σ). A table I over (T, TS) is a table I over T that satisfies
TS. A table I over (T, TS,Σ) is a table I over (T, TS) that satisfies Σ. When discussing
possible and certain keys, the notions of strong and weak anti-keys will prove as useful
as the notion of an anti-key has proven useful in discussing keys.

Definition 3 (Strong/Weak Anti-Key)
Let I be a table over (T, TS) and X ⊆ T . We say that X is a strong/weak anti-key for I,
denoted by ¬p⟨X⟩ and ¬c⟨X⟩ respectively, if p ⟨X⟩ and c ⟨X⟩, respectively, do not hold on
I. Here we also say that ¬p⟨X⟩ and/or ¬c⟨X⟩ hold on I. We write ¬ ⟨X⟩ to denote an
anti-key which may be either strong or weak. A set Σ of constraints over (T, TS) permits
a set Π of strong and weak anti-keys if there exists a table I over (T, TS,Σ) such that
every anti-key in Π holds on I.

Example 2 For T = {title, author, journal} let I denote the table over T from Table 1.
Then I ⊢ ¬p⟨title, author⟩ as the first two rows will agree on title and author in every
possible world. Furthermore, I ⊢ ¬c⟨journal⟩ as ⊥ could be replaced by either of the two
journals listed in I, resulting in possible worlds that violate the key {journal}.

Note that permitting every single anti-key in a set is not the same as permitting the
set of anti-keys as a whole. Checking whether Σ permits a single anti-key can be done
easily using Theorem 2, while Theorem 9 shows that deciding whether Σ permits a set
of anti-keys is NP-complete.

3.2 Syntactic Characterization

Possible and certain keys can be characterized syntactically using strong and weak sim-
ilarity. For this we have made the assumptions that domains are infinite and tables
finite.

Theorem 1 X ⊆ T is a possible (certain) key for I iff no distinct tuples in I are strongly
(weakly) similar on X.
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Example 3 For T = {title, author, journal} let I denote Table 1 over T . Then I ⊢
p ⟨journal⟩ as no two different tuples in I strongly agree on journal. Furthermore, I ⊢
c ⟨title, journal⟩ as no two different tuples in I weakly agree on title and journal. Finally,
I ⊢ c ⟨author, journal⟩ as no two different tuples in I weakly agree on author and journal.

3.3 Implication

In the following let (T, TS) denote the schema under consideration. For a set Σ ∪ {φ} of
constraints over (T, Ts) we say that Σ implies φ, denoted by Σ |= φ, if and only if every
table over (T, TS) that satisfies Σ also satisfies φ.

Theorem 2 Let Σ be a set of possible and certain keys.

i) Σ implies c ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ for some Y ⊆ X or p ⟨Z⟩ ∈ Σ for some Z ⊆ X ∩ TS.

ii) Σ implies p ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ or p ⟨Y ⟩ ∈ Σ for some Y ⊆ X.

Example 4 Let T = {title, author, journal} be our table schema, TS = {title, author} our
NFS, and let Σ consist of p ⟨journal⟩, c ⟨title, journal⟩ and c ⟨author, journal⟩. The-
orem 2 shows that Σ implies c ⟨title, author, journal⟩ and p ⟨title, journal⟩, but neither
c ⟨journal⟩ nor p ⟨title, author⟩. This is independently confirmed by Table 1, which is
an Armstrong table for (T, TS,Σ). Indeed, Table 1 satisfies c ⟨title, author, journal⟩ and
p ⟨title, journal⟩, but it violates c ⟨journal⟩ and p ⟨title, author⟩.

Theorem 3 Let Π be a set of strong and weak anti-keys.

i) Π implies ¬p⟨X⟩ iff ¬p⟨Y ⟩ ∈ Π for some Y ⊇ X, or ¬c⟨Z⟩ ∈ Π for some Z with
X ⊆ Z ∩ TS.

ii) Π implies ¬c⟨X⟩ iff ¬c⟨Y ⟩ ∈ Π or ¬p⟨Y ⟩ ∈ Π for some Y ⊇ X.

Example 5 Let T = {title, author, journal} be our table schema, TS = {title, author}
our NFS, and let Π consist of ¬p⟨title, author⟩ and ¬c⟨journal⟩. Theorem 3 shows that
Π implies ¬p⟨author⟩ and ¬c⟨title⟩, but neither ¬p⟨journal⟩ nor ¬c⟨author, journal⟩.

Corollary 1 Implication of possible and certain keys, as well as implication of strong
and weak anti-keys, can be decided in linear time.

3.4 Axiomatization

Let Σ∪{φ} denote a set of possible and certain keys over (T, TS). Let Σ
∗ = {φ | Σ |= φ}

denote the semantic closure of Σ. In order to determine the semantic closure, one can
utilize a syntactic approach by applying inference rules of the form

premise

conclusion
condition,
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where rules without a premise are called axioms. For a set R of inference rules let Σ ⊢R φ
denote the inference of φ from Σ by R. That is, there is some sequence σ1, . . . , σn

such that σn = φ and every σi is an element of Σ or is the conclusion that results
from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}. Let
Σ+

R = {φ | Σ ⊢R φ} denote the syntactic closure of Σ under inferences by R. R is
sound (complete) if for every table schema (T, TS) and for every set Σ we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is said to be a (finite) axiomatization if R is both sound

and complete.

Theorem 4 The following axioms are sound and complete for implication of possible
and certain keys.

p-Extension:
p ⟨X⟩
p ⟨XY ⟩

c-Extension:
c ⟨X⟩
c ⟨XY ⟩

Weakening:
c ⟨X⟩
p ⟨X⟩

Strengthening:
p ⟨X⟩
c ⟨X⟩

X ⊆ TS

Example 6 Let T = {title, author, journal} be our table schema, TS = {title, author}
our NFS, and let Σ consist of p ⟨journal⟩, c ⟨title, journal⟩ and c ⟨author, journal⟩.
Then p ⟨author, journal⟩ can be inferred from Σ by a single application of p-Extension
to p ⟨journal⟩, or by a single application of Weakening to c ⟨author, journal⟩.

3.5 Minimal Covers

A cover of Σ is a set Σ′ where every element is implied by Σ and which implies every ele-
ment of Σ. Hence, a cover is just a representation. Minimal representations of constraint
sets are of particular interest in database practice. Firstly, they justify the use of valuable
resources, for example, by limiting the validation of constraints to those necessary. Sec-
ondly, people find minimal representations easier to work with than non-minimal ones.
For the class of possible and certain keys, a unique minimal representation exists.

Definition 4 (Minimal/Redundant Keys)
We say that

i) p ⟨X⟩ ∈ Σ is non-minimal if Σ � p ⟨Y ⟩ for some Y ⊂ X or Σ � c ⟨X⟩, and

ii) c ⟨X⟩ ∈ Σ is non-minimal if Σ � c ⟨Y ⟩ for some Y ⊂ X.

We call a key σ with Σ � σ minimal iff σ is not non-minimal. We call σ ∈ Σ redundant
iff Σ \ {σ} � σ, and non-redundant otherwise. We call Σ minimal (non-redundant) iff
all keys in Σ are minimal (non-redundant), and non-minimal ( redundant) otherwise.

Due to the logical equivalence of p ⟨X⟩ and c ⟨X⟩ for X ⊆ TS, certain keys can be both
minimal and redundant while possible keys can be both non-minimal and non-redundant.

Lemma 1 The set Σmin of all minimal possible and certain keys w.r.t. Σ is a non-
redundant cover of Σ.
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Corollary 2 The minimal cover from Lemma 1 is the only minimal cover of Σ.

We may hence talk about the minimal cover of Σ.

Example 7 Let T = {title, author, journal} be our table schema, TS = {title, author}
our NFS, let Σ′ consist of p ⟨journal⟩, c ⟨title, journal⟩, c ⟨author, journal⟩,
p ⟨author, journal⟩ and c ⟨title, author, journal⟩. The minimal cover Σ of Σ′ consists of
p ⟨journal⟩, c ⟨title, journal⟩ and c ⟨author, journal⟩.

Definition 5 (Minimal Anti-Key)
We say that

i) a strong anti-key ¬p⟨X⟩ is non-maximal if ¬ ⟨Y ⟩ with X ⊂ Y is an anti-key implying
¬p⟨X⟩ on (T, TS), and

ii) a weak anti-key ¬c⟨X⟩ is non-maximal if ¬ ⟨Y ⟩ with X ⊂ Y is an anti-key or ¬p⟨X⟩
is a strong anti-key.

Again we call anti-keys maximal unless they are non-maximal. We shall denote the set
of all maximal strong anti-keys by As

max, the set of all maximal weak anti-keys by Aw
max

and their disjoint union by Amax.

3.6 Key Discovery

Our next goal is to find all certain and/or possible keys that hold for a given table I
over (T, TS). If TS is not given it is trivial to find a maximal TS. In general, the dis-
covery of constraints from data is an important task: the constraints represent semantic
information about the data that can help with database design and administration, in
data exchange and integration; some meaningful constraints may have not been specified,
or some meaningless constraints may hold accidentally but could be exploited in query
optimization.

Keys can be discovered from total tables by computing the agree sets of all pairs
of distinct tuples, and then computing the transversals for their complements [14]. On
general tables we distinguish between strong and weak agree sets, motivated by our
notions of strong and weak similarity.

Definition 6 (Agree Set)
Given two tuples t, t′ over T , the weak (strong) agree set of t, t′ is the (unique) maximal
subset X ⊆ T such that t, t′ are weakly (strongly) similar on X. Given a table I over T ,
we denote by AGw(I),AGs(I) the set of all maximal agree sets of distinct tuples in I:

AGw(I) := max{X | ∃t ̸= t′ ∈ I.t[X] ∼w t′[X]}
AGs(I) := max{X | ∃t ̸= t′ ∈ I.t[X] ∼s t

′[X]}

We shall simply write AGw,AGs when I is clear from the context.

Complements and transversals are standard notions for which we now introduce no-
tation.

11



Definition 7 (complement and transversal)
Let X be a subset of T and S a set of subset of T . We use the following notation for
complements and transversals:

X := T \X
S := {X | X ∈ S}

Tr(S) := min {Y ⊆ T | ∀X ∈ S. Y ∩X ̸= ∅}

Certain (possible) keys that hold in I are the transversals of the complements for all
weak (strong) agree sets in I.

Theorem 5 Let I be a table over (T, TS), and ΣI the set of all certain and/or possible
keys that hold on I. Then

Σ := {c ⟨X⟩ | X ∈ Tr(AGw)} ∪ {p ⟨X⟩ | X ∈ Tr(AGs)}

is a cover of ΣI .

Example 8 Let I denote Table 1 over table schema T = {title, author, journal}. Then
TS = {title, author} can be easily computed. Then AGw(I) consists of {title,author}
and {journal}, with complements {journal} and {title,author} in AGw, and transversals
{title,journal} and {author,journal}. AGs(I) consists of {title,author}, with complement
{journal} in AGs, and transversal {journal}. Therefore, a cover of the set of possible
and certain keys that holds on I consists of c ⟨title, journal⟩, c ⟨author, journal⟩, and
p ⟨journal⟩.

4 Armstrong Tables

Armstrong tables are widely regarded as a user-friendly, exact representation of abstract
sets of constraints [5, 17, 22, 36]. For a class C of constraints and a set Σ of constraints
in C, a C-Armstrong table I for Σ satisfies Σ and violates all the constraints in C not
implied by Σ. Therefore, given an Armstrong table I for Σ the problem of deciding for an
arbitrary constraint in C whether Σ implies φ reduces to the problem of verifying whether
φ holds on I. The ability to compute an Armstrong table for Σ provides us with a data
sample that is a perfect summary of the semantics embodied in Σ. Unfortunately, classes
C cannot be expected at all to enjoy Armstrong tables. That is, there are sets Σ for which
no C-Armstrong table exists [17]. Classically, keys and even functional dependencies
enjoy Armstrong relations [5, 36]. However, for possible and certain keys under NOT

NULL constraints the situation is more involved. Nevertheless, we will characterize when
Armstrong tables exist, and establish structural and computational properties for them.

4.1 Definition and Some Examples

Definition 8 (Armstrong table)
An instance I over (T, TS) is a pre-Armstrong table for (T, TS,Σ) if for every key σ

12



over T , σ holds on I iff Σ � σ. Furthermore we call I an Armstrong table if it is a
pre-Armstrong table and for every NULL attribute A ∈ T \ TS there exists a tuple t ∈ I
with t[A] = ⊥.

As the following examples show, there are cases where no pre-Armstrong tables exist,
as well as cases where a pre-Armstrong table but not Armstrong tables exist.

Example 9 (pre-Armstrong but no Armstrong)
Let (T, TS,Σ) = (AB,A, {c ⟨B⟩}). One may verify that the following is indeed a pre-
Armstrong table:

A B
0 0
0 1

Now let I be an instance over (T, TS,Σ) with t ∈ I such that t[B] = ⊥. Then the existence
of any other tuple t′ ∈ I with t′ ̸= t would violate c ⟨B⟩, so I = {t}. But that means c ⟨A⟩
holds on I even though Σ 2 c ⟨A⟩, so I is not pre-Armstrong.

Example 10 (no pre-Armstrong table)
Let (T, TS) = (ABCD, ∅) and

Σ = {c ⟨AB⟩, c ⟨CD⟩, p ⟨AC⟩, p ⟨AD⟩, p ⟨BC⟩, p ⟨BD⟩}

Then a pre-Armstrong table I must disprove the certain keys c ⟨AC⟩, c ⟨AD⟩, c ⟨BC⟩,
c ⟨BD⟩ while respecting the possible keys p ⟨AC⟩, p ⟨AD⟩, p ⟨BC⟩, p ⟨BD⟩. In each of
these four cases, we require two tuples t, t′ which are weakly but not strongly similar on
the corresponding key sets (e.g. t[AC] ∼w t′[AC] but t[AC] ̸∼s t′[AC]). This is only
possible when t or t′ are ⊥ on one of the key attributes. This ensures the existence of
tuples tAC , tAD, tBC , tBD with

tAC [A] = ⊥ ∨ tAC [C] = ⊥, tAD[A] = ⊥ ∨ tAD[D] = ⊥,

tBC [B] = ⊥ ∨ tBC [C] = ⊥, tBD[B] = ⊥ ∨ tBD[D] = ⊥

If tAC [A] ̸= ⊥ and tAD[A] ̸= ⊥ it follows that tAC [C] = ⊥ and tAD[D] = ⊥. But this
means tAC [CD] ∼w tAD[CD], contradicting c ⟨CD⟩1. Hence there exists tA ∈ {tAC , tAD}
with tA[A] = ⊥. Similarly we get tB ∈ {tBC , tBD} with tB[B] = ⊥. Then tA[AB] ∼w

tB[AB] contradicting c ⟨AB⟩.

The examples in this section provide strong motivation to investigate when exactly
Armstrong tables do exist.

4.2 Structural Characterization

Definition 9 (⊥-base)
Let t1, . . . , tn be tuples over T . The ⊥-base of t1, . . . , tn consists of all attributes where
any tuple is ⊥:

⊥-base(t1, . . . , tn) := {A ∈ T | t1[A] = ⊥ ∨ . . . ∨ tn[A] = ⊥}
1Even if tAC = tAD, see Lemma 2.
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Lemma 2 Let I be an instance over (T, TS) with |I| ≥ 2. Then I violates c ⟨⊥-base(t, t′)⟩
for every t, t′ ∈ I.

If Σ � c ⟨∅⟩ there is an Armstrong table containing a single tuple only. Otherwise a
pre-Armstrong table must contain at least two tuples, so Lemma 2 applies.

Theorem 6 Let I be an instance over (T, TS) such that Σ holds on I. Then I is a
pre-Armstrong table of Σ iff

i) for every strong anti-key ¬p⟨X⟩ ∈ As
max there exist distinct tuples t, t′ ∈ I with

t[X] ∼s t
′[X], and

ii) for every weak anti-key ¬c⟨X⟩ ∈ Aw
max there exist distinct tuples t, t

′ ∈ I with t[X] ∼w

t′[X].

Definition 10 (cross-union)
Let V ,W ⊆ P(T ) be two sets of sets. The cross-union of V and W is defined as

V ∪× W := {V ∪W | V ∈ V ,W ∈ W}

We abbreviate the cross-union of a set W with itself by W×2 := W∪× W.

Theorem 7 Let Σ 2 c ⟨∅⟩. There exists a pre-Armstrong table for (T, TS,Σ) iff there
exists a set W ⊆ P(T \ TS) with the following properties:

i) Every element of W×2 forms a weak anti-key.

ii) For every maximal weak anti-key ¬c⟨X⟩ ∈ Aw
max there exists Y ∈ W×2 with Y ∩X ′ ̸=

∅ for every possible key p ⟨X ′⟩ ∈ Σ with X ′ ⊆ X.

There exists an Armstrong table for (T, TS,Σ) iff i) and ii) hold as well as

iii)
∪

W = T \ TS.

In the following we shall assume w.l.o.g. that all attributes have integer domains.

Construction 1 (Armstrong Table)
Let W ⊆ P(T \ TS) satisfy conditions i) and ii) of Theorem 7. We construct an instance
I over (T, TS) as follows.

I) For every strong anti-key ¬p⟨X⟩ ∈ As
max add tuples tsX , t

s′
X to I with

tsX [X] = (i, . . . , i) ts′X [X] = (i, . . . , i)
tsX [T \X] = (j, . . . , j) ts′X [T \X] = (k, . . . , k)

where i, j, k are distinct integers not used previously.

II) For every weak anti-key ¬c⟨X⟩ ∈ Aw
max we add tuples twX , t

w′
X to I with
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twX [X \ Y1] = (i, . . . , i) tw′
X [X \ Y2] = (i, . . . , i)

twX [X ∩ Y1] = (⊥, . . . ,⊥) tw′
X [X ∩ Y2] = (⊥, . . . ,⊥)

twX [T \X] = (j, . . . , j) tw′
X [T \X] = (k, . . . , k)

where Y1, Y2 ∈ W meet the condition for Y = Y1∪Y2 in ii) of Theorem 7, and i, j, k
are distinct integers not used previously.

III) If condition iii) of Theorem 7 also holds for W, then for every A ∈ T \ TS with
A ̸∈

∪
{⊥-base(t) | t ∈ I} we add a tuple tA to I with

tA[T \ A] = (i, . . . , i) tA[A] = ⊥

where i is an integer not used previously.

Theorem 8 Let Σ 2 c ⟨∅⟩ and I constructed via Construction 1. Then I is a pre-
Armstrong table over (T, TS,Σ). If condition iii) of Theorem 7 holds for W, then I is
an Armstrong table.

The characterization of Theorem 7 is difficult to test in general, due to the large
number of candidate sets W . However, there are some cases where this becomes easy.

Corollary 3 Let Σ 2 c ⟨∅⟩.

i) If Σ 2 c ⟨X⟩ for every X ⊆ T \TS then there exists an Armstrong table for (T, TS,Σ).

ii) If Σ � c ⟨X⟩ for any X ⊆ T \TS with |X| ≤ 2 then there does not exist an Armstrong
table for (T, TS,Σ).

Example 11 Consider our running example where T = {article, author, journal}, TS =
{article, author} and Σ consists of the certain key c ⟨article, journal⟩, the certain key
c ⟨author, journal⟩ and the possible key p ⟨journal⟩. This gives us the maximal strong
and weak anti-keys

Amax = {¬p⟨author, article⟩,¬c⟨journal⟩}

with the set W = {journal} meeting the conditions of Theorem 7. Now Construction 1
produces the Armstrong table

article author journal
0 0 0
0 0 1
1 1 ⊥
2 2 ⊥

.

In this specific case, we can remove either the third or the fourth tuple. While those two
tuples have weak agree set {journal}, both of them have the same weak agree set with the
first and the second tuple, too. After removal of the third or fourth tuple and suitable
substitution we obtain Table 1.

15



4.3 Computation

Deciding whether an Armstrong table exists appears to be computationally demanding.
Proving that it is actually NP-hard appears to be difficult as well. A key problem here
is that the characterization of Theorem 7 requires the set of maximal weak anti-keys,
which can be exponential in the size of Σ, and vice versa. It is thus not even clear
if the problem lies in NP. Hence we will only show NP-hardness for the key/anti-key
satisfiability problem, which is closely related, and therefore treat it as circumstantial
evidence for the difficulty of the Armstrong existence problem. We then develop a worst-
case exponential algorithm to decide Armstrong existence (or key/anti-key satisfiability),
which nevertheless seems to be efficient in practice.

4.3.1 NP-completeness

Problem 1 (key/anti-key satisfiability) Given a schema (T, TS,Σ) and a set Aw ⊆
P(T ) of weak anti-keys, does there exist a table I over (T, TS,Σ) such that every element
of Aw is a weak anti-key for I?

Adding strong anti-keys to the key/anti-key satisfiability problem does not make it
harder: If a strong anti-key directly contradicts a certain or possible key this is easily
detected. Otherwise any table I for which Σ and Aw hold can easily be extended by
Construction 1 to satisfy strong anti-keys as well. The pre-Armstrong existence problem
can be reduced (though not in polynomial time) to the key/anti-key satisfiability problem
by computing the set of maximal weak anti-keys w.r.t. Σ. We will follow this approach
in Algorithm 1, so by showing key/anti-key satisfiability to be NP-complete, we show
at least that any attempt to decide Armstrong existence in polynomial time will likely
need to take a very different route. As W can be exponential in the size of Σ, any such
approach must not compute W at all.

The NP-hard problem [40] we reduce to the key/anti-key satisfiability problem is
monotone 1-in-3 SAT.

Problem 2 (monotone 1-in-3 SAT) Given a set of 3-clauses without negations, does
there exist a truth assignment such that every clause contains exactly one true literal?

Theorem 9 The key/anti-key satisfiability problem is NP-complete.

4.3.2 Algorithms

Maximal anti-keys can be constructed using transversals.

Lemma 3 Let ΣP ,ΣC be the sets of possible and certain keys in Σ. For readability we
will identify attribute sets with the keys or anti-keys induced by them. Then

As
max = { X ∈ Tr(ΣC ∪ ΣP ) |

¬(X ⊆ TS ∧ ∃Y ∈ Aw
max. X ⊂ Y ) }

Aw
max = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ As

max
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In order to use Lemma 3 to compute As
max and Aw

max, we observe that anti-keys for
which strictly larger weak anti-keys exist can never be setwise maximal weak anti-keys.
Hence the set of all maximal weak anti-keys can be computed as (again identifying sets
with their induced weak anti-keys)

Aw
max = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ Tr(ΣC ∪ ΣP )

The difficult part in deciding existence of (and then computing) an Armstrong table
given (T, TS,Σ) is to check existence of (and construct) a set W meeting the conditions
of Theorem 7, in cases where Corollary 3 does not apply. Blindly testing all subsets of
P(T \ TS) becomes infeasible as soon as T \ TS contains more than 4 elements (for 5
elements, up to 232 ≈ 4, 000, 000, 000 sets would need to be checked). To ease discussion
we will rephrase condition ii).

Definition 11 (support)
Let W ⊆ P(T ). We say that

• W supports Y ⊆ T if Y ⊆ Z for some Z ∈ W.

• W ∨-supports V ⊆ P(T ) if W supports some Y ∈ V.

• W ∧∨-supports T ⊆ P(P(T ))
if W ∨-supports every V ∈ T .

We write Y ⊂∈ W to indicate that W supports Y .

Lemma 4 Let TX be the transversal set in T \ TS of all possible keys that are subsets of
X, and T the set of all such transversals for all maximal weak antikeys:

TX := Tr({X ′ ∩ (T \ TS) | p ⟨X ′⟩ ∈ Σmin ∧X ′ ⊆ X})
T := {TX | X ∈ Aw

max}

Then condition ii) of Theorem 7 can be rephrased as follows:

ii’) W×2 ∧∨-supports T .

We propose the following: For each TX ∈ T and each minimal transversal t ∈ TX

we generate all non-trivial bipartitions BX (or just a trivial partition for transversals
of cardinality < 2). We then add to W one such bi-partition for every TX to ensure
condition ii), and combine them with all single-attribute sets {A} ⊆ T \ TS to ensure
condition iii). This is done for every possible combination of bipartitions until we find
a set W that meets condition i), or until we have tested them all. We then optimize
this strategy as follows: If a set PX is already ∨-supported by W×2 (which at the time
of checking will contain only picks for some sets TX), we may remove PX from further
consideration, as long as we keep all current picks in W . In particular, since all single-
attribute subsets of T \TS are added to W , we may ignore all PX containing a set of size
2 or less. We give the algorithm thus developed in pseudo-code as Algorithm 1.
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Algorithm 1 Armstrong-Set
Input: T, TS,Σ
Output: W ⊆ P(T \ TS) meeting conditions i) to iii) of Theorem 7 if such W exists, ⊥

otherwise
1: if ̸ ∃c ⟨X⟩ ∈ Σ with X ⊆ T \ TS then
2: return {T \ TS}
3: if ∃c ⟨X⟩ ∈ Σ with X ⊆ T \ TS and |X| ≤ 2 then
4: return ⊥
5: W := {{A} | A ∈ T \ TS}
6: Aw

max := Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ Tr(ΣC ∪ ΣP )
7: T := { Tr({X ′ ∩ (T \ TS) | p ⟨X ′⟩ ∈ Σmin ∧X ′ ⊆ X}) |

X ∈ Aw
max }

8: T := T \ {TX ∈ T | ∃Y ∈ TX . |Y | ≤ 2}
9: return Extend-Support(W , T )

Subroutine Extend-Support(W , T )
Input: W ⊆ P(T \ TS) meeting conditions i) and iii) of Theorem 7, T ⊆ P(P(T \ TS))
Output: W ′ ⊇ W meeting conditions i) and iii) of Theorem 7 such that W ′×2 ∧∨-

supports T if such W ′ exists, ⊥ otherwise
10: if T = ∅ then
11: return W
12: T := T \ {TX} for some TX ∈ T
13: if W×2 ∨-supports TX then
14: return Extend-Support(W , T )
15: for all Y ∈ TX do
16: for all non-trivial bipartitions Y = Y1 ∪ Y2 do
17: if (W ∪ {Y1, Y2})×2 contains no certain key then
18: W ′ := Extend-Support(W ∪ {Y1, Y2}, T )
19: if W ′ ̸= ⊥ then
20: return W ′

21: return ⊥

Lemma 5 Algorithm Armstrong-Set is correct.

Example 12 Let (T, TS) = (ABCDE, ∅) and

Σ =

{
p ⟨A⟩, p ⟨B⟩, p ⟨CD⟩,
c ⟨ABE⟩, c ⟨ACE⟩, c ⟨ADE⟩, c ⟨BCE⟩

}
Neither condition of Corollary 3 is met, so Algorithm Armstrong-Set initializes/computes
W, Aw

max and T as

W = {A,B,C,D,E}
Aw

max = {ABCD,AE,BDE,CDE}
T = {{ABC,ABD}}
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Then, in method Extend-Support, Tx = {ABC,ABD} which is not ∨-supported by W×2.
The non-trivial bi-partitions (Y1, Y2) of ABC are

{(A,BC), (AC,B), (AB,C)}.

None of these are suitable for extending W, as the extension (W ∪ {Y1, Y2})×2 contains
the certain keys BCE, ACE and ABE, respectively. The non-trivial bi-partitions of
the second set ABD are {(A,BD), (AD,B), (AB,D)}. While (AD,B) and (AB,D) are
again unsuitable, (A,BD) can be used to extend W to the Armstrong set

W ′ = Extend-Support({A,BD,C,E}, ∅)
= {A,BD,C,E}

If we add c ⟨BDE⟩ to the sample schema, then (A,BD) becomes unsuitable as well, so
that no Armstrong set exists.

5 Some Extremal Combinatorics

Database administrators find it generally useful to know how complex the maintenance
of their database can grow. Here, we establish such knowledge for the maintenance
of possible and certain keys. We provide answers to basic questions concerning the
maximum cardinality that non-redundant families of possible and certain keys can have,
and which families attain this cardinality. A characterization of non-redundant families
enables us to apply techniques from extremal set theory to answer our questions. The
main result is interesting from a combinatorial perspective itself, as it generalizes the
famous theorem by Sperner [42].

In this section we write [n] := {1, . . . , n} instead of T = {A1, . . . , An}, and A instead
of TS. For X ⊆ [n], we use the notations X(i) := {Y ⊆ X : |Y | = i} and X(≤i) :=
{Y ⊆ X : |Y | ≤ i}. A family A ⊆ [n](≤n) is an antichain (or Sperner family) if X ̸⊆ Y
for all distinct X, Y ∈ A. For a set Σ of possible and certain keys over [n], define
F := {X | c ⟨X⟩ ∈ Σ} and G := {X | p ⟨X⟩ ∈ Σ}.

Theorem 10 Σ is non-redundant if and only if the following conditions are satisfied
(1) F is an antichain, (2) G is an antichain, (3) ∀F ∈ F , G ∈ G : F ̸⊆ G, and (4)
∀F ∈ F , G ∈ G : G ̸⊆ F ∩ A.

The problem we study reads as follows. Given non-negative integers n, k with k ≤ n
and a set A ⊆ [n], find all pairs (F ,G) ∈ [n](≤k) × [n](≤k) that satisfy conditions (1)–(4)
and maximize |F ∪ G|. Note that F and G must be disjoint because of (3). In what
follows, a complete solution is given.

First, we briefly discuss the case when A = [n]. In this case, (1)–(4) are satisfied if
and only if F∪̇G ⊆ [n](≤k) is an antichain. If k > n/2, then by Sperner’s Theorem [42]
|F ∪ G| attains its maximum if and only if F and G form a partition of [n](⌊n/2⌋) or of
[n](⌈n/2⌉), respectively. If k ≤ n/2, then |F ∪G| is maximized if and only if F and G form
a partition of [n](k). This is well-known and follows from the original proof of Sperner’s
Theorem [42]. In the sequel, we will assume that 0 ≤ |A| < n. Note that the bound (1)
below does not hold when A = [n] for even n and k > n/2.
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Theorem 11 Let n, a, k be non-negative integers with n ≥ 2, a < n and k ≤ n, and let
A ⊆ [n] with |A| = a. Furthermore, let F ,G ⊆ [n](≤k) be antichains such that F ̸⊆ G
and G ̸⊆ F ∩ A for all F ∈ F and G ∈ G. Then

|F ∪ G| ≤
(
n+ 1

m

)
−
(

a

m− 1

)
, (1)

where m := min{k, ⌊n/2⌋ + 1}. This bound is the best possible, and equality is attained
if and only if

(i) F∪̇G = [n](m) ∪ ([n](m−1) \ A(m−1)), or

(ii) F∪̇G = [n](m−1) ∪ ([n](m−2) \ A(m−2)), where
n is even, k > n/2, and a ≤ n/2− 2 or a = n− 1

Furthermore, for k > 1, (i) implies

[n](m) \ A(m) ⊆ F and [n](m−1) \ A(m−1) ⊆ G

while (ii) implies

[n](m−1) \ A(m−1) ⊆ F and [n](m−2) \ A(m−2) ⊆ G .

Note that [n](m) and [n](m−1) are the two largest disjoint anti-chains over [n](≤k). To
prevent F ⊆ G, F must contain the larger sets. To prevent G ⊆ F ∩ A we drop small
subsets of A. The remaining subsets of A may be attributed to either F or G as they
do not conflict with others. This reflects the equivalence of certain/possible keys over
NOT NULL attributes. While case (i) always presents a non-redundant family of maximum
cardinality, case (ii) occurs because for even n and large k, an additional pair of largest
disjoint anti-chains exists: [n](m−1) and [n](m−2). The difference between the resulting
sets lies in the size of A(m−1) and A(m−2), leading to the conditions for a. The trivial case
n = 1 is excluded above to avoid certain technicalities in its proof.

Example 13 For table schema (T = {A,B,C,D}, TS = {A,B}), or n = 4 and a = 2,
the maximum cardinality of a non-redundant family of possible and certain keys is nine.
The bound is attained by the set Σ where

Σ =

{
c ⟨A,B,C⟩, c ⟨A,B,D⟩, c ⟨A,C,D⟩, c ⟨B,C,D⟩,
p ⟨A,C⟩, p ⟨B,C⟩, p ⟨A,D⟩, p ⟨B,D⟩, c ⟨B,D⟩

}
.

The associated powerset lattice is shown in Figure 1, where the top marked circles repre-
sent the four certain keys and the bottom marked circles represent the five possible keys
above.
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Figure 1: Maximum Non-redundant Family of Keys

6 Enforcing Certain Keys

Index structures are required to enforce certain keys efficiently in practice. This problem
is non-trivial as weak similarity is not transitive. Hence, classic indices will not work
directly. Nevertheless we will present an index scheme, based on multiple classical in-
dices, which allows us to check certain keys efficiently, provided there are few nullable
key attributes. While an efficient index scheme seems elusive for larger sets of nullable
attributes, we expect that most certain keys in practice have only few nullable attributes.

Definition 12 (certain-key-index)
Let (T, TS) be a table schema and X ⊆ T . A certain-key-index for c ⟨X⟩ consists of a
collection of indices IY on subsets Y of X which include all NOT NULL attributes:

Ic⟨X⟩ := {IY | X ∩ TS ⊆ Y ⊆ X}

Here we treat ⊥ as regular value for the purpose of indexing, i.e., we do index tuples with
⊥ “values”. When indexing a table I, each tuple in I is indexed in each I.

Obviously, |Ic⟨X⟩| = 2n, where n := |X \ TS|, which makes maintenance efficient only
for small n. When checking if a tuple exists that is weakly similar to some given tuple,
we only need to consult a single index, but within that index we must perform up to 2n

lookups.

Theorem 12 Let t be a tuple on (T, TS) and Ic⟨X⟩ a certain-key-index for table I over
(T, TS). Define

K := {A ∈ X | t[A] ̸= ⊥} .

Then the existence of a tuple in I weakly similar to t can be checked with 2k lookups in
IK, where k := |K \ TS|.

As |K \ TS| is bounded by |X \ TS|, lookup is efficient whenever indexing is efficient.
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Example 14 Consider schema (ABCD,A, {c ⟨ABC⟩}) with table I over it:

I =

A B C D
1 ⊥ ⊥ 1
2 2 ⊥ 2
3 ⊥ 3 ⊥
4 4 4 ⊥

The certain-key-index Ic⟨ABC⟩ for c ⟨ABC⟩ consists of:

IA

A
1
2
3
4

IAB

A B
1 ⊥
2 2
3 ⊥
4 4

IAC

A C
1 ⊥
2 ⊥
3 3
4 4

IABC

A B C
1 ⊥ ⊥
2 2 ⊥
3 ⊥ 3
4 4 4

These tables represent attribute values that we index by, not tables that are actually
stored. When checking whether tuple t := (2,⊥, 3, 4) is weakly similar on ABC to some
tuple t′ ∈ I (and thus violating c ⟨ABC⟩ when inserted), we perform lookup on IAC for
tuples t′ with t′[AC] ∈ {(2, 3), (2,⊥)}.

We briefly comment on prefix indexing in Section C.

7 Experiments

We conducted several experiments to evaluate various aspects of our work. Firstly, we
mined publicly available databases for possible and certain keys. Secondly, we tested our
algorithms for computing and deciding the existence of Armstrong tables. Lastly, we con-
sidered storage space and time requirements for our index scheme. We used the following
data sets for our experiments: i) GO-termdb (Gene Ontology) at geneontology.org/, ii)
IPI (International Protein Index) at ebi.ac.uk/IPI, iii) LMRP (Local Medical Review
Policy) from cms.gov/medicare-coverage-database/, iv) PFAM (protein families) at
pfam.sanger.ac.uk/, and v) RFAM (RNA families) at rfam.sanger.ac.uk/. These
were chosen for their availability in database format. For ease of testing, we excluded
tables of size larger than 100MB.

7.1 Key Mining

Examining the schema definition does not suffice to decide what types of key constraints
hold or should hold on a database. Certain keys with ⊥ occurrences cannot be expressed
in current SQL databases, so would be lost. Even constraints that could and should be
expressed are often not declared. Furthermore, even if NOT NULL constraints are declared,
one frequently finds that these are invalid, resulting from work-arounds such as empty
strings. We therefore mined data tables for possible and certain key constraints, with
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focus on finding certain keys containing ⊥ occurrences. In order to decide whether a col-
umn is NOT NULL, we ignored any schema-level declarations, and instead tested whether
a column contained ⊥ occurrences. To alleviate string formatting issues (such as “Zwieb
C.” vs “Zwieb C.;”) we normalized strings by trimming non-word non-decimal charac-
ters, and interpreting the empty string as ⊥. This pre-processing was necessary because
several of our test data sets were available only in CSV format, where ⊥ occurrences
would have been exported as empty strings. Tables containing less than two tuples were
ignored. In the figures reported, we exclude tables pfamA and lcd from the PFAM and
LMRP data sets, as they contain over 100,000 (pfamA) and over 2000 (lcd) minimal keys,
respectively, almost all of which appear to be ‘by chance’, and thus would distort results
completely. Table 2 lists the number of minimal keys of each type discovered in the 130
tables. We distinguish between possible and certain keys with NULL columns, and keys
not containing NULL columns. For the latter, possible and certain keys coincide.

Key Type Occurrences
Certain Keys with NULL 43
Possible Keys with NULL 237
Keys without NULL 87

Table 2: Keys found by type

Two factors are likely to have a significant impact on the figures above. First, con-
straints may only hold accidentally, especially when the tables examined are small. For
example, Table 1 of the RFAM data set satisfies c ⟨title, journal⟩ and c ⟨author, journal⟩,
with NULL column journal. Only the first key appears to be sensible. Second, constraints
that should sensibly hold may well be violated due to lack of enforcement. Certain keys
with ⊥ occurrences, which cannot easily be expressed in existing systems, are likely to
suffer from this effect more than others. We thus consider our results qualitative rather
than quantitative. Still, they indicate that certain keys do appear in practice, and may
benefit from explicit support by a database system.

7.2 Armstrong Tables

We applied Algorithm 1 and Construction 1 to compute Armstrong tables for the 130
tables we mined possible and certain keys for. As all certain keys contained some NOT

NULL column, Corollary 3 applied in all cases, and each Armstrong table was computed
within a few milliseconds. Each Armstrong table contained only 7 tuples on average.

We also tested our algorithms against 1 million randomly generated table schemas
and sets of keys. Each table contained 5-25 columns, with each column having a 50%
chance of being NOT NULL, and 5-25 keys of size 1-5, with equal chance of being possible
or certain. To avoid overly silly examples, we removed certain keys with only 1 or 2 NULL

attributes. Hence, case ii) of Corollary 3 never applies.
We found that in all but 85 cases, an Armstrong table existed, with average computa-

tion time again in the order of a few milliseconds. However, note that for larger random
schemas, transversal computation can become a bottleneck.
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Together these results support our intuition that although Algorithm 1 has exponen-
tial complexity in the worst case, such cases need to be carefully constructed and arise
neither in practice nor by chance (at least not frequently).

7.3 Indexing

The efficiency of our index scheme for certain keys with ⊥ occurrences depends directly
on the number of NULL attributes in the certain key. Thus the central question becomes
how many NULL attributes occur in certain keys in practice. For the data sets in our
experiments, having 43 certain keys with ⊥ occurrences, the distribution of the number
of these occurrences is listed in Table 3.

#NULLs Frequency
1 39
2 4

Table 3: NULL columns in certain keys

Therefore, certain keys with ⊥ occurrences contain mostly only a single attribute
on which ⊥ occurs (requiring 2 standard indices), and never more than two attributes
(requiring 4 standard indices). Assuming these results generalize to other data sets, we
conclude that certain key with ⊥ occurrences can be enforced efficiently in practice.

We used triggers to enforce certain keys under different combinations of B-tree in-
dexes, and compared these to the enforcement of the corresponding primary keys. The
experiments were run in MySQL version 5.6 on a Dell Latitude E5530, Intel core i7, CPU
2.9GHz with 8GB RAM on a 64-bit operating system. For all experiments the schema
was (T = ABCDE, TS = A) and the table I over T contained 100M tuples. In each
experiment we inserted 10,000 times one tuple and took the average time to perform this
operation. This includes the time for maintaining the index structures involved. We en-
forced c ⟨X⟩ in the first experiment for X = AB, in the second experiment for X = ABC
and in the third experiment for X = ABCD, incrementing the number of NULL columns
from 1 to 3. The distribution of permitted ⊥ occurrences was evenly spread amongst
the 100M tuples, and also amongst the 10,000 tuples to be inserted. Altogether, we run
each of the experiments for 3 index structures: i) IX , ii) ITS

, iii) Ic⟨X⟩. The times were
compared against those achieved under declaring a primary key PK(X) on X, where we
had 100M X-total tuples. Our results are shown in Table 4. All times are in milliseconds.

T = ABCDE, TS = A
Index X = AB X = ABC X = ABCD

PK(X) 0.451 0.491 0.615
IX 0.764 0.896 0.977
ITS

0.723 0.834 0.869
Ic⟨X⟩ 0.617 0.719 1.143

Table 4: Average Times to Enforce Keys on X
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Hence, certain keys can be enforced efficiently as long as we involve the columns in TS

in some index. Just having ITS
ensures a performance similar to that of the corresponding

primary key. Indeed, the NOT NULL attributes of a certain key suffice to identify most
tuples uniquely. Our experiments confirm these observations even for certain keys with
three NULL columns, which occur rarely in practice. Of course, ITS

cannot guarantee
the efficiency bounds established for Ic⟨X⟩ in Theorem 12. We stress the importance of
indexing: enforcing c ⟨X⟩ on our data set without an index resulted in a performance
loss in the order of 104.

8 Conclusion and Future Work

We studied keys over SQL tables in which null marker occurrences follow Codd’s in-
terpretation as “value exists but unknown”. Naturally, this interpretation equips keys
with a possible world semantics. Indeed, a key is possible (certain) to hold on a ta-
ble if some (every) possible world of the table satisfies the key. Possible keys capture
SQL’s unique constraint, and certain keys generalize SQL’s primary keys by permitting
null markers to occur in key columns. We have established solutions to several com-
putational problems related to possible and certain keys under NOT NULL constraints.
These include axiomatic and linear-time algorithmic characterizations of the associated
implication problem, minimal representations of keys, discovery of keys from a given
table, structural and computational properties of Armstrong tables, as well as extremal
set problems for keys. Experiments confirm that our solutions work efficiently in prac-
tice. This also applies to enforcing certain keys, by combining known index schemes.
Indeed, our findings from public data confirm the intuition that certain keys have only
few columns with null marker occurrences. In conclusion, certain keys achieve the goal
of Codd’s rule of entity integrity and allow the entry of any tuples that can be uniquely
identified. This gives them a distinct advantage over primary keys, with just a minor
trade-off in update performance.

Several open problems should be addressed in the future. The exact complexity of
deciding the existence of Armstrong tables should be determined. It is worth investigating
optimizations to reduce the time complexity of computing Armstrong tables, and their
size. The actual usefulness of Armstrong tables for the acquisition of possible and certain
keys should be investigated empirically, similar to classical functional dependencies [30].
Evidently, the existence and computation of Armstrong relations for sets of weak and
strong functional dependencies requires new attention [33]. Approximate and scalable
discovery is an important problem as meaningful possible or certain keys may be violated.
This line of research has only been started yet for total [41] and possible keys [26]. Other
index schemes may prove valuable to enforce certain keys. Finally, the possible worlds
approach should be applied to other popular classes of constraints, including multivalued
and inclusion dependencies.
Acknowledgement. We thank Georg Gottlob for comments on a draft. This research
is supported by the Marsden Fund Council from New Zealand Government funding.
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A Proofs

A.1 Section 3

Theorem 13 (Theorem 1 restated)
X ⊆ T is a possible (certain) key for I iff no distinct tuples in I are strongly (weakly)
similar on X.

Proof (possible key ⇒ not strongly similar) Let X be a possible key for I and t, t′ ∈ I
be distinct. Then there exists a possible word ρ(I) of I for which X is a key. Denote
by ρ(t), ρ(t′) the copies of t, t′ in ρ(I). Since X is a key for ρ(I), there exists A ∈ X
with ρ(t)[A] ̸= ρ(t′)[A]. Since only ⊥ values get replaced, this means that t[A] ̸= t′[A] or
t[A] = ⊥ or t′[A] = ⊥ holds. In either case t, t′ are not strongly similar.

(possible key ⇐ not strongly similar) Let no two distinct tuples in I be strongly similar
on X. We construct a possible world ρ(I) of I by replacing every ⊥ value occurring in I
with a distinct domain value that did not occur in I previously2. Let again ρ(t), ρ(t′) ∈
ρ(I) be two distinct copies of t, t′ ∈ I. Since t, t′ are not strongly similar on X, there
exists A ∈ X with t[A] ̸= t′[A] or t[A] = ⊥ or t′[A] = ⊥. As we have chosen our
replacement values to be unique in ρ(I), we have ρ(t)[A] ̸= ρ(t′)[A] in all three cases.
Thus ρ(t), ρ(t′) are not similar on X, so X is a possible key for I.

(not certain key ⇒ weakly similar) Let X not be a certain key for I. Then there
exists a possible world ρ(I) of I and distinct tuples t, t′ ∈ I such that ρ(t)[X] ∼ ρ(t′)[X].
Thus for every A ∈ X we have ρ(t)[A] = ρ(t′)[A] and hence t[A] = t′[A] or t[A] = ⊥ or
t′[A] = ⊥, i.e., t[X] ∼w t′[X].

(not certain key ⇐ weakly similar) Let t, t′ ∈ I with t[X] ∼w t′[X]. Then we can
construct a possible world ρ(I) of I which replaces ⊥ values on t, t′ as follows:

2Such a replacement exists since domains are infinite and tables finite.
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• If t[A] = t′[A] = ⊥ let ρ(t)[A] = ρ(t′)[A] be arbitrary.

• If t[A] = ⊥ ∧ t′[A] ̸= ⊥ let ρ(t)[A] = t′[A].

• If t[A] ̸= ⊥ ∧ t′[A] = ⊥ let ρ(t′)[A] = t[A].

In each case we have ρ(t)[A] = ρ(t′)[A] and hence ρ(t)[X] ∼ ρ(t′)[X]. Thus X is not a
certain key for I.

Theorem 14 (Theorem 2 restated)
Let Σ be a set of possible and certain keys.

i) Σ implies c ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ for some Y ⊆ X or p ⟨Z⟩ ∈ Σ for some Z ⊆ X ∩ TS.

ii) Σ implies p ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ or p ⟨Y ⟩ ∈ Σ for some Y ⊆ X.

Proof The “if” directions follow from Theorem 1. We show the “only if” direction next.

i) Let c ⟨Y ⟩ ̸∈ Σ for every Y ⊆ X and p ⟨Z⟩ ̸∈ Σ for every Z ⊆ X ∩ TS. Consider a
table I = t, t′ on (T, TS) with the following properties:

• t = (0, . . . , 0)

• t′[X ∩ TS] = (0, . . . , 0)

• t′[X \ TS] = (⊥, . . . ,⊥)

• t′[T \X] = (1, . . . , 1)

Now consider Theorem 1. Since t, t′ weekly agree on X only, the only certain keys
c ⟨Y ⟩ violated by I are those with Y ⊆ X. Hence no certain keys in Σ are violated
by I. Since t, t′ strongly agree on X ∩ TS only, the only possible keys p ⟨Z⟩ violated
by I are those with Z ⊆ X ∩ TS. Hence no possible keys in Σ are violated by I.
Hence I respects Σ but violates c ⟨X⟩, so Σ does not imply c ⟨X⟩.

ii) Analogous with t′[X] = (0, . . . , 0).

This concludes the proof.

Theorem 15 (Theorem 3 restated)
Let Π be a set of strong and weak anti-keys.

i) Π implies ¬p⟨X⟩ iff ¬p⟨Y ⟩ ∈ Π for some Y ⊇ X, or ¬c⟨Z⟩ ∈ Π for some Z with
X ⊆ Z ∩ TS.

ii) Π implies ¬c⟨X⟩ iff ¬c⟨Y ⟩ ∈ Π or ¬p⟨Y ⟩ ∈ Π for some Y ⊇ X.

Proof The “if” directions follow from Theorem 1. We show the “only if” direction next.

i) Consider a table I on (T, TS) constructed by adding tuples tsY , t
s′
Y for every strong

anti-key Y ∈ Π, and tuples twY , t
w′
Y for every weak anti-key Y ∈ Π, with the following

properties:
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• tsY [Y ] = ts′Y [Y ] = (i, . . . , i)

• tsY [T \ Y ] = (j, . . . , j)

• ts′Y [T \ Y ] = (k, . . . , k)

• twY [Y ∩ TS] = tw′
Y [Y ∩ TS] = (i, . . . , i)

• twY [Y \ TS] = tw′
Y [Y \ TS] = (⊥, . . . ,⊥)

• twY [T \ Y ] = (j, . . . , j)

• tw′
Y [T \ Y ] = (k, . . . , k)

for distinct i, j, k ̸= ⊥. It is clear by construction and Theorem 1 that Π holds on I.
If ¬p⟨Y ⟩ ̸∈ Π for every Y ⊇ X and ¬c⟨Z⟩ ̸∈ Π for every Z with X ⊆ Z ∩ TS, then
for every tuple t ∈ I there exists A ∈ X such that t[A] is unique or ⊥. Hence no
tuples in I are strongly similar on X, so p ⟨X⟩ holds on I.

ii) Modify the construction in i) by setting

• twY [Y \ TS] = tw′
Y [Y \ TS] = (i, . . . , i)

Again it is clear that Π holds on I. If Π contains no anti-key Y ⊇ X, then for every
tuple t ∈ I there exists A ∈ X such that t[A] is unique. Hence no tuples in I are
weakly similar on X, so c ⟨X⟩ holds on I.

This concludes the proof.

Theorem 16 (Theorem 4 restated)
The following axioms are sound and complete for implication of possible and certain keys.

p-Extension:
p ⟨X⟩
p ⟨XY ⟩

c-Extension:
c ⟨X⟩
c ⟨XY ⟩

Weakening:
c ⟨X⟩
p ⟨X⟩

Strengthening:
p ⟨X⟩
c ⟨X⟩

X ⊆ TS

Proof Soundness follows from Theorem 1.
For showing completeness let Σ � c ⟨X⟩. By Theorem 2 there exist either c ⟨Y ⟩ ∈ Σ

with Y ⊆ X or p ⟨Z⟩ ∈ Σ with Z ⊆ X ∩ TS. In the former case c ⟨X⟩ can be derived via
c-Extension, in the latter via Strengthening and c-Extension. Finally let Σ � p ⟨X⟩. By
Theorem 2 there exist Y ⊆ X with c ⟨Y ⟩ ∈ Σ or p ⟨Y ⟩ ∈ Σ. In the former case p ⟨X⟩ can
be derived via Weakening and p-Extension, in the latter via p-Extension alone.

Lemma 6 (Lemma 1 restated)
The set Σmin of all minimal possible and certain keys w.r.t. Σ is a non-redundant cover
of Σ.
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Proof For every key σ ∈ Σ there exists a minimal key σ′ with Σ � σ′ � σ (found through
repeated application of Definition 4). Hence Σmin is a cover of Σ.

Now assume σ ∈ Σmin is redundant. Then there must exist σ′ ∈ Σmin \ {σ} with
σ′ � σ. Since σ is minimal this can only happen for σ = c ⟨X⟩, σ′ = p ⟨X⟩ for some
X ⊆ TS. But then σ′ is not minimal, which contradicts σ′ ∈ Σmin. Hence Σmin is
non-redundant.

Theorem 17 (Theorem 5 restated)
Let I be a table over (T, TS), and ΣI the set of all certain and/or possible keys that hold
on I. Then

Σ := {c ⟨X⟩ | X ∈ Tr(AGw)} ∪ {p ⟨X⟩ | X ∈ Tr(AGs)}

is a cover of ΣI .

Proof By Theorem 1 X is a certain (possible) key for I

iff no distinct tuples t.t′ ∈ I weakly (strongly) agree on X

iff X is not a subset of any weak (strong) agree set

iff X intersects with Y for every weak (strong) agree set Y

iff X is a transversal of AGw (AGs)

Due to the extension rules of Theorem 4 the minimal transversals are sufficient to form
a cover.

A.2 Section 4

Lemma 7 (Lemma 2 restated)
Let I be an instance over (T, TS) with |I| ≥ 2. Then I violates c ⟨⊥-base(t, t′)⟩ for every
t, t′ ∈ I.

Proof Let X := ⊥-base(t, t′). If t ̸= t′ then t[X] ∼w t′[X] so c ⟨X⟩ is violated. Otherwise
t = t′ and t[X] = (⊥, . . . ,⊥). Since I contains at least two tuples, there must exist t′′ ∈ I
with t ̸= t′′, and we have t[X] ∼w t′′[X] so c ⟨X⟩ is again violated.

Theorem 18 (Theorem 6 restated)
Let I be an instance over (T, TS) such that Σ holds on I. Then I is a pre-Armstrong
table of Σ iff

i) for every strong anti-key ¬p⟨X⟩ ∈ As
max there exist distinct tuples t, t′ ∈ I with

t[X] ∼s t
′[X], and

ii) for every weak anti-key ¬c⟨X⟩ ∈ Aw
max there exist distinct tuples t, t

′ ∈ I with t[X] ∼w

t′[X].

Proof Keys implied by Σ hold on I by assumption, so we only need to examine keys on
T that are not implied.
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(⇒) Clear by Theorem 1.

(⇐) Assume i) and ii) hold. Let c ⟨X⟩, X ⊆ T be a certain key with Σ 2 c ⟨X⟩. Then
¬c⟨X⟩ is a weak anti-key and there exists a maximal (weak or strong) anti-key
¬ ⟨Y ⟩ with X ⊆ Y . In either case (by i) or ii)) there exist t, t′ ∈ I, t ̸= t′ with
t[Y ] ∼w t′[Y ] and hence t[X] ∼w t′[X]. Thus c ⟨X⟩ is violated by I.

Let p ⟨X⟩, X ⊆ T be a possible key with Σ 2 p ⟨X⟩. Then ¬p⟨X⟩ is a strong
anti-key and there exists a maximal strong anti-key ¬p⟨Y ⟩ with X ⊆ Y . By ii)
there exist t, t′ ∈ I, t ̸= t′ with t[Y ] ∼s t

′[Y ] and hence t[X] ∼s t
′[X]. Thus p ⟨X⟩

is violated by I.

This concludes the proof.

Theorem 19 (Theorem 7 restated)
Let Σ 2 c ⟨∅⟩. There exists a pre-Armstrong table for (T, TS,Σ) iff there exists a set
W ⊆ P(T \ TS) with the following properties:

i) Every element of W×2 forms a weak anti-key.

ii) For every maximal weak anti-key ¬c⟨X⟩ ∈ Aw
max there exists Y ∈ W×2 with Y ∩X ′ ̸=

∅ for every possible key p ⟨X ′⟩ ∈ Σ with X ′ ⊆ X.

There exists an Armstrong table for (T, TS,Σ) iff i) and ii) hold as well as

iii)
∪

W = T \ TS.

Proof Let I be a pre-Armstrong table for (T, TS,Σ) and Σ 2 c ⟨∅⟩. Define W ⊆
P(T \ TS) as

W := {⊥-base(t) | t ∈ I}
We will show that conditions i) and ii) hold.

i) Let Y1, Y2 ∈ W . Then there must exist tY1 , tY2 ∈ I with ⊥-base(tY1 , tY2) = Y1Y2, so
I violates c ⟨Y1Y2⟩ by Lemma 2. Since I respects Σ, Σ permits ¬c⟨Y1Y2⟩.

ii) For every maximal weak anti-key ¬c⟨X⟩ ∈ Aw
max there exist two distinct tuples

t, t′ ∈ I such that t[X] ∼w t′[X]. Now let p ⟨X ′⟩ ∈ Σ with X ′ ⊆ X. Since I respects
Σ we cannot have t[X ′] ∼s t

′[X ′], i.e., t, t′ are weakly but not strongly similar on X ′.
This is only possible for t[A] = ⊥ or t′[A] = ⊥ for some A ∈ X ′. But that means
A ∈ X ′ ∩ Y1Y2 with Y1 := ⊥-base(t), Y2 := ⊥-base(t′).

If I is an Armstrong table, then there exists a tuple tA ∈ I with tA[A] = ⊥ for every
A ∈ T \ TS. Hence

iii)
T \ TS ⊆

∪
{⊥-base(tA) | A ∈ T \ TS} ⊆

∪
W

The ”if” direction will be shown in Theorem 8.

Theorem 20 (Theorem 8 restated)
Let Σ 2 c ⟨∅⟩ and I constructed via Construction 1. Then I is a pre-Armstrong table over
(T, TS,Σ). If condition iii) of Theorem 7 holds for W, then I is an Armstrong table.
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Proof We begin by showing that the conditions of Theorem 6 are met.

i) Let ¬p⟨X⟩ be a strong anti-key in As
max. Then I contains the tuples tsX , t

s′
X with

tsX [X] = (i, . . . , i) ∼s (i, . . . , i) = ts′X [X]

ii) Let ¬c⟨X⟩ be a weak anti-key in Aw
max. Then I contains the tuples twX , t

w′
X with

twX [X \ Y1Y2] = (i, . . . , i) ∼w (i, . . . , i) = tw′
X [X \ Y1Y2]

twX [X ∩ Y1] = (⊥, . . . ,⊥) ∼w tw′
X [X ∩ Y1]

twX [X ∩ Y2] ∼w (⊥, . . . ,⊥) = tw′
X [X ∩ Y2]

It remains to show that I is a valid instance over (T, TS,Σ), i.e., that I honors TS and
does not violate constrains in Σ. Honoring of TS is clear by choice of Y, Z,A ⊆ T \ TS.

i) Let p ⟨X ′⟩ ∈ Σ and t, t′ ∈ I, t ̸= t′ with t[X ′] ∼s t′[X ′]. Since X ′ ̸= ∅ and tuples
constructed for different anti-keys use unique values, we must have {t, t′} = {tsX , ts′X}
or {t, t′} = {twX , tw′

X } for some maximal anti-key ¬ ⟨X⟩ with X ′ ⊆ X. The former
cannot happen since p ⟨X ′⟩ ∈ Σ implies Σ � p ⟨X⟩, so {t, t′} = {twX , tw′

X } and ¬c⟨X⟩ is
a maximal weak anti-key. But then ⊥-base(t, t′) intersects with X ′ due to condition
ii), so t[X ′] ∼s t

′[X ′] cannot hold.

ii) Let c ⟨X ′⟩ ∈ Σ and t, t′ ∈ I, t ̸= t′ with t[X ′] ∼w t′[X ′].

• If X ′ ̸⊆ ⊥-base(t, t′) we again must have {t, t′} = {tsX , ts′X} or {t, t′} = {twX , tw′
X }

for some maximal anti-key ¬ ⟨X⟩ with X ′ ⊆ X. Either way ¬c⟨X⟩ and thus
¬c⟨X ′⟩ is a weak anti-key, which contradicts Σ � c ⟨X ′⟩.

• If X ′ ⊆ ⊥-base(t, t′) then X ′ ⊆ Y for some Y ∈ W×2. But ¬c⟨Y ⟩ is a weak
anti-key by condition i), again contradicting Σ � c ⟨X ′⟩.

If condition iii) of Theorem 7 holds for W , then construction step III) ensures that
I is an Armstrong table.

Corollary 4 (Corollary 3 restated)
Let Σ 2 c ⟨∅⟩.

i) If Σ 2 c ⟨X⟩ for every X ⊆ T \TS then there exists an Armstrong table for (T, TS,Σ).

ii) If Σ � c ⟨X⟩ for any X ⊆ T \TS with |X| ≤ 2 then there does not exist an Armstrong
table for (T, TS,Σ).

Proof i) follows from Theorem 7 with W = {T \ TS}.
For case ii), let I be an Armstrong table for (T, TS,Σ), and AB ⊆ T \TS. Then I contains
tuples tA, tB with tA[A] = ⊥ and tB[B] = ⊥, so AB ⊆ ⊥-base(tA, tB) is a weak anti-key
by Lemma 2.
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Lemma 8
A schema (T, TS,Σ,Aw) is satisfiable iff there exists a set W ⊆ P(T \ TS) with the
following properties:

i) Every element of W×2 forms a weak anti-key w.r.t. Σ.

ii) For every weak anti-key ¬c⟨X⟩ ∈ Aw there exists Y ∈ W×2 with Y ∩ X ′ ̸= ∅ for
every possible key p ⟨X ′⟩ ∈ Σ with X ′ ⊆ X.

Proof Analogous to the proof of Theorem 7.

Theorem 21 (Theorem 9 restated) The key/anti-key satisfiability problem is NP-complete.

Proof We will reduce the monotone 1-in-3 SAT problem to it. Let SAT be any set of
3-clauses without negation. We construct an instance of the key/anti-key satisfiability
problem as follows.

T := XY Z ∪
∪

C∈SAT

C

Aw := {¬c⟨XABC⟩,¬c⟨Y ABC⟩ | ABC ∈ SAT} ∪ {Z}
Σ := {p ⟨A⟩ | A ∈ T} ∪{

c ⟨ZABC⟩, c ⟨XY AB⟩,
c ⟨XY AC⟩, c ⟨XY BC⟩

∣∣∣∣ABC ∈ SAT

}
We claim that (T, ∅,Σ,Aw) is satisfiable iff SAT is 1-in-3 satisfiable.

Let I be a table satisfying (T, ∅,Σ,Aw), and W as in Lemma 8. We may assume
w.l.o.g. that W is downward closed, i.e., that

W =
∪
w∈W

P(w)

Since every attribute in T is nullable and a possible key, we must have Aw ⊆ W×2.
In particular Z ∈ W , and for every ABC ∈ SAT we have XABC, Y ABC ∈ W×2. Since
c ⟨ZABC⟩ ∈ Σ we cannot have ABC ∈ W . This leaves XA,XB or XC ∈ W , and
similarly Y A, Y B or Y C ∈ W . The certain keys c ⟨XY AB⟩, c ⟨XY AC⟩, c ⟨XY BC⟩ ∈ Σ
mean that XA ∈ W prohibits both Y B ∈ W and Y C ∈ W so Y A ∈ W must hold.
Conversely Y A ∈ W prohibits both XB ∈ W and XC ∈ W . By symmetrical argument
exactly one of XA,XB,XC lies in W .

Thus SAT is 1-in-3 satisfiable with

A →

{
true if XA ∈ W
false if XA ̸∈ W

Conversely let SAT be 1-in-3 satisfiable with truth assignment L. Then the set

W := {XA, Y A,BC | ABC ∈ SAT ∧ L(A)} ∪ {Z}

meets the conditions of Lemma 8.
The above shows NP-hardness. Furthermore, if there exists an instance I satisfying

the given keys and anti-keys, it contains a subtable with no more than 2 · |Aw| tuples,
and thus can be guessed and verified in polynomial time.
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Lemma 9 (Lemma 3 restated)
Let ΣP ,ΣC be the sets of possible and certain keys in Σ, and for the sake of readability
we will identify attribute sets with the keys or anti-keys induced by them. Then

As
max = { X ∈ Tr(ΣC ∪ ΣP ) |

¬(X ⊆ TS ∧ ∃Y ∈ Aw
max. X ⊂ Y ) }

Aw
max = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ As

max

Proof ¬ ⟨X⟩ is a strong (weak) anti-key iff p ⟨X⟩ (c ⟨X⟩) is not implied by Σ. By
Theorem 2 p ⟨X⟩ (c ⟨X⟩) is implied by Σ iff there exists Y ⊆ X with Y ∈ KP := ΣC ∪ΣP

(Y ∈ KC := ΣC ∪ {X ∈ ΣP | X ⊆ TS}). Hence ¬ ⟨X⟩ is a strong (weak) anti-key iff it
is not a subset of any set in KP (KC), i.e., iff X intersects with every set in KP (KC).
But this holds iff X is a transversal set for KP (KC). Thus the set-wise maximal strong
(weak) anti-keys are exactly Tr(KP ) (Tr(KC)).

By Definition 3, a strong anti-key ¬p⟨X⟩ is maximal iff it is not implied by a strictly
larger anti-key, i.e., iff ¬p⟨X⟩ is set-wise maximal and not implied by a strictly larger weak
anti-key ¬c⟨Y ⟩. By Theorem 3 such a weak anti-key ¬c⟨Y ⟩ implies ¬p⟨X⟩ iff X ⊆ TS.

Again by Definition 3, a weak anti-key is maximal iff it is set-wise maximal and not a
strong anti-key. Furthermore, if it were set-wise maximal and a strong anti-key, it would
have to be a maximal strong anti-key.

This gives use exactly the conditions of Lemma 3.

Lemma 10 (Lemma 4 restated)
Let TX be the transversal set in T \ TS of all possible keys that are subsets of X, and T
the set of all such transversals for all maximal weak antikeys:

TX := Tr({X ′ ∩ (T \ TS) | p ⟨X ′⟩ ∈ Σmin ∧X ′ ⊆ X})
T := {TX | X ∈ Aw

max}

Then condition ii) of Theorem 7 can be rephrased as follows:

ii’) W×2 ∧∨-supports T .

Proof Condition ii) states that for every ¬c⟨X⟩ ∈ Aw
max there exists Y ∈ W×2 which

traverses {X ′ | p ⟨X ′⟩ ∈ Σmin ∧ X ′ ⊆ X}. Since Y ⊆ T \ TS this means Y traverses
{X ′∩ (T \TS) | p ⟨X ′⟩ ∈ Σmin∧X ′ ⊆ X}. Hence Y is a superset of a minimal transversal
in TX , i.e. W×2 ∨-supports TX . This holds for every ¬c⟨X⟩ ∈ Aw

max, so W×2 ∧∨-supports
T . Each of these deductions is a logical equivalence.

Lemma 11 (Lemma 5 restated)
Algorithm Armstrong-Set is correct.

(Sketch) In lines 1 and 3 the conditions of Corollary 3 are checked, so any set W
returned here meets conditions i) to iii).

Failing that, W is initialized so that condition iii) of Theorem 7 holds. Since function
Extend-Support returns a superset of W condition iii) is an invariant for W .
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Condition i) of Theorem 7 holds for the initial W due to the check in line 3. Any
subsequent enlargements of W in line 18 ensure that condition i) is maintained, due to
the check in line 17. Hence condition i) is invariant for W .

It remains to show condition ii). For W = {{A} | A ∈ T \ TS} the set W×2 already
∨-supports transversal sets containing transversals of cardinality 2 or less. Thus for
any extension W+ of W for which W×2 ∧∨-supports the set T after removal of such
transversal sets in line 8, the set W×2

+ ∧∨-supports the original T . Thus condition ii)
follows directly from the correctness of function Extend-Support and Lemma 4. This
correctness can be shown recursively: If the check in line 13 holds W×2 already ∨-
supports TX . If it does not, ∨-support of TX is ensured by extending W with Y1, Y2 in
line 18. The recursive call in line 14 or 18 ensures that W ′×2 ∧∨-supports T \ {TX}.

It remains to argue that function Armstrong-Set returns such a set W (rather than
⊥) whenever one exists. Essentially we are examining all minimal3 sets W which meet
conditions ii) and iii), with a shortcut in line 3 which is justified due to Corollary 3. In
lines 8 and 14 we only omit cases leading to non-minimal sets W . Since condition i)
holds for a set W if it holds for any larger3 set W ′, examining only minimal sets W is
sufficient to find a set W meeting all conditions of Theorem 7, should one exist.

A.3 Section 5

Theorem 22 (Theorem 10 restated)
Σ is non-redundant if and only if the following conditions are satisfied

(1) F is an antichain,

(2) G is an antichain,

(3) ∀F ∈ F , G ∈ G : F ̸⊆ G,

(4) ∀F ∈ F , G ∈ G : G ̸⊆ F ∩ A.

Proof Σ is non-redundant if and only if for every σ ∈ Σ we have Σ\{σ} ̸|= σ. By
Theorem 2, the latter condition is equivalent to saying that

(1’) ¬∃c ⟨X⟩, c ⟨Y ⟩ ∈ Σ such that Y ⊆ X

(2’) ¬∃p ⟨X⟩, p ⟨Y ⟩ ∈ Σ such that Y ⊆ X

(3’) ¬∃p ⟨X⟩, c ⟨Y ⟩ ∈ Σ such that Y ⊆ X

(4’) ¬∃c ⟨X⟩, p ⟨Y ⟩ ∈ Σ such that Y ⊆ X ∩ A

hold. Conditions (1’)–(4’) are equivalent to conditions (1)–(4).

The two lemmas below will be applied in the proof of Theorem 11. To prove the
lemmas, we proceed similar to the original proof of Sperner’s Theorem [42]. For A ( [n]

3w.r.t. the ∧-support ordering W . W ′ :⇔ ∀Y ∈ W.∃Y ′ ∈ W ′.Y ⊆ Y ′
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and K ⊆ [n+ 1](i), we will use the following notations:

∆K :=
{
X ∈ [n+ 1](i−1) : X ⊂ K for some K ∈ K

}
,

∆̃K :=
{
X ∈ ∆K : n+ 1 /∈ X or X ̸⊆ A ∪ {n+ 1}

}
,

∇K :=
{
X ∈ [n+ 1](i+1) : X ⊃ K for some K ∈ K

}
,

∇̃K :=
{
X ∈ ∇K : n+ 1 /∈ X or X ̸⊆ A ∪ {n+ 1}

}
.

The intuition here is that sets in K containing n + 1 represent possible keys (after
removing n+ 1), or elements of G, while others represent certain keys, or elements of F .

For ∅ ≠ K ⊆ [n+ 1](i), the normalized matching inequality [15, 42] says

|∆K|
|K|

≥
∣∣[n+ 1](i−1)

∣∣
|[n+ 1](i)|

=
i

n+ 2− i

or symmetrically,
|∇K|
|K|

≥
∣∣[n+ 1](i+1)

∣∣
|[n+ 1](i)|

=
n+ 1− i

i+ 1
.

Lemma 12 Let n, a, A be as in Theorem 11, and let i ≤ n+ 1 be a nonnegative integer.
Furthermore, let ∅ ̸= K ⊆ [n + 1](i) such that there is no K ∈ K with n + 1 ∈ K ⊆
A ∪ {n+ 1}.

(a) If i ≤ n/2, then |∇̃K| ≥ |K|.
For n > 2, equality is attained if and only if n is even, i = n/2, a ≤ n/2 − 2 or
a = n− 1, and

K = [n+ 1](n/2) \
(
A(n/2−1) × {n+ 1}

)
(b) If i ≥ (n+ 3)/2, then |∆̃K| > |K|.

Proof (a) Assume that i ≤ n/2. Consider the bipartite graph G on the vertex set
V (G) = K ∪ ∇̃K and with edge set

E(G) = {(X, Y ) : X ∈ K, Y ∈ ∇̃K, X ⊂ Y }.

Let A := {X ∈ K : X ⊆ A}. Now X ∈ K has degree n − i in G if X ∈ A and degree
n− i+ 1 otherwise. Hence,

|E(G)| = (n− i+ 1)(|K| − |A|) + (n− i)|A| = (n− i+ 1)|K| − |A|. (2)

As an immediate consequence of (2) we obtain

|E(G)| ≥ (n− i)|K|. (3)

On the other hand, as every Y ∈ ∇̃K is adjacent to at most i+1 elements of K, we have

|E(G)| ≤ (i+ 1)|∇̃K|. (4)
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By (3) and (4), we have
(n− i)|K| ≤ (i+ 1)|∇̃K|. (5)

If i < (n− 1)/2, then (5) implies |∇̃K| > |K|.
Assume that i = (n − 1)/2, where n is odd. In this case, (5) reads |∇̃K| ≥ |K|, and

we need to show that equality can not hold. Assume that |∇̃K| = |K|. For this to be
the case, equality must also hold in (3) and in (4). Equality in (3) means K = A. For
equality in (4) it is necessary that every Y ∈ ∇̃K is adjacent to exactly (n+1)/2 elements
of K, i.e., that ∆(∇̃K) ⊆ K. Consider some x ∈ K ∈ K and y ∈ [n] \ A (which exists as
a < n). Then the set K ∪ {y} \ {x} is in ∆(∇̃K) but not in K = A, a contradiction.

For the remainder of the proof of (a), assume that i = n/2, where n is even. In this
case, equation (2) becomes

|E(G)| =
(n
2
+ 1

)
|K| − |A|. (6)

We will show the following strengthening of (4):

|E(G)| ≤
(n
2
+ 1

)
|∇̃K| − |A|. (7)

Together with (6), this implies the claim |∇̃K| ≥ |K|.
To prove (7), we will show that at least |A| elements of ∇̃K have degree at most n/2

in G. As a < n, there is an y ∈ [n] \ A. Let A′ := A × {y}. Clearly, A′ is a subset of
∇̃K, and |A′| = |A|. Consider the collection B × {y} of those elements of A′ that have
degree n/2+ 1 in G. The remaining |A| − |B| elements of A′ have degree at most n/2 in
G. By the choice of B we have ∆(B × {y}) ⊆ K which implies

∆B × {y, n+ 1} ⊆ ∇̃K \ A′. (8)

As ∆B × {n+1} is a subset of A(n/2−1) ×{n+1}, it does not contain any element of K.
That is, all |∆B| elements of ∆B×{y, n+1} have degree at most n/2 in G. In total, we
have shown the number of elements of ∇̃K that have degree at most n/2 in G to be at
least |A| − |B|+ |∆B|. Since B ⊆ A(n/2) and a < n, the normalized matching inequality
gives |∆B| ≥ |B|. This concludes the proof of (7).

It is easy to verify that |∇̃K| = |K| holds for K as given in Lemma 12(a). It remains
to show that for n > 2, |∇̃K| = |K| implies that K is as in Lemma 12(a). Assume that
|∇̃K| = |K|. Clearly, equality must hold in (6) and (7) then. By the above discussion, a
necessary condition for equality in (7) is |∆B| = |B|.
Case 1. Assume that B = ∅. Then, by the definition of B and for equality in (7), all
elements of A′ have degree n/2 in G, the remaining elements of ∇̃K degree n/2 + 1. If
A ̸= ∅, then consider some Z ∈ A. The set Z ∪ {y} is in ∇̃K, and, as it has degree
n/2 > 1 in G, there is a z ∈ Z such that Z∪{y}\{z} ∈ K. Now Z ′ := Z∪{y, n+1}\{z}
is in ∇̃K \ A′. As Z ∪ {n + 1} \ {z} /∈ K, the set Z ′ has degree at most n/2 in G, a
contradiction. Hence, A = ∅. It follows that ∇̃K = ∇K. By the normalized matching
inequality, we have |∇K| ≥ |K|, and it is well-known (see [15], for instance) that equality
only holds for K = [n+ 1](n/2), i.e., when a ≤ n/2− 2 and K as claimed.
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Case 2. Assume that B ̸= ∅. Using the normalized matching inequality again, we obtain
that |∆B| = |B| is only possible when a = n− 1 and B = A = A(n/2). Now (8) implies

∇
(
K ∪̇ (A(n/2−1) × {n+ 1})

)
= ∇̃K ∪̇ (A(n/2) × {n+ 1}),

and the normalized matching inequality gives

|K|+
(

n− 1

n/2− 1

)
≤ |∇̃K|+

(
n− 1

n/2

)
(which is equivalent to |K| ≤ |∇̃K|), where equality holds if and only if

K = [n+ 1](n/2) \
(
A(n/2−1) × {n+ 1}

)
.

(b) The proof of Lemma 12(b) is analogous to the proof of Lemma 12(a) for i ≤
(n− 1)/2.

Lemma 13 Let n, a, k, A,m be as in Theorem 11. Furthermore, let H ⊆ [n + 1](≤k) be
an antichain such that there is no H ∈ H with n+ 1 ∈ H ⊆ A ∪ {n+ 1}. Then

|H| ≤
(
n+ 1

m

)
−

(
a

m− 1

)
, (9)

and equality holds if and only if

(i) H = [n+ 1](m) \
(
A(m−1) × {n+ 1}

)
, or

(ii) H = [n+ 1](m−1) \
(
A(m−2) × {n+ 1}

)
,

where n is even, k > n/2, and a ≤ n/2− 2 or a = n− 1.

Proof Among all antichains H as in the lemma, consider one of maximum cardinality.
Let ℓ := min{|H| : H ∈ H} and u := max{|H| : H ∈ H}, and Hi := {X ∈ H : |X| = i}
for ℓ ≤ i ≤ u.

Assume that u ≥ (n+3)/2. It is straight forward to verify that H′ := (H\Hu)∪∆̃Hu

is an antichain that also satisfies the conditions in the theorem. By Lemma 12(b), we
have |H′| > |H|, a contradiction to the maximality of |H|. Hence,

u ≤ (n+ 2)/2. (10)

Next, assume that ℓ < min{n/2, k}. For n = 2 this means ℓ = 0 and thus H = {∅}
which is clearly not of maximal cardinality. Otherwise consider H′′ := (H \ Hℓ) ∪ ∇̃Hℓ

which satisfies the conditions in the lemma. By Lemma 12(a), we have |H′′| > |H|, a
contradiction. Consequently,

ℓ ≥ min{n/2, k}. (11)

If k ≤ n/2 then H ⊆ [n+1](m) follows from (11) and H ⊆ [n+1](≤k). If k > n/2 and
n is odd then H ⊆ [n+ 1](m) by (10) and (11). By the maximality of |H|, it follows that
H must be the antichain given in (i) for which equality in (9) is obviously attained.
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That leaves k > n/2 and n is even. Here (10) and (11) imply H = Hn/2 ∪ Hn/2+1.

By the maximality of |H|, we have |∇̃Hn/2| ≤ |Hn/2|. According to Lemma 12(a), this is
only possible if Hn/2 = ∅ or ifHn/2 = [n+1](n/2)\

(
A(n/2−1) × {n+ 1}

)
, where a ≤ n/2−2

or a = n − 1. In the first case, H must be as in (i). In the latter case, Hn/2+1 must be
empty because H is an antichain, and H is as in (ii). Finally, it is straightforward to
verify that for H as in (ii) equality is attained in (9).
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Proof of Theorem 11.
Let G∗ := {G ∈ G : G ⊂ F for some F ∈ F}. Then

H := F ∪ (G \ G∗) ∪
{
G ∪ {n+ 1} : G ∈ G∗}

has the same cardinality as F ∪ G and satisfies the conditions in Lemma 13. Now (9)
implies the bound (1).

It is easy to verify that any F and G as in (i) or (ii) satisfy the conditions in Theorem
11, and that equality in (1) is attained for such families. It remains to show that these
are the only optimal choices of F and G.

For equality to be attained in (1), we must have equality in (9), i.e., H must be as in
Lemma 13 (i) or (ii).

If H is as in Lemma 13 (i), then the definition of H implies

F ∪ G = [n](m) ∪ ([n](m−1) \ A(m−1))

and [n](m−1) \A(m−1) = G∗ ⊆ G. Similarly, if H is as in Lemma 13 (ii), then F and G are
as in (ii).

Furthermore, for k > 1 we have m > 1, so G∗ is non-empty. As G is an antichain, we
get [n](m) \ A(m) ⊆ F in case (i), and [n](m−1) \ A(m−1) ⊆ F in case (ii). �

A.4 Section 6

Theorem 23 (Theorem 12 restated) Let t be a tuple on (T, TS) and Ic⟨X⟩ a certain-
key-index for table I over (T, TS). Define

K := {A ∈ X | t[A] ̸= ⊥}

Then existence of a tuple in I weakly similar to t can be checked with 2k lookups in IK,
where k := |K \ TS|.

Proof A tuple t′ is weakly similar to t on X iff it is weakly similar to t on K. We have

t[K] ∼w t′[K] ⇔ t[K ∩ TS] = t′[K ∩ TS]
∧ ∀A ∈ K \ TS. t

′[A] ∈ {t[A],⊥}

which means there are precicely 2k distinct values t′[K] may take to be weakly similar to
t. For each fixed value t′[K], the existence of such a t′ ∈ I can be decided with a single
lookup in IK .

B Weak and Strong FDs do not enjoy Armstrong

relations

Note that there is a “strong similarity” between possible and certain keys and the weak
and strong functional dependencies discussed in [33]. A weak functional dependency holds
on some possible world, while a strong functional dependency holds on every possible
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world. Despite this, [33, Theorem 6.1] claims that for a set of strong and weak functional
dependencies, an Armstrong relation always exists. Unfortunately that claim is wrong,
with the proof not considering all tuple pairs in Case 2, “if” direction.

We must note here that Armstrong tables in [33] correspond to our pre-Armstrong
tables, they do not consider NOT NULL constraints, and a weak/strong FD X → R may
hold on a relation over R while the corresponding possible/certain key (p/c) ⟨X⟩ does not.
Hence non-existence of a (pre-)Armstrong table for a set of possible and certain keys
does not imply non-existence of an Armstrong table for the corresponding set of weak
and strong FDs.

Thus, to show that the claim in [33, Theorem 6.1] is wrong, rather than just its proof,
we provide a counter example next. Following the notation of [33], we denote weak FDs
by ♢(X → Y ) and strong FDs by �(X → Y ).

Example 15 (no FD (pre-)Armstrong table)
Let T = ABCDE and

Σ =


�(AB → E),�(CD → E),
♢(AC → E),♢(AD → E),
♢(BC → E),♢(BD → E),
�(E → ABCD)


Note the similarity to Example 10. Now any Armstrong table I must disprove the strong
FDs

�(AC → E),�(AD → E),�(BC → E),�(BD → E)

while respecting the weak FDs

♢(AC → E),♢(AD → E),♢(BC → E),♢(BD → E) .

Note that I may not contain ⊥ in column E, as otherwise �(E → ABCD) forces all
tuples to be strongly similar on ABCD, causing various non-implied FDs to hold.

In each of the four cases, we require two tuples t, t′ which violate a strong FD �(X →
E) but satisfy ♢(X → E). Thus

t[X] ∼w t′[X] and t[E] ̸∼s t
′[E]

t[X] ̸∼s t
′[X] or t[E] ∼w t′[E]

Since t[E], t′[E] ̸= ⊥ they cannot be weakly similar without being strongly similar. Hence
we have t[X] ̸∼s t

′[X], meaning either t[X] or t′[X] must contain ⊥.
Using the same arguments as in Example 10, we obtain (e.g.) tA[AB] ∼w tB[AB]

with tA[AB] and/or tB[AB] containing ⊥. From �(AB → E),�(E → ABCD) it then
follows that tA[AB] ∼s tB[AB], contradicting the presence of the ⊥ marker.

C Prefix indexing

The indexing approach described in Section 6 works for any type of index (hash, B-tree,
. . . ), as we only require fast lookup of exact matches. Some index structures however, in
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particular B-tree and its variants, also allow efficient lookup of prefix matches. That is,
an index over ABCD also supports lookups on A, AB and ABC.

If such index structures are available (and they are in most DBMSs), we can exploit
this to reduce the number of indexes required. In particular, if X = Y A contains only a
single NULL attribute A, we can support c ⟨X⟩ with only a single prefix index on Y A, as
this allows lookups for both Y and Y A. In case X = Y AB contains two NULL attributes
A and B, we can support c ⟨X⟩ with two prefix indices on Y AB and Y B.

While such an approach cannot prevent an exponential growth in the number of
indices required to achieve performance guarantees (each prefix index only supports a
linear number of prefix sets), it significantly reduces the number of indices required in
practice.
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