
CDMTCS
Research
Report
Series

Effective Recognition and
Visualization of Semantic
Requirements by Perfect
SQL Samples

Van Bao Tran Le
Victoria University of Wellington,
Wellington, New Zealand

Sebastian Link
University of Auckland,
Auckland, New Zealand

Flavio Ferrarotti
Victoria University of Wellington,
Wellington, New Zealand

CDMTCS-451
December 2013

Centre for Discrete Mathematics and
Theoretical Computer Science

Effective Recognition and Visualization of
Semantic Requirements by Perfect SQL

Samples

Van Bao Tranh Le
Victoria University of Wellington

Wellington, New Zealand
van.t.le@vuw.ac.nz

Sebastian Link
The University of Auckland, Private Bag 92019

Auckland, New Zealand
s.link@auckland.ac.nz

Flavio Ferrarotti

Victoria University of Wellington
Wellington, New Zealand

flavio.ferrarotti@vuw.ac.nz

December 17, 2013

Abstract

SQL designs result from methodologies such as UML or Entity-Relationship
models, description logics, or relational normalization. Independently of the method-
ology, sample data is promoted by academia and industry to visualize and consoli-
date the designs produced. SQL table definitions are a standard-compliant encod-
ing of their designers’ perception about the semantics of an application domain.
Armstrong sample data visualize these perceptions. We present a tool that com-
putes Armstrong samples for different classes of SQL constraints. Exploiting our
tool, we then investigate empirically how these Armstrong samples help design
teams recognize domain semantics. New measures empower us to compute the
distance between constraint sets in order to evaluate the usefulness of our tool.
Extensive experiments confirm that users of our tool are likely to recognize domain
semantics they would overlook otherwise. The tool thereby effectively comple-
ments existing design methodologies in finding quality schemata that process data
efficiently.

Keywords: Armstrong database, Empirical measure, Functional dependency, SQL, Unique-
ness constraint

1

1 Introduction

Design methodologies such as UML and Entity-relationship models, description logics,
and relational normalization all have the ultimate goal to derive a quality database
schema on which most frequent queries and most frequent updates can be processed
efficiently. The output that these methodologies produce are usually relational database
schemata. In practice, however, relational designs must be transformed into a standard-
compliant SQL table format. While SQL is founded on the relational model of data,
there is a strong disparity between them. For example, SQL permits occurrences of null
markers and duplicate tuples to ease and speed-up data acquisition and processing. It is
therefore a challenging task for design teams to find a suitable SQL table implementation.
In particular, one that captures not only the structure but also the semantics of the
application domain. Shortcomings in the acquisition of domain semantics are known to
be very costly, and often require expensive data cleaning and database repair techniques
once the database is in use. These are some of the reasons why there is great consensus
among academia and the commercial world that the use of good data samples can greatly
benefit a more complete acquisition of requirements, and also help with the validation
and consolidation of schemata produced automatically by design tools, as well as deliver a
justification of the designs that can be effectively communicated to different stake-holders
of the database.

In essence, Armstrong samples are data samples that satisfy the constraints a de-
sign team currently perceives as semantically meaningful for the application domain,
and violate all those constraints that they currently perceive meaningless. Armstrong
samples are therefore visualizations of abstract sets of constraints that encode real-world
semantics. Intuitively, humans can learn a lot from Armstrong samples. They therefore
hold great promise for the data-driven discovery of real-world application semantics. We
illustrate this promise by revisiting a classical example.

Suppose our design team has arrived at the relation schema Contact with attributes
Street, City, and ZIP, and the set Σ of the following functional dependencies (FDs):
Street,City→ ZIP and ZIP→ City. This is the classical example of a schema that is in
Third normal form, but not in Boyce-Codd normal form. Normalization algorithms stop
here, and cannot provide any further guidance on how to implement the relation schema
within an SQL table definition. Magically, we may now produce an Armstrong table for
the given set Σ of FDs and NOT NULL constraints, say on Street and ZIP, e.g. the table
on the left:

Street City ZIP
03 Hudson St Manhattan 10001
03 Hudson St Manhattan 10001

70 King St Manhattan 10001
70 King St San Fran 94107

15 Maxwell St San Fran 94129
46 State St ni 60609

Street City ZIP
03 Hudson St Manhattan 10001

70 King St Manhattan 10001
70 King St San Fran 94107

35 Lincoln Blvd San Fran 94129
15 Maxwell St ni 60609
15 Maxwell St ni 60609

An inspection of this table shows that our specification of FDs does not exclude oc-
currences of duplicate tuples. More precisely, Σ does not imply any uniqueness con-

2

straints (UCs) over SQL tables. At this stage, our design team decides that the FD
Street, City→ ZIP should be replaced by the stronger UC u(Street, City), meaning that
there cannot be any different rows with matching total values on both Street and City.
Note the interpretation of the null marker ni as no information, i.e., a value may not
exist, or it may exist but is currently unknown. This is the interpretation that SQL uses
[22]. The occurrence of ni in the table above indicates that the column City is nullable.
An Armstrong table for the revised constraint set is shown on the right above. Looking
at the last two rows of this table, the design team notices that the UC u(Street, ZIP)
is still not implied by the constraints specified so far. As the UC is considered to be
meaningful, the designers decide to specify this constraint as well. Thus, the design team
finally arrives at the following SQL table implementation

CREATE TABLE Contact (
Street VARCHAR,
City VARCHAR,
ZIP INT,
UNIQUE(Street,City),
PRIMARY KEY(Street,ZIP),
CHECK(Q = 0));

SELECT COUNT(∗) FROM Contact c1 Q
WHERE c1.ZIP IN (
SELECT ZIP FROM Contact c2
WHERE c1.ZIP=c2.ZIP AND

(c1.City <> c2.City OR

(c1.City IS NULL AND c2.City IS NOT NULL) OR
(c1.City IS NOT NULL AND c2.City IS NULL)));

where the state assertion Q on the right enforces ZIP→ City.
Contributions. As our main contribution we investigate empirically how Armstrong
samples in standard-compliant SQL format help design teams recognize domain seman-
tics. For this contribution we need to overcome several obstacles. In previous research,
Armstrong samples have been investigated in the context of the relational model of data
only. Thus, Armstrong relations cannot show the delicate interactions between SQL
constraints. However, we draw from our recent work where we developed algorithms to
compute Armstrong tables for different classes of SQL constraints. Our first contribu-
tion in this paper is a tool that is the first to implement these algorithms. We describe
the graphical user interface of the tool and its functionality. Our second contribution is
the definition of several empirical measures to assess the effectiveness of using our tool.
In essence, soundness measures how many of the as meaningful perceived constraints
are actually meaningful, completeness measures how many of the actually meaningful
constraints are perceived as meaningful, and proximity combines soundness and com-
pleteness. Our measures assess the quality of a constraint set with respect to a target
constraint set, and therefore qualify naturally for the use in automated assessment tools,
e.g., in database courses. In the example above, the target set Σt consists of the UCs
u(Street,City), u(Street,ZIP), and the FD ZIP → City. The original set Σ of FDs con-
sisting of Street,City→ ZIP and ZIP→ City is fully sound with respect to Σt since both
FDs in Σ are implied by Σt. While Σ is also fully complete with respect to FDs, it is
fully incomplete with respect to UCs. That is, every FD implied by Σt is also implied
by Σ, but no UC implied by Σt is implied by Σ. In our third contribution we present an
analysis of our extensive experiments with our tool. Our experiments determine what
and how much design teams learn about the application domain in addition to what they
know prior to inspecting Armstrong tables produced by our tool. Our analysis shows

3

that inspecting Armstrong tables has no impact on recognizing meaningless SQL con-
straints which are incorrectly perceived as meaningful, but inspecting Armstrong tables
empowers design teams to recognize nearly all meaningful SQL constraints that are in-
correctly perceived as meaningless. These results empirically confirm our intuition that
the satisfaction of meaningless SQL constraints is nearly impossible to be observed, and
the violation of meaningful SQL constraints is almost certain to be observed in Armstrong
tables.
Organization. We summarize related work in Section 2 and define the necessary frame-
work in Section 3. Our tool is presented in Section 4, and an overview of the experimental
design is given in Section 5. Our measures are defined in Section 6, and a quantitative
and qualitative analysis is presented in Section 7. We conclude in Section 8 where we
also briefly comment on future work.

2 Related work

Armstrong databases have been regarded intuitively as a conceptual tool helpful with the
acquisition of domain semantics [5, 17, 18, 19, 20]. Theoretical work on computational
and structural properties of Armstrong databases in the relational model of data and the
Entity-Relationship model are manifold, including [2, 3, 6, 12, 18, 21] with survey papers
[5, 17].

One of the most important extensions of Codd’s basic relational model [4] is partial
information to cope with the high demand for the correct handling of such information
in real-world applications. In the literature many interpretations of null markers have
been proposed such as “missing” or “value unknown at present”, “no information”, and
“inapplicable”. Our tool can handle constraints under the two most popular interpreta-
tions: null marker occurrences interpreted as “value unknown at present” are denoted
by unk, and occurrences that are interpreted as “no information” are denoted by ni. As
the latter is the one used by SQL, our presentation in this paper will mostly focus on the
“no information” interpretation.

In recent research we have established a theory of Armstrong tables for different
classes of NOT NULL constraints, uniqueness constraints (UCs) and functional dependen-
cies (FDs) under occurrences of either the unk marker, or the ni marker [7, 9, 10, 11, 14].
The present article is the first to present a tool for the computation of Armstrong tables
under different classes of constraints and the two different null marker interpretations.
The tool subsumes those implemented for relational databases as an idealized special
case [18, 19].

Our tool forms the critical basis for our empirical investigations into the usefulness of
Armstrong tables. We utilize the tool to compute Armstrong tables on-the-fly and in re-
sponse to inputs by design teams. The teams then inspect the Armstrong tables together
with domain experts in order to consolidate their perception of the domain semantics in
form of a set of SQL constraints. For the class of FDs over strictly relational databases
our previous research has shown that the use of Armstrong relations is likely to increase
the recognition of meaningful FDs, but unlikely to increase the recognition of meaningless
FDs [13]. Since the interaction of SQL constraints is more involved than that for their

4

idealized relational counterparts, one would naturally assume that sample data becomes
even more useful. In the current paper we therefore extend the experimental framework
from [13] to investigate the usefulness, and exploit our tool in actual experiments. Our
new measures do not just address the single class of FDs, but the two classes of UCs
and FDs. This is necessary as NOT NULL constraints, UCs and FDs interact non-trivially
over SQL data, in contrast to relational data where all attributes are NOT NULL and UCs
are simply subsumed by FDs. In addition to the measures of soundness, completeness
and proximity, we introduce here their relative versions. These illustrate best our find-
ings: almost all UCs and FDs that can possibly be recognized are actually recognized
by inspecting Armstrong tables, and that Armstrong tables do not have an impact on
recognizing meaningless UCs and FDs incorrectly perceived as meaningful.

3 Preliminaries

In this section we define the syntax and semantics for the different classes of constraints
under different interpretations of null markers. While an exact understanding of the
semantics is not necessary to appreciate our main results, they are required to fully
appreciate the features implemented in our tool.

Let H = {H1, H2, . . .} be a countably infinite set of symbols, called (column) headers.
A table schema is a finite non-empty subset T of H. Each header H of a table schema
T is associated with an infinite domain dom(H) of the possible values that can occur in
column H. To encompass partial information every column may contain occurrences of
a null marker, ni ∈ dom(H).

For header sets X and Y we may write XY for X ∪ Y . If X = {H1, . . . , Hm}, then
we may write H1 · · ·Hm for X. In particular, we may write H to represent {H}. A row
over T is a function r : T →

⋃
H∈T dom(H) with r(H) ∈ dom(H) for all H ∈ T . For

X ⊆ T let r(X) denote the restriction of the row r over T to X. An SQL table t over T
is a finite multi-set of rows over T . For rows r1 and r2 over T , r1 subsumes r2 if for all
H ∈ T , r1(H) = r2(H) or r2(H) = ni.

For a row r over T and a set X ⊆ T , r is said to be X-total if for all H ∈ X,
r(H) 6= ni. Similar, an SQL table t over T is said to be X-total, if every row r of t is
X-total. An SQL table t over T is said to be total if it is T -total.

A null-free subschema (NFS) over the table schema T is an expression nfs(Ts) where
Ts ⊆ T . The NFS nfs(Ts) over T is satisfied by an SQL table t over T , denoted by
|=t nfs(Ts), if and only if t is Ts-total. In practice, the NFS consists of those attributes
declared NOT NULL in the SQL table definition.

An SQL functional dependency (SFD) over a table schema T is an expression X → Y
where X, Y ⊆ T . An SQL table t over T satisfies the SFD X → Y if for all rows r, r′ ∈ t
the following holds: if r(X) = r′(X) and r, r′ are both X-total, then r(Y) = r′(Y) [16].
An SQL uniqueness constraint (SUC) over table schema T is an expression u(X) where
X ⊆ T . An SQL table t satisfies the SUC u(X) if for all rows r, r′ ∈ t the following
holds: if r(X) = r′(X) and both r and r′ are X-total, then r = r′. For examples, both
SQL tables from the introduction satisfy ZIP→ City. While the left table violates every
SUC, the right table satisfies u(Street,City) but violates u(Street,ZIP).

5

Let C be a class of constraints, for example, the combined class of NOT NULL con-
straints, SUCs and SFDs. We say for a set Σ ∪ {ϕ} of constraints from C over table
schema T that Σ implies ϕ, denoted by Σ |= ϕ, if for every SQL table t over T that
satisfies every constraint in Σ, t also satisfies ϕ. For example, the right SQL table from
the introduction shows that the set Σ consisting of ZIP → City, u(Street,City), and the
NFS nfs(Street,ZIP) does not imply u(Street,ZIP).

For a set Σ of constraints in C over table schema T , we say that an SQL table t over T
is C-Armstrong for Σ if t satisfies every constraint in Σ, and violates every constraint in C
over T that is not implied by Σ. For example, the table on the right from the introduction
is Armstrong for the set Σ containing ZIP → City, u(Street,City), and nfs(Street,ZIP).
By inspecting this table, we know that Σ does not imply City→ Street nor u(Street,ZIP),
but does imply Street,ZIP→ City and u(Street,City).

For our experiments we will focus on SQL constraints exclusively. Constraints, how-
ever, can also be defined on tables that feature the Codd null marker unk, instead of ni.
In that case we speak of Codd tables. For a Codd table t over T , the set Poss(t) of all
possible worlds relative to t is defined by

Poss(t) = {t′ | t′ is a table over T and there is a bijection b : t→ t′ such that
∀r ∈ t, r is sub- sumed by b(r) and b(r) is T -total}.

A Codd functional dependency (CFD) over table schema T is an expression �(X → Y)
where X, Y ⊆ T . A Codd table t over T satisfies �(X → Y) if there is some p ∈ Poss(t)
such that for all rows r, r′ ∈ p the following holds: if r(X) = r′(X), then r(Y) = r′(Y).
A Codd uniqueness constraint (CUC) over table schema T is an expression �u(X) where
X ⊆ T . A Codd table t satisfies �u(X) if there is some p ∈ Poss(t) such that for all rows
r, r′ ∈ p the following holds: if r(X) = r′(X) and both r and r′ are X-total, then r = r′.
The notions of implication and Armstrong tables, defined in the context of SQL tables
above, are defined analogously in the context of Codd tables.

Algorithms to compute C-Armstrong tables were recently developed for the classes C
of NOT NULL constraints and i) SUCs in [10], ii) SUCs and SFDs in [9], iii) CUCs in [14],
and iv) CUCs and CFDs in [7]. Our tool implements all of these algorithms, but for the
experiments we focus on the class ii) above.

4 A Tool to Recognize and Visualize

Domain Semantics

In this section we present the functionality of our tool. It is the first to implement recently
published algorithms for computing Armstrong tables [7, 9, 10, 14]. It is a Web appli-
cation, developed in the .NET framework, and operates on common Internet browsers
such as Firefox, Google Chrome, and Internet Explorer. We invite the reader to visit
http://armstrongtable.sim.vuw.ac.nz to experiment with the tool. A screenshot of
the GUI is shown in Figure 1.

The workflow of the tool exploits the following components. Firstly, the user selects
a context which fixes the interpretation of occurring null markers and the class of con-
straints. If ni is selected, the user chooses from the class of SQL UCs, or the combined

6

Figure 1: GUI of web-based tool: Armstrong table with some customized domain values

class of SQL UCs and SQL FDs. Otherwise, the user chooses from the class of Codd
UCs, or the combined class of Codd UCs and Codd FDs.

Secondly, the user specifies i) the table schema and which column headers are declared
NOT NULL, ii) the sets of constraints for the classes of constraints from the context, and
iii) optionally, some designated domain values to populate the Armstrong table.

Thirdly, the user choose from several algorithms. Foremost, a C-Armstrong table can
be computed for the set Σ of input constraints from C. The tool populates the table by
either domain values provided or by artificial values. The user can replace values in the
table by new values such that the new table is also C-Armstrong for Σ. Depending on the
class of constraints selected, other algorithms include the computation of closures for a
collection of column headers, the set of anti-keys, the set of maximal sets for each column
header, and duplicate sets. These notions are defined in our previous work [7, 9, 10, 14].

Finally, users of the tool have the option to export the table to an XML file, or print it
out. The XML file may be used in many other common applications, including Microsoft
Office, OpenOffice, or Apple’s iWork.

5 Experimental Design

Our aim is to evaluate how well Armstrong tables help design teams recognize domain
semantics. We thus ask how much domain semantics they learn by inspecting Armstrong
tables in addition to what they can learn without them.

5.1 Overview

Naturally, our experiment consists of two phases. In the first phase, each design team i is
given the same application domain in form of a table schema and NOT NULL constraints.
A natural language description accompanies the schema definition, and domain experts
are available to answer questions about the domain. The experts have no database

7

background and do not answer questions about database constraints. After internal
discussion and consultation with the experts, each team i writes down a cover Σi

1 of SQL
UCs and FDs that they perceive as meaningful for the domain. For each team i, our tool
computes an Armstrong table for Σi

1 and the NOT NULL constraints.
In the second phase, each team i revises their constraint set Σi

1 with the help of the
Armstrong table for Σi

1. Again, domain experts can be consulted and the Armstrong
table can be used to communicate with them. Teams are provided with Armstrong
tables for their revised constraint sets until they are happy with the outcome. The final
constraint set is denoted by Σi

2.
For each team i, we use different measures (see the next section) to compare Σi

1 with
our target set Σt of constraints, and to compare Σi

2 with Σt. If the latter comparison
results in a higher similarity than the former comparison, we conclude that Armstrong
tables are indeed useful with respect to the measure. The comparison between Σi

1 and
Σt gives us a baseline of what team i can still possibly learn by inspecting Armstrong
tables. Similarly, the comparison between Σi

2 and Σt tells us how much team i has
actually learned by inspecting Armstrong tables. Graphs will illustrate for each team the
difference between how much they could possibly learn and how much they have actually
learned.

5.2 Design teams and domain experts

The experiments involved 50 design teams from three universities: the University of
Auckland, the Victoria University of Wellington, and the Lotus University of Vietnam.
The students took third year database courses, were familiar with the semantics of SQL
constraints, and that the Armstrong tables satisfy the constraints they currently perceive
as meaningful and violate every constraint they currently perceive as meaningless. Each
team consisted of 2 or 3 students.

The authors of this paper acted as domain experts for the given application domain.
They were present during the experiments to clarify questions by the teams. Teams were
not given advice about the specification of their constraint sets. For example, questions
like ”Does this UC make sense?” were not answered. In practice, there may not exist a
unique target set, because the available information may not identify a unique constraint
set. For conducting the experiment, however, the presence of the domain experts and
their consensus on the target set guarantees that the quality of constraint sets can be
measured transparently.

5.3 Application domain and target

As application domain we used the schema

Work={P(roj),E(mp),D(ate),R(ole),H(rs)}

with the following description. The schema records information about the number Hrs of
hours (e.g., 5) that an employee Emp (e.g., Dilbert) works on a project Proj (e.g., Blue)
in a role Role (e.g., Programmer) at a day Date (e.g., Oct 5). The null-free subschema
of Work is nfs(Emp,Date), i.e., ni must not occur in the Emp and Date columns.

8

Σt contains nfs(Emp,Date) and the following SQL UCs and FDs. The UC u(Emp,Date)
states that there cannot be different rows with the same employee and the same date.
The FD Proj,Emp → Role says that in each project, each employee has a unique role.
The FD Project,Role→ Hrs says that the project and role together determine the number
of hours. Finally, the FD Proj,Emp→ Hrs says that the project and employee together
determine the number of hours. The last FD is not implied by the other UCs and FDs
in Σt [11].

5.4 Limitations

These include issues such as students acting as database designers, the familiarity of
students with the application domain, the number and size of the application domain,
time constraints, the assumption that domain experts are present, and that there is
consensus among them. The discussion of these limitations from the idealized relational
case [13] is also valid for SQL constraints.

6 Quality measures

We define new measures to compare constraint sets, and illustrate these on the following
running example from our actual experiment. Design team 8 handed in the following
sets of constraints:

• Σ8
1 = {u(Emp,Proj,Date);Proj,Role→ Hrs}

• Σ8
2 = {u(Emp,Date);Proj,Role→ Hrs;Proj,Emp→ Role}

Our measures will enable us to compare these sets to the target set Σt. As the NFS
nfs(Emp,Date) is given, it belongs to all sets Σi

j, i = 1, . . . , 50 and j = 1, 2.
Soundness measures which of the constraints perceived meaningful by a team, are

actually meaningful. Here, actually meaningful are the constraints implied by the target
set Σt. The UCs implied by a set Σ of UCs and FDs and nfs(Ts) is defined as s(Σ) :=
{u(X) | Σ |= u(X)}. Soundness for UCs is thus the ratio between the as meaningful
perceived UCs that are implied by Σt and all the as meaningful perceived UCs:

sounduΣt
(Σ) =

| s(Σ) ∩ s(Σt) |
| s(Σ) |

,

and sounduΣt
(Σ) := 1, if s(Σ) = ∅. For the measures of FDs we exploit the notion of a

closure X∗Σ = {H ∈ T | Σ |= X → H} for a set X of headers under Σ. Let P0(T) denote
the set of all non-empty, proper subsets of T . Then the soundness for FDs is the ratio
between the header sets in P0(T) whose closure under Σ is contained in the closure under
Σt, and P0(T):

soundfΣt
(Σ) =

| {X ∈ P0(T) | X∗Σ ⊆ X∗Σt
} |

| P0(T) |
.

For our running example we obtain sounduΣt
(Σ8

1) = 1, soundfΣt
(Σ8

1) = 30/30 = 1, and

sounduΣt
(Σ8

2) = 8/8 = 1, soundfΣt
(Σ8

2) = 1.

9

Completeness measures which of the actually meaningful constraints are also per-
ceived as meaningful by a team. Completeness for UCs is thus the ratio between the as
meaningful perceived UCs that are implied by Σt and all the actually meaningful UCs:

completeuΣt
(Σ) =

| s(Σ) ∩ s(Σt) |
| s(Σt) |

,

and completeuΣt
(Σ) := 1, if s(Σt) = ∅. Completeness for FDs is the ratio between the

header sets in P0(T) whose closure under Σt is contained in the closure under Σ, and
P0(T):

completefΣt
(Σ) =

| {X ∈ P0(T) | X∗Σt
⊆ X∗Σ} |

| P0(T) |
.

For our running example, we obtain completeuΣt
(Σ8

1) = 4/8 = 0.5, completefΣt
(Σ8

1) =

26/30 = 0.8, and completeuΣt
(Σ8

2) = 8/8 = 1, completefΣt
(Σ8

2) = 29/30 ≈ 0.97.
Proximity measures how close two sets of constraints are. For UCs it is the ratio

between the as meaningful perceived UCs that are implied by Σt and all the actually
meaningful and all the as meaningful perceived UCs:

proxu(Σ,Σt) =
| s(Σ) ∩ s(Σt) |
| s(Σ) ∪ s(Σt) |

,

and proxu(Σ,Σt) := 1, if s(Σt) ∪ s(Σt) = ∅. The complement distu(Σ,Σt) =| (s(Σ) ∪
s(Σt))−(s(Σ)∩s(Σt)) | defines a metric on equivalent sets of UCs. For FDs, completeness
is the ratio between the header sets in P0(T) whose closure under Σt is the same as the
closure under Σ, and P0(T):

proxf (Σ,Σt) =
| {X ∈ P0(T) | X∗Σt

= X∗Σ} |
| P0(T) |

.

Similar to UCs, distf (Σ,Σt) =| {X ∈ P0(T) | X∗Σt
6= X∗Σ} | defines a metric on equivalent

sets of FDs. For our example, we obtain prox(Σ8
1,Σt) = 4/8 = 0.5, proxf (Σ8

1,Σt) =
26/30 = 0.8, and proxu(Σ8

2,Σt) = 8/8 = 1, proxf (Σ8
2,Σt) = 29/30 ≈ 0.97.

For the best insight into the usefulness of Armstrong tables we present, for each of the
measures, the difference between how much Armstrong tables can possibly and actually
improve the measurement. In what follows we refer by measure(Σ) to one of sounduΣt

(Σ),

soundfΣt
(Σ), completeuΣt

(Σ), completefΣt
(Σ), proxu(Σ,Σt) and proxf (Σ,Σt). Then we de-

fine possible-gain-measurei := (1 − measure(Σi
1)) · 100%, and actual-gain-measurei :=

(measure(Σi
2) − measure(Σi

1)) · 100%. Note that actual gains can also be negative. For
our running example we obtain

• possible-gain-UC-sound8 = 0%,

• actual-gain-UC-sound8 = 0%,

• possible-gain-FD-sound8 = 0%,

• actual-gain-FD-sound8 = 0%,

10

• possible-gain-UC-complete8 = 50%,

• actual-gain-UC-complete8 = 50%,

• possible-gain-FD-complete8 = 20%, and

• actual-gain-FD-complete8 = 17%.

7 Data Analysis

We analyze our experiments with 50 design teams quantitatively and qualitatively. Due to
lack of space we will focus on our main findings and will not analyze proximity separately,
as it combines soundness and completeness.

7.1 Quantitative Analysis

The following tables show some statistics for the actual gains teams achieved by inspecting
Armstrong tables. Means are arithmetic means.

Gain-in-soundness in percent
Class Min Mean Median Max
UCs -33 4 0 44
FDs -13 0 0 14

Gain-in-completeness in percent
Class Min Mean Median Max
UCs 0 24 25 75
FDs 0 11 12 27

The statistics confirm our intuition that Armstrong tables are unlikely to help design
teams recognize meaningless constraints that they perceive meaningful prior to inspecting
a corresponding Armstrong table. While a small number of teams have added new
meaningless constraints (a negative gain in soundness), a small number of different teams
have removed meaningless constraints (a positive gain). On average, these gains and
losses even each other out. The statistics also confirm our intuition that Armstrong
tables are likely to help design teams recognize meaningful constraints they perceive
meaningless prior to inspecting an Armstrong table. Indeed, no meaningful constraints
are removed at all, but a significant number of meaningful constraints is added on average.

Figures 2 to 5 strengthen these observation. For soundness it shows that actual gains
are similar to no gains. For completeness it shows that possible and actual gains nearly
coincide.

7.2 Qualitative Analysis

A qualitative analysis of the soundness confirms that only few teams add or remove
meaningless constraints after inspecting Armstrong tables. Indeed, three teams added
u(EP) and one team added u(EPR), and PE → D, PD → E, and ER → P were
each added by at most one team. Three teams removed u(EP) and one team removed
u(DERH). PR → E, PR → D, ER → P , DH → E, R → P were each removed by at
most one team.

11

Figure 2: Actual and Possible Gains for Soundness of Uniqueness Constraints

Figure 3: Actual and Possible Gains for Completeness of Uniqueness Constraints

12

Figure 4: Actual and Possible Gains for Soundness of Functional Dependencies

Figure 5: Actual and Possible Gains for Completeness of Functional Dependencies

13

A qualitative analysis of the completeness confirms that significant numbers of teams
add meaningful constraints after inspecting Armstrong tables. Indeed, 22 teams added
u(ED), and 41 teams added some meaningful FD: 18 teams added PR → H, 15 teams
added PE → H, and 14 teams added EP → R. The numbers also suggest that there is
no particular pattern on which meaningful FD is added. Importantly, no team removed
any meaningful constraint.

8 Conclusion and Future Work

Conceptual methodologies produce relational approximations of database designs that
still need to be converted into real-world SQL table definitions. In particular, the seman-
tics of the application domain must be encoded in form of SQL constraints. We have
investigated how much perfect SQL sample data, in form of Armstrong tables, help design
teams recognize uniqueness constraints and functional dependencies that are meaningful
for the underlying application domain. For this purpose we developed a tool that im-
plements recent algorithms for the computation of Armstrong tables. The tool was then
used in our experiments to create Armstrong tables for sets of these SQL constraints
that design teams perceive as meaningful. New measures were exploited to confirm em-
pirically that the inspection of Armstrong tables is likely to help design teams recognize
nearly all meaningful SQL constraints they did not recognize before, but unlikely to help
them recognize any actually meaningless SQL constraints they perceive as meaningful.
The results extend previous findings for purely relational functional dependencies. They
suggest to use our tool as early as possible during requirements acquisition and to ex-
ploit it for the consolidation and visualization of database designs produced by popular
conceptual design methodologies.

In future work we will address the limitations of our experiments, include other classes
of SQL constraints such as cardinality and referential constraints [8, 15, 21], gather data
on how the size of Armstrong tables affects the recognition of domain semantics, imple-
ment our measures for the automated assessment and feedback of exercises in database
courses, and combine our approach with techniques from natural language processing
[1]. In particular, our results may not apply in this form when different constraints or
constraints on several tables are considered, such as foreign keys.
Acknowledgement. This research is supported by the Marsden fund council from
Government funding, administered by the Royal Society of New Zealand. We express
our sincere gratitude to Pavle Mogin and Hui Ma for their kind assistance during the
data gathering process.

References

[1] Albrecht, M., Buchholz, E., Düsterhöft, A., Thalheim, B.: An informal and efficient
approach for obtaining semantic constraints using sample data and natural language
processing. In: Libkin, L., Thalheim, B. (eds.) Semantics in Databases. LNCS, vol.
1358, pp. 1–28. Springer, Heidelberg (1998)

14

[2] Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

[3] Beskales, G., Ilyas, I., Golab, L.: Sampling the repairs of functional dependency
violations under hard constraints. PVLDB 3(1), 197–207 (2010)

[4] Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM
13(6), 377–387 (1970)

[5] Fagin, R.: Armstrong databases. Tech. Rep. RJ3440(40926), IBM Research Labo-
ratory, San Jose, California, USA (1982)

[6] Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)

[7] Ferrarotti, F., Hartmann, S., Le, V., Link, S.: Codd table representations under
weak possible world semantics. In: Hameurlain, A., Liddle, S.W., Schewe, K.D.,
Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 125–139. Springer, Hei-
delberg (2011)

[8] Ferrarotti, F., Hartmann, S., Link, S.: Efficiency frontiers of XML cardinality con-
straints. Data Knowl. Eng., http://dx.doi.org/10.1016/j.datak.2012.09.004 (2013)

[9] Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions
with functional dependencies. VLDB J. 21(1), 121–144 (2012)

[10] Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete relations.
Comput. J. 54(7), 1166–1180 (2011)

[11] Hartmann, S., Link, S.: The implication problem of data dependencies over SQL
table definitions. ACM Trans. Database Syst. 37(2), 13 (2012)

[12] Hartmann, S., Link, S., Trinh, T.: Constraint acquisition for Entity-Relationship
models. Data Knowl. Eng. 68(10), 1128–1155 (2009)

[13] Langeveldt, W.D., Link, S.: Empirical evidence for the usefulness of Armstrong
relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

[14] Le, V., Link, S., Memari, M.: Schema- and data-driven discovery of SQL keys. JCSE
6(3), 193–206 (2012)

[15] Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data Knowl. Eng. 11(3), 235–270 (1993)

[16] Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)

[17] Link, S.: Armstrong databases: Validation, communication and consolidation of con-
ceptual models with perfect test data. In: Ghose, A., Ferrarotti, F. (eds.) APCCM
2012. pp. 3–20. Australian Computer Society (2012)

15

[18] Mannila, H., Räihä, K.J.: Design of Relational Databases. Addison-Wesley (1992)

[19] Silva, A., Melkanoff, M.: A method for helping discover the dependencies of a rela-
tion. In: Advances in Data Base Theory. pp. 115–133 (1979)

[20] Thalheim, B.: Entity-Relationship modeling. Springer (2000)

[21] Thalheim, B.: Fundamentals of cardinality constraints. In: Pernul, G., Min Tjoa,
A. (eds.) ER 1992. LNCS, vol. 645, pp. 7–23. Springer, Heidelberg (1992)

[22] Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

16

