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Abstract

We study the implication problem for the combined class of functional and full
hierarchical dependencies in the presence of SQL’s NOT NULL constraints. Two
different notions of implication are addressed: one where a dependency is implied
by the given set of dependencies plus the underlying schema, and one where a
dependency is implied by the given set of dependencies alone. We establish axiom-
atizations for both notions of implication, and reveal deep relationships between
them.
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1 Introduction

Context. Modern database management systems provide commensurate tools to store,
manage and process different kinds of data. The core of these systems still relies on
the sound technology that is based on Codd’s relational model of data [22]. Relations
permit the storage of inconsistent data, i.e., data that violate conditions which every
legal database instance ought to satisfy. Consequently, additional assertions, called de-
pendencies, are specified by the data administrator in order to restrict the databases to
those which are considered meaningful to the application at hand. According to [32]
the class of functional dependencies (FDs) captures around two-thirds, and the class of
full hierarchical dependencies (FHDs) around one-quarter of all uni-relational dependen-
cies (those defined over a single relation schema) that arise in practice. In particular,
FHDs are frequently exhibited in database applications [99], e.g. after de-normalization
or in views [1]. Research on data dependencies has been extensive in the context of the
relational model of data, see [14, 39, 89] for excellent surveys. Most of this research
centers around the implication problem for classes of data dependencies. The problem
is to decide for an arbitrarily given finite set Σ ∪ {φ} of data dependencies of a fixed
class, if every relation that satisfies all elements of Σ also satisfies φ. Solutions to the
implication problem are essential to database design, and fundamental to data processing
tasks such as updates and queries. New application areas include data integration and
exchange as well as database security. One of the most important extensions of Codd’s
relational model is incomplete information. This is mainly due to the high demand for
the correct handling of such information in real-world applications. Approaches to deal
with incomplete information comprise partial relations [24, 60, 69], or-relations [59, 92],
fuzzy relations [85], rough sets [101] and probabilistic relations [26]. In this article we
are interested in the implication problem of the combined class of functional and full
hierarchical dependencies over partial relations that use Zaniolo’s “no information” null
value, denoted by ni [100]. The following example discusses an instance of this problem.

Example 1 Consider a relation schema DVD with column headers M(ovie), D(irector),
A(ctor), F(eature) and L(anguage). The schema collects information about DVDs, i.e.,
the title of the movie on the DVD together with the names of the movie’s directors and
actors, the features and languages available on the DVD. An example of a partial relation
over DVD is

Movie Director Actor Feature Language
The girl with the dragon tattoo ni R. Mara Commentary English
The girl with the dragon tattoo N.A. Oplev ni Subtitle Swedish

where the null value ni indicates that no information is available about the director of
the first movie, and no information is available about the actor of the second movie, re-
spectively. Suppose the database management system enforces the following semantically
meaningful constraints. The FD MA → D says that the director is uniquely determined
by the title and an actor of the movie. That means, every pair of tuples that has the same
non-null value on M and the same non-null value on A also has the same value on D
(possibly the null value). The FHD M : {DF} says that the sets of directors and features
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are determined by the title of the movie independently of the actors and languages. That
means that for every pair of tuples that has the same non-null value on M there must be
a tuple that has the same values on M , D and F as the first tuple and the same values
on M , A and L as the second tuple. Finally, the FHD MD : {FL} says that the sets of
features and languages are determined by the title and director of the movie independently
of the actors. It is a natural question to ask whether the following semantically mean-
ingful constraints also need to be enforced explicitly, or whether they are already enforced
implicitly: i) the FD M → D and ii) the FHD M : {A}?

Despite the demand to allow the storage of incomplete information, an effective and
efficient management of databases requires that certain parts of the information are
complete. For example, SQL table definitions permit column headers to be declared NOT

NULL, i.e., no null value is allowed to occur in such columns [27]. Primary key attributes
in SQL table definitions are NOT NULL by default [27]. With respect to Zaniolo’s “no
information” null value, the implication problem of the class of functional dependencies
alone has been studied in the presence of a null-free subschema (NFS) [6]. An NFS
over a given relation schema is simply the subset of attributes declared NOT NULL. The
opportunity to specify an arbitrary NFS Rs provides the data administrator with a
flexible mechanism to control the degree of certainty in partial relations. However, the
following example illustrates that reasoning about FDs and FHDs in the presence of an
arbitrary NFS is subtle, and automated tools for such reasoning tasks cannot be taken
for granted.

Example 2 Let R = MDAFL, Σ = {M : {DF},MD : {FL},MA → D} from Exam-
ple 1. For the NFS Rs = DA it turns out that Σ implies indeed the FD M → D and also
the FHD M : {A} in the presence of Rs. However, if Rs =MDFL, then the relation

Movie Director Actor Feature Language
Psycho G. Van Sant ni Subtitle English
Psycho A. Hitchcock ni Deleted Scenes English

satisfies Σ and Rs, but violates M → D. In particular, the FD MA → D and the FHD
M : {A} are both satisfied since the two tuples both have the null value on A. If we
choose Rs to be MAFL instead, then the relation

Movie Director Actor Feature Language
The girl with the dragon tattoo ni R. Mara Subtitle English
The girl with the dragon tattoo ni N. Rapace Subtitle Swedish

satisfies Σ and Rs, but violates M : {A}. In particular, the FHD M : {DF} is satisfied
as both tuples have the same values on D and F .

Contributions. As the first contribution of this article we will establish an axiom-
atization W for the implication of the combined class of functional and full hierarchical
dependencies in the presence of a null-free subschema. The existence of an axiomatization
for the implication of data dependencies can form the basis of an enumeration algorithm
that lists all logical consequences. In practice, such an enumeration is often desirable
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to validate the correct specification of explicit knowledge. An axiomatization may also
enable one to develop an algorithm which decides the implication of dependencies effi-
ciently. This complements the enumeration algorithm by a further reasoning capability
that can make efficient, but only partial decisions whether some dependency is implicitly
specified or not. In contrast, the enumeration algorithm lists all of the implicitly speci-
fied dependencies. The axiomatization W refers to the traditional notion of implication
which takes into account the underlying relation schema R. The next example illustrates
that there are dependencies that are implied by the given set of dependencies, the NFS
and the underlying relation schema, but not implied by the given set of dependencies
and the NFS alone. In order to distinguish between these two notions of implication we
refer to R-implication in the first case, and to implication in the second case.

Example 3 Consider again the relation schema R = MDAFL and the set Σ = {M :
{DF},MD : {FL},MA→ D} of FDs and FHDs over R from Example 1. Let Rs = AD
denote a null-free subschema over R. Using the inference rules of Table 1 the following
inference

MD : {FL}
M : {DF} CR

H : MD : {A}
TH : M : {A} MA→ D
TFH : M → D

shows that the FHD M : {A} is R-implied by Σ in the presence of Rs. Note that TH is
only applicable since D ∈ Rs and TFH is only applicable since A ∈ Rs. However, if we
add the attribute W(riter) to R to obtain the relation schema R′ =MDAFLW , then the
FHD M : {A} is not R′-implied by Σ in the presence of Rs, as the relation

Movie Director Actor Feature Language Writer
Psycho ni V. Vaughn Subtitle English R. Bloch
Psycho ni A. Perkins Subtitle English J. Stefano

shows.

Example 3 demonstrates that there is a difference between those dependencies that
are R-implied and those that are implied. As the second contribution of this article
we show that the addition of further inference rules to W results in an axiomatization
WC that is complementary and adequate for the R-implication of FDs and FHDs in the
presence of an NFS. The property of complementarity means that for every R-implied
FHD there is an inference by WC in which the R-complementation rule CR

H is applied at
most once, and if it is applied, then only in the last step of the inference. The property
of adequacy means that for every R-implied FD there is an inference by WC in which the
R-complementation rule CR

H is not applied at all. As the third contribution of this article
we show that the system U resulting from the removal of the R-complementation rule
CR
H from WC is an axiomatization for the implication of FDs and FHDs in the presence

of an NFS. In particular, the FHDs that can be inferred by W but not by U are exactly
those FHDs that are R-implied but not implied by the given set of FDs and FHDs in
the presence of an NFS. Finally, we show that our results also apply to Codd’s null
interpretation “value unknown at present” [24].
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Organization. We summarize related work in Section 2. In Section 3 we give prelim-
inary definitions regarding the extension of Codd’s relational model of data with Zaniolo’s
“no information” null value. We also repeat the notion of R-implication, define functional
and full hierarchical dependencies and null-free subschemata. In Section 4 we establish an
axiomatization W for the R-implication of functional and full hierarchical dependencies
in the presence of a null-free subschema. In Section 5 we show that W is neither com-
plementary nor adequate, but that the addition of further inference rules to W results
in an axiomatization WC that enjoys both properties. Section 6 discusses the alternative
notion of implication where the set of underlying attributes is left undetermined. We
establish an axiomatization for this notion of implication for the combined class of FDs
and FHDs in the presence of a null-free subschema. In Section 7 we briefly discuss Codd’s
interpretation “value unknown at present”. Finally, we conclude in Section 8 and briefly
comment on possible future work.

2 Related Work

Codd’s relational model of data [22] has been the context for a large body of research
on data dependencies, and overviews include [1, 14, 39, 78, 89]. Traditional areas of
applications for data dependencies include normalization [15, 34, 93], requirements en-
gineering and schema validation [50, 76], data mining [77], database security [16], view
maintenance [63] and query optimization [33]. New application areas are data cleaning
[40], data transformations [28], consistent query answering [21], data exchange [38, 2] and
data integration [19]. Data dependencies have received considerable attention in other
data models [3, 6, 18, 42, 44, 49, 51, 52, 53, 61, 66, 68, 87, 88, 91, 97, 95]. FDs capture
around two-thirds and FHDs around one-quarter of all uni-relational dependencies that
arise in applications [32, 99]. Join, equality- and tuple-generating, and embedded depen-
dencies are more expressive, but are beyond our scope here [11, 20, 36, 75]. Note that join
dependencies are not Hilbert-style axiomatizable [80], and acyclic join dependencies are
captured by sets of FHDs [10]. The use of equality- and tuple-generating dependencies
[39] beyond FDs and FHDs have their major motivation in data exchange [37].

For total relations, Armstrong [5] established the first axiomatization for the class of
FDs. Beeri, Fagin, and Howard extended this axiomatization to the combined class of
FDs and multivalued dependencies (MVDs) [9]. Delobel introduced the class of hierar-
chical decompositions, including full hierarchical dependencies (FHDs) [31]. Biskup [13]
studied the difference between the R-implication and implication of MVDs. Specifically,
Biskup [13] established the first axiomatization S0 for the R-implication of MVDs that
is complementary. Biskup further showed that the removal of the R-complementation
rule from S0 results in an inference system that forms a finite axiomatization for the
implication of MVDs. Hence, the R-complementation rule is a mere means of database
normalization [13]. Link [73] established algebraic, proof-theoretical and logical charac-
terizations for the implication of MVDs. Köhler, Hartmann and Link [64] extended these
findings to the class of FHDs. Moreover, Biskup and Link [17] investigated the combined
class of FDs and FHDs. In fact, an axiomatization for R-implication was established
that is not only complementary for FHDs but also adequate for FDs.
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Figure 1: Control over trade-offs by specifying a null-free subschema

One of the most important extensions of Codd’s basic relational model [22] is incom-
plete information. This is mainly due to the high demand for the correct handling of such
information in real-world applications. Approaches to deal with incomplete information
comprise partial relations [24, 60, 69], or-relations [59, 92], fuzzy relations [85] and rough
sets [101]. In the literature many kinds of null values have been proposed; for example,
“missing” or “value unknown at present” [47, 48], “non-existence” [74], “inapplicable”
[48], “no information” [100] and “open” [45]. Results that are of most relevance to this
article are based on Zaniolo’s “no information” interpretation.

Lien [70] axiomatized the R-implication of FDs and MVDs over partial relations where
the NFS is fixed to the empty attribute set. A complementary axiomatization for the
R-implication of MVDs and an axiomatization for the implication of MVDs have been
established [72]. Atzeni and Morfuni established axiomatizations for the R-implication
of FDs in the presence of existence constraints, e.g., null-free subschemata [6]. Levene
and Loizou introduced and axiomatized R-implication for the combined class of weak
and strong FDs with respect to a possible world semantics [68]. The Armstrong axioms
axiomatize strong FDs, while weak FDs have the same axiomatization as the FDs of
Lien, Atzeni and Morfuni [6, 70].

For the “no information” interpretation, Hartmann and Link [54, 55] established
recently an axiomatization for the R-implication of the combined class of FDs and MVDs
in the presence of a null-free subschema Rs. Noticeably, the R-implication of FDs and
MVDs in the presence of an NFS is equivalent to S-3 implication of a propositional
fragment in Cadoli and Schaerf’s para-consistent family of S-3 logics [54, 55]. Herein,
S is the set of propositional variables that correspond to the attributes of the null-free
subschema Rs. Essentially, Rs provides database engineers with full control to balance
the expressiveness of database constraints with the efficiency to reason about them. This
is illustrated in Figure 1 on the example of a relation schema with three attributes. In [41]
a complementary and adequate axiomatization of the R-implication of FDs and MVDs in
the presence of a null-free subschema was announced, as well as an axiomatization for the
implication of this class. In the present article we prove all these results in detail for the
more general class of FDs and FHDs in the presence of an NFS. This also complements
the finding of [54, 55] where the difference between R-implication and implication was
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not studied.

3 Dependencies over partial relations

We summarize the basic notions required for our treatment of data dependencies over
partial relations in the following sections.

3.1 Partial relations

Let A = {A1, A2, . . .} be a (countably) infinite set of distinct symbols, called attributes
(column names of tables). A relation schema is a finite non-empty subset R of A.
Each attribute A of a relation schema R is associated with an infinite domain dom(A)
which represents the possible values that can occur in column A. In order to encompass
incomplete information every domain contains the same distinguished null value, i.e.
ni ∈ dom(A) for all A. The intention of ni is to mean “no information”. This is
the most primitive interpretation, and it can model non-existing as well as unknown
information [6, 100].

For attribute sets X and Y we may write XY for their set union X ∪ Y . If X =
{A1, . . . , Am}, then we may write A1 · · ·Am for X. In particular, we may write simply
A to represent the singleton {A}. A tuple over R (R-tuple or simply tuple, if R is
understood) is a function t : R → ∪A∈Rdom(A) with t(A) ∈ dom(A) for all A ∈ R. The
null value occurrence t(A) = ni associated with the value t(A) of a tuple t on attribute
A means that “no information” is available about the attribute A for the tuple t. For
X ⊆ R let t[X] denote the restriction of the tuple t over R to X. A (partial) relation
r over R is a finite set of tuples over R. Let t1 and t2 be two tuples over R. It is
said that t1 subsumes t2 if for every attribute A ∈ R, t1(A) = t2(A) or t2(A) = ni

holds. In consistency with previous work [6, 70, 100], the following restriction will be
imposed, unless stated otherwise: No relation shall contain two tuples t1 and t2 such that
t1 subsumes t2. With no null values present this means that no duplicate tuples occur.

For a tuple t over R and a set X ⊆ R, t is said to be X-total, if for all A ∈ X,
t(A) ̸= ni. Similar, a relation r over R is said to be X-total, if every tuple t of r is
X-total. A relation r over R is said to be a total relation, if it is R-total.

We recall the definition of projection and join operations on partial relations [6, 70].
Let r be some relation over R. Let X be some subset of R. The projection r[X] of r on
X is the set of tuples t for which (i) there is some t1 ∈ r such that t = t1[X] and (ii) there
is no t2 ∈ r such that t2[X] subsumes t and t2[X] ̸= t. For Y ⊆ X, the Y -total projection
rY [X] of r on X is rY [X] = {t ∈ r[X] | t is Y -total}. Given an X-total relation r over
R and an X-total relation s over S such that X = R∩ S the natural join r ◃▹ s of r and
s is the relation over R∪S which contains those tuples t such that there are some t1 ∈ r
and t2 ∈ s with t1 = t[R] and t2 = t[S] [6, 70].

Example 4 Let DVD denote the relation schema that consists of the attributes Movie,
Director, Actor, Feature and Language. Then
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Movie Director Actor Feature Language
The girl with the dragon tattoo D. Fincher ni Commentary English
The girl with the dragon tattoo N.A. Oplev ni Subtitle Swedish

denotes a relation over DVD that is {Movie,Director, Feature, Language}-total.

3.2 Constraints over partial relations

We define the classes of constraints that are of interest in this article.

Definition 1 A null-free subschema (NFS) Rs over R is a subset Rs ⊆ R. The NFS Rs

over R is satisfied by a relation r over R, if r is Rs-total.

Note that an NFS Rs captures SQL’s NOT NULL constraints: Rs is just the set of
attributes declared NOT NULL.

Example 5 The relation of Example 4 violates the NFS DVD1
s = {Actor} and satisfies

the NFS DVD2
s = {Movie,Language}.

Functional dependencies (FDs) between sets of attributes have played a central role
in the study of relational databases [5, 8, 12, 15, 14, 22, 23, 65], and seem to be central
for the study of database design in other data models as well [4, 42, 49, 66, 68, 56, 88, 91,
96, 97, 95]. The notion of a functional dependency over total relations is well-understood
and the semantic interaction between these dependencies has been syntactically captured
by Armstrong’s well-known axioms [5, 65].

Definition 2 A functional dependency (FD) over a relation schema R is an expression
X → Y where X, Y ⊆ R, and X ∩ Y = ∅. A relation r over R satisfies the FD X → Y ,
denoted by |=r X → Y , if and only if for all t1, t2 ∈ r the following holds: if t1[X] = t2[X]
and t1, t2 are X-total, then t1[Y ] = t2[Y ].

Example 6 The relation of Example 4 satisfies the FDs Movie → Actor and Actor →
Feature but violates the FD Movie → Feature.

FDs are incapable of modeling many important properties that database users have
in mind. Full hierarchical dependencies (FHDs), including multivalued dependencies,
provide a more general notion and offer a response to the shortcomings of FDs [7, 17, 31,
34, 43, 64, 54, 55, 71, 73, 93]. We will now introduce FHDs into the context of partial
relations.

Definition 3 A full hierarchical dependency (FHD) over a relation schema R is an
expression X : S where X ⊆ R and S is a set of mutually disjoint non-empty subsets
of R that are also disjoint from X, i.e., for all Y ∈ S we have ∅ ̸= Y ⊆ R and for
all Y, Z ∈ S ∪ {X} we have Y ∩ Z = ∅. A relation r over R is said to satisfy the full
hierarchical dependency X : {Y1, . . . , Yk} over R, denoted by |=r X : {Y1, . . . , Yk}, if and
only if for all t1, . . . , tk+1 ∈ r the following condition is satisfied: if ti[X] = tj[X] for
all 1 ≤ i, j ≤ k + 1 and t1, . . . , tk+1 are X-total, then there is some t ∈ r such that
t[XYi] = ti[XYi] for all i = 1, . . . , k and t[X(R−XY1 · · ·Yk)] = tk+1[X(R−XY1 · · ·Yk)].
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Example 7 The relation of Example 4 satisfies the FHD Movie :
{{Director,Feature,Language}} and violates the FHD Movie :
{{Director,Actor}, {Feature}}.

Informally, the relation r satisfies the FHD X : {Y1, . . . , Yk} if the X-total values
determine the sets of values on the Yi independently from the sets of values on R−XYi.
This actually suggests that the relation schema R is overloaded in the sense that it carries
k + 1 independent facts XY1, . . . , XYk, X(R − XY1 · · ·Yk). The following result follows
from the characterization of satisfaction for multivalued dependencies [70], which are
FHDs where k = 1. We omit the proof, but we remark that for the case of k = 0 we have
r = r[R] = r[X(R−X)].

Theorem 1 Let X,Y1, . . . , Yk ⊆ R be mutually disjoint where Y1, . . . , Yk are non-empty,
and let k denote a non-negative integer. A relation r over R satisfies the FHD X :
{Y1, . . . , Yk} over R if and only if rX [r] = rX [XY1] ◃▹ · · · ◃▹ rX [XYk] ◃▹ rX [X(R −
XY1 · · ·Yk)].

For total relations the characteristic of FHDs in Theorem 1 is fundamental to the
theory of relational database design as it ensures the losslessness of decompositions [34].
For this reason a lot of research has been devoted to studying the behavior of these
dependencies over total relations. Over partial relations this research direction has re-
mained rather unexplored. We will study the class of functional and full hierarchical
dependencies in the presence of null-free subschemata over partial relations.

Example 8 The relation r of Example 4 has the following projections on {Movie, Di-
rector, Actor}, {Movie, Feature} and {Movie, Language}, respectively.

Movie Director Actor
The girl with the dragon tattoo D. Fincher ni

The girl with the dragon tattoo N.A. Oplev ni

Movie Feature
The girl with the dragon tattoo Commentary
The girl with the dragon tattoo Subtitle

Movie Language
The girl with the dragon tattoo English
The girl with the dragon tattoo Swedish

.

Since the natural join of these two relations is different from (the {Movie}-total projection
of) r itself it follows that r does not satisfy Movie : {{Director,Actor}, {Feature}}.

For the convenience of presentation we will introduce the following notation.

Definition 4 For two tuples t1, t2 over relation schema R we define

ags(t1, t2) = {A ∈ R | t1(A) = t2(A) and t1(A) ̸= ni ̸= t2(A)},
agw(t1, t2) = {A ∈ R | t1(A) = ni = t2(A)},
ag(t1, t2) = ags(t1, t2) ∪ agw(t1, t2) .

9



Remark 1 In Section 7, where we discuss Codd’s null interpretation “value unknown
at present”, we will adjust the definition of weak agree sets to match the possible world
semantics underlying this interpretation.

Remark 2 Suppose we allow the members of the set S in an FHD X : S to be
empty. Then for all positive k we have the property that for all relations r the FHD
X : {∅, Y2, . . . , Yk} is satisfied by r if and only if r satisfies the FHD X : {Y2, . . . , Yk}.
In particular, if k = 1, then X : {∅} is equivalent to X : ∅; more specifically, they are
satisfied by all relations.

One may now define an equivalence relation over the set of FHDs defined over some
fixed relation schema. Indeed, two such FHDs are equivalent whenever they are satisfied
by the same relations over the schema. Strictly speaking, we will apply inference rules to
these equivalence classes of FHDs.

For the sake of simplicity, however, we have limited Definition 3 to those FHDs where
no empty sets are allowed to occur as elements of a right-hand side. As the property from
the beginning of this remark shows, this is not a real limitation but just a suitable choice
of a representative from the equivalence classes.

3.3 Implication and inference

For the design of a relational database schema dependencies are normally specified as
semantic constraints on the relations which are intended to be instances of the schema.
During the design process one usually needs to determine further dependencies which are
logically implied by the given ones. In order to emphasize the dependence of implication
on the underlying relation schema R we refer to R-implication. Let lhs(σ) denote the
attribute set on the left-hand side and rhs(σ) the set of attributes occurring on the right-
hand side of a dependency σ, i.e., lhs(σ) = X and rhs(σ) = Y1 · · ·Yk if σ denotes the
FHD X : {Y1, . . . , Yk}, and lhs(σ) = X and rhs(σ) = Y if σ denotes the FD X → Y .
Let Attr(σ) denote the set of attributes affected by σ, i.e., Attr(σ) = lhs(σ) ∪ rhs(σ).
For a relation r and a set Σ of FDs and FHDs over relation schema R we say that r
satisfies Σ if r satisfies every σ ∈ Σ.

Definition 5 Let Σ ∪ {φ} be a set of FDs and FHDs, and Rs an NFS over the relation
schema R, i.e., we have ∪σ∈ΣAttr(σ) ∪ Attr(φ) ∪ Rs ⊆ R. We say that Σ R-implies φ
in the presence of Rs, denoted by Σ |=R

Rs
φ, if and only if every relation r over R that

satisfies Σ and the NFS Rs also satisfies φ.

Let C denote a class of data dependencies. The R-implication problem for C in the
presence of a null-free subschema is to decide, given any relation schema R, any NFS Rs

over R, and any set Σ ∪ {φ} of data dependencies in C over R, whether Σ |=R
Rs
φ. For

the classes C of dependencies we consider here, the sets Σ ∪ {φ} over a relation schema
R are always finite, and it does not matter whether the relations are finite or not. For
this reason, we will only speak of the R-implication problem. We will show later that it
even suffices to consider two-tuple relations. We say that Σ R-implies φ in the presence
of an NFS in the world of two-tuple relations Rs, denoted by Σ |=R

2−Rs
φ, if every two-

tuple relation r over R that satisfies Σ and the NFS Rs also satisfies φ. The two-tuple
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R-implication problem for C in the presence of a null-free subschema is to decide, given
any relation schema R, any NFS Rs over R and any set Σ ∪ {φ} of dependencies in C
over R, whether Σ |=R

2−Rs
φ holds.

For a set Σ of data dependencies in C over a relation schema R and an NFS Rs over
R, let Σ∗

R,Rs
= {φ ∈ C | Σ |=R

Rs
φ} be its semantic closure. In order to determine the

semantic closure one can utilize a syntactic approach by applying inference rules, e.g.
those in Table 1. These inference rules have the form

premise

conclusion
condition,

and inference rules without any premise are called axioms. An inference rule is called
R-sound for the R-implication of dependencies in the presence of an NFS, if whenever the
set of dependencies in the premise of the rule and the NFS are satisfied by some relation
over R and the dependencies and NFS satisfy the condition of the rule, then the relation
also satisfies the dependency in the conclusion of the rule. For a finite set Σ ∪ {φ} of
dependencies and a set R of inference rules let Σ ⊢R φ denote the inference of φ from Σ
by R. That is, there is some sequence γ = [σ1, . . . , σn] of dependencies such that σn = φ
and every σi is an element of Σ or is the conclusion that results from an application of an
inference rule in R to some premises in {σ1, . . . , σi−1}. For a finite set Σ of dependencies
in C, let Σ+

R = {φ | Σ ⊢R φ} be its syntactic closure under inferences by R. A set R of
inference rules is said to be R-sound (R-complete) for the R-implication of dependencies
in C in the presence of an NFS if for every relation schema R, for every NFS Rs over R
and for every set Σ of dependencies in C over R we have Σ+

R ⊆ Σ∗
R,Rs

(Σ∗
R,Rs

⊆ Σ+
R). The

(finite) set R is said to be a (finite) axiomatization for the R-implication of dependencies
in C in the presence of an NFS if R is both R-sound and R-complete for the R-implication
of dependencies in C in the presence of an NFS.

Remark 3 Note the following two global conditions that we enforce on all applications
of inference rules that infer full hierarchical dependencies. Whenever we apply such an
inference rule, we remove all empty sets that occur as elements of the right-hand side in
the conclusion. Moreover, by applying an inference rule to X : ∅ we mean an application
of the inference rule to X : {∅}. These two conditions are justified due to Remark 2.

Example 9 The empty-set-axiom RH is derivable from {RF, IFH}: we infer ∅ → ∅ by
an application of the empty-set-axiom RF, and ∅ : ∅ by an application of the implication
rule IFH to ∅ → ∅.

The trivial FHDs X : {R −X} are derivable from {RF, IFH,AH, CR
H}: first we infer

∅ : ∅ as before, then we infer X : ∅ by an application of the FH augmentation rule AH to
∅ : ∅, and finally we infer X : {R−X} by an application of the R-complementation rule
CR
H to X : ∅.
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∅ → ∅
X → Y Z

X → Y

X → Y X → Z

X → Y Z
(empty-set-axiom, RF) (decomposition, DF) (FD union, UF)

X → Y

XZ → Y − Z

X : {Y1, . . . , Yk, Y }
X : {Y1, . . . , Yk}

X : {Y1, . . . , Yk}
XZ : {Y1 − Z, . . . , Yk − Z}

(FD augmentation, AF) (omission, OH) (FH augmentation, AH)

X : {Y1, . . . , Yk}
X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk}

(R-complementation, CR
H)

X : {W} XY : {Y1, . . . , Yk}
X : {Y1 −W, . . . , Yk −W,W}

Y⊆W∩Rs

X → Y

X : {Y }
X : {W} XY → Z

X → Z −W
Y⊆W∩Rs

(transitivity, TH) (implication, IFH) (mixed transitivity, TFH)

Table 1: Inference Rules for Functional and Full Hierarchical Dependencies in the pres-
ence of an NFS Rs

4 An Axiomatization of FDs and FHDs in the Pres-

ence of a Null-free Subschema

We will show now that the inference system

W = {RF,AF,DF,UF,AH,OH, TH, CR
H , IFH, TFH},

as shown in Table 1, forms a finite axiomatization for the R-implication of FDs and FHDs
in the presence of an NFS.

4.1 Sound Inference Rules

Lemma 1 For all relation schemata R and all NFSs Rs over R, every inference rule of
W is R-sound.

Proof We apply Definition 4 to show the R-soundness of each rule in W. Let R denote
an arbitrary relation schema, and Rs an arbitrary NFS over R. Let r denote an arbitrary
relation over R.

For the R-soundness of the empty-set-axiom RF note that for any two tuples t1, t2 ∈ r
we have t1[∅] = t2[∅].

For the R-soundness of the decomposition rule DF assume that r violates the FD
X → Y . Then there are some t1, t2 ∈ r such that X ⊆ ags(t1, t2) and Y ̸⊆ ag(t1, t2). We
conclude that Y Z ̸⊆ ag(t1, t2). Consequently, r violates the FD X → Y Z.

For the R-soundness of the FD union rule UF assume that r violates the FDX → Y Z.
Then there are some t1, t2 ∈ r such thatX ⊆ ags(t1, t2) and Y Z ̸⊆ ag(t1, t2). We conclude
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that Y ̸⊆ ag(t1, t2) or Z ̸⊆ ag(t1, t2). Consequently, r violates the FD X → Y or the FD
X → Z.

For the R-soundness of the FD augmentation rule AF assume that r violates the
FD XZ → Y − Z. Then there are some t1, t2 ∈ r such that XZ ⊆ ags(t1, t2) and
Y − Z ̸⊆ ag(t1, t2). We conclude that Y ̸⊆ ag(t1, t2). Consequently, r violates the FD
X → Y .

For the R-soundness of the omission rule OH assume that r violates the FHD X :
{Y1, . . . , Yk}. Then there are some t1, . . . , tk+1 ∈ r such that for all 1 ≤ i < j ≤ k + 1,
X ⊆ ags(ti, tj) and for all t ∈ r there is some i ∈ {1, . . . , k} such that Yi ̸⊆ ag(t, ti) or
R − XY1 · · ·Yk ̸⊆ ag(t, tk+1). Since Y ⊆ R − XY1 · · ·Yk it follows that Y ̸⊆ ag(t, tk+1)
or R −XY1 · · ·YkY ̸⊆ ag(t, tk+1) holds. Consequently, the k + 2 tuples t1, . . . , tk+1, tk+1

show that r violates the FHD X : {Y1, . . . , Yk, Y }.
The R-soundness of the R-complementation rule CR

H follows immediately from Theo-
rem 1.

For the R-soundness of the FH augmentation rule AH assume that r violates the
FHD XZ : {Y1 − Z, . . . , Yk − Z}. Then there are some t1, . . . , tk+1 ∈ r such that for all
1 ≤ i < j ≤ k+1, XZ ⊆ ags(ti, tj) and for all t ∈ r there is some i ∈ {1, . . . , k} such that
Yi − Z ̸⊆ ag(t, ti) or R−XZY1 · · ·Yk ̸⊆ ag(t, tk+1). Consequently, the tuples t1, . . . , tk+1

show that r violates the FHD X : {Y1, . . . , Yk}.
For the R-soundness of the transitivity rule TH assume that r satisfies the FHDs

X : {W} and XY : {Y1, . . . , Yk}, and the NFS Rs. Furthermore, let Y ⊆ W ∩ Rs.
Let t1, . . . , tk+2 ∈ r be such that for all 1 ≤ i < j ≤ k + 2, X ⊆ ags(ti, tj). Since
r satisfies X : {W} we know that for all i = 1, . . . , k + 1 there is some t′i ∈ r such
that XW ⊆ ag(t′i, tk+2) and X(R − XW ) ⊆ ag(t′i, ti). As Y ⊆ W ∩ Rs holds there are
t′1, . . . , t

′
k+1 and t′k+2 = tk+2 such that XY ⊆ ags(t′i, t

′
j) holds for all 1 ≤ i < j ≤ k + 2.

From this and the fact that r satisfies XY : {Y1, . . . , Yk} we conclude that there is
some t ∈ r such that for all i = 1, . . . , k, XY Yi ⊆ ag(t, t′i), XW ⊆ ag(t, tk+1) and
R−XWY1 · · ·Yk ⊆ ag(t, tk+2). It follows that for all i = 1, . . . , k, X(Yi −W ) ⊆ ag(t, ti),
XW ⊆ ag(t, tk+1) and R −XWY1 · · ·Yk ⊆ ag(t, tk+2) hold. That is, r satisfies the FHD
X : {Y1 −W, . . . , Yk −W,W}, too.

For the R-soundness of the implication rule IFH assume that r satisfies the FD X →
Y . Let t1, t2 ∈ r be such that X ⊆ ags(t1, t2). Since r satisfies X → Y it follows that
Y ⊆ ag(t1, t2). Consequently, t1 ∈ r satisfiesXY ⊆ ag(t1, t2) andX(R−XY ) ⊆ ag(t1, t1).
Hence, r satisfies the FHD X : {Y }.

For the R-soundness of the mixed transitivity rule TFH assume that r satisfies the
FHD X : {W} and the FD XY → Z, and the NFS Rs. Furthermore, let Y ⊆ W ∩ Rs.
Let t1, t2 ∈ r be such that X ⊆ ags(t1, t2). Since r satisfies X : {W} there is some t ∈ r
such that XW ⊆ ag(t, t1) and X(R − XW ) ⊆ ag(t, t2). Since Y ⊆ W ∩ Rs it follows
that XY ⊆ ags(t, t1). Since r satisfies XY → Z we conclude that Z ⊆ ag(t, t1). Let
A ∈ X(Z −W ). Then t1(A) = t(A) = t2(A). In particular, Z −W ⊆ ag(t1, t2). That is,
r satisfies the FD X → Z −W .

In the next lemma we establish the R-soundness of further inference rules for the
R-implication of FDs and FHDs in the presence of an NFS. These rules are important
to settle our completeness argument.

13



Lemma 2 The following inference rules are derivable from W:

X → Y XY → Z

X → Z
Y⊆Rs

X : {Y1, . . . , Yk, Yk+1}
X : {Y1, . . . , YkYk+1}

X : {Y1, . . . , Yk}
X : {Y1, . . . , Yk, ∅}

(FD transitivity, TF) (merging, MH) (empty-set-introduction, I∅)

X : {Y1, . . . , Yk} X : {Z}
X : {Y1 − Z, . . . , Yk−1 − Z, YkZ}

X : {Y1, . . . , Yk} X : {Z}
X : {Y1, . . . , Yk−1, Yk − Z}

X : {Y1, . . . , Yk} X : {Z}
X : {Y1, . . . , Yk−1, Yk ∩ Z}

(union, UH) (difference, DH) (intersection, IH)

Proof We start with an inference of the FD transitivity rule TF:

X → Y

X → Y IFH : X : {Y } XY → Z

DF : X → Y ∩ Z TFH : X → Z − Y
Y⊆Rs

UF : X → Z

.

Next we present an inference of the empty-set-introduction rule I∅:

RF : ∅ → ∅
IFH : ∅ : {∅} X : {Y1, . . . , Yk}
AH : X : {∅} AH : X ∪ ∅ : {Y1, . . . , Yk}
TH : X : {Y1, . . . , Yk, ∅}

.

Next we present an inference of the FH union rule UH:

X : {Z} X : {Y1, . . . , Yk}
TH : X : {Y1 − Z, . . . , Yk − Z,Z}

CR
H : X : {Y1 − Z, . . . , Yk−1 − Z,R−XZY1 · · ·Yk, Z}

OH : X : {Y1 − Z, . . . , Yk−1 − Z,R−XZY1 · · ·Yk}
CR
H : X : {Y1 − Z, . . . , Yk−1 − Z,R− (X(Y1 − Z) · · · (Yk−1 − Z)(R−XZY1 · · ·Yk))︸ ︷︷ ︸

=YkZ

}

.

Note that X ∩ Yk = ∅, X ∩ Z = ∅ and Yi ∩ Yk = ∅ for i = 1, . . . , k − 1. Next we present
an inference of the merging rule MH:

X : {Y1, . . . , Yk, Yk+1} X : {Y1, . . . , Yk, Yk+1}
OH : X : {Y1, . . . , Yk} OH : X : {Yk+1}
UH : X : {Y1, . . . , YkYk+1}

.

Next we present an inference of the difference rule DH:

X : {Y1, . . . , Yk}
X : {Y1, . . . , Yk} X : {Z} OH : X : {Yk}

OH : X : {Y1, . . . , Yk−1} TH : X : {Yk − Z, ∅}
I∅ : X : {Y1, . . . , Yk−1, ∅} OH : X : {Yk − Z}
UH : X : {Y1, . . . , Yk−1, Yk − Z}

.
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Finally, we present an inference of the intersection rule IH:

X : {Y1, . . . , Yk} X : {Z}
DH : X : {Y1, . . . , Yk−1, Yk − Z}

X : {Y1, . . . , Yk} OH : X : {Yk − Z}
DH : X : {Y1, . . . , Yk−1, Yk ∩ Z}

.

Note that Yk ∩ Z = Yk − (Yk − Z).

4.2 Completeness

Let R be some arbitrary relation schema, let Σ be a set of FDs and FHDs, and Rs an
NFS over R. Let DepΣ,Rs(X) be the set of all W ⊆ R −X for which some FHD X : S
with W ∈ S can be inferred from Σ and Rs by W, i.e., DepΣ,Rs(X) = {W ⊆ R − X |
there is some X : S ∈ Σ+

W such that W ∈ S}∪{∅}. Note that DepΣ,Rs(X) is finite, and
(DepΣ,Rs(X),⊆,∪,∩, (·)C, ∅, R−X) constitutes a Boolean algebra due to the soundness
of FH union rule UH, difference rule DH and intersection rule IH. Recall that an element
a ∈ P of a poset (P,⊑, 0) with least element 0 is called an atom of (P,⊑, 0) [46] if and
only if a ̸= 0 and every element b ∈ P with b ⊑ a satisfies b = 0 or b = a. (P,⊑, 0) is
called atomic if and only if for every element b ∈ P with b ̸= 0 there is an atom a ∈ P
with a ⊑ b. In particular, every finite Boolean algebra is atomic. The set DepBΣ,Rs(X)
of all atoms of (DepΣ,Rs(X),⊆, ∅) is called the dependency basis [7] of X with respect to
Σ and Rs. Moreover, let X+

Σ,Rs
= {A ∈ R −X | X → A ∈ Σ+

W} be the attribute closure

of X with respect to Σ and Rs. Furthermore, we define XΣ,Rs = XX+
Σ,Rs

, i.e., XΣ,Rs is

the disjoint union of X and X+
Σ,Rs

.

Theorem 2 Let Σ∪{X : S} be a set of FDs and FHDs, and Rs an NFS over the relation
schema R. Then the following hold:

1. X : S ∈ Σ+
W if and only if for every Y ∈ S there is some Y ⊆ DepBΣ,Rs(X) such

that Y =
∪
Y;

2. X → Y ∈ Σ+
W if and only if Y ⊆ X+

Σ,Rs
;

3. if X → A ∈ Σ+
W, then {A} ∈ DepBΣ,Rs(X).

Proof 1. If S = ∅, then X : ∅ ∈ Σ+
W by applications of the empty-set-axiom RF, the

implication rule IFH and the augmentation rule AH. It remains to consider the case
where S ̸= ∅.
Let Y ∈ S for X : S ∈ Σ+

W. That is, Y ∈ DepΣ,Rs(X), and since every element
b of a Boolean algebra is the union over those atoms a with a ⊑ b we know that
Y =

∪
Y for Y = {W ∈ DepBΣ,Rs(X) | W ⊆ Y }.

Vice versa, let Y ∈ S be arbitrary and suppose that Y =
∪

Y for some Y ⊆
DepBΣ,Rs(X). Since DepBΣ,Rs(X) ⊆ DepΣ,Rs(X) and DepΣ,Rs(X) is closed under
unions it follows that Y ∈ DepΣ,Rs(X). Let S = {Y1, . . . , Yk}. Then we know by
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X(X+
Σ,Rs

∩Rs) X+
Σ,Rs

−Rs W1 ∩Rs W1 −Rs . Wi . Wk ∩Rs Wk −Rs

t1 0 · · · 0 ni · · · ni 0 · · · 0 ni · · · ni 0 · · · 0 0 · · · 0 ni · · · ni
t2 0 · · · 0 ni · · · ni 0 · · · 0 ni · · · ni 1 · · · 1 0 · · · 0 ni · · · ni

Table 2: The relation rφ in the completeness proof

definition of DepΣ,Rs(X) that X : {Yi} ∈ Σ+
W holds for all i = 1, . . . , k. Consecutive

applications of the empty-set-introduction rule I∅ and the union rule UH lead to
X : S ∈ Σ+

W.

2. If X → Y ∈ Σ+
W, then it follows that for all A ∈ Y we have X → A ∈ Σ+

W by
the soundness of the decomposition rule DF . That is, A ∈ X+

Σ,Rs
for all A ∈ Y .

Vice versa, if Y ⊆ X+
Σ,Rs

, then X → A ∈ Σ+
W for all A ∈ Y due to the definition

of X+
Σ,Rs

. Consequently, if Y is non-empty, then X → Y ∈ Σ+
W by applications

of the union rule UF. If Y is empty, then X → ∅ ∈ Σ+
W by an application of the

empty-set-axiom RF and an application of the augmentation rule AF.

3. If X → A ∈ Σ+
W, then X : {A} ∈ Σ+

W by an application of the implication
rule IFH. Since {A} is an atom the definition of DepΣ,Rs(X) implies that {A} ∈
DepBΣ,Rs(X).

Theorem 3 The set W of inference rules forms a finite axiomatization for the R-
implication of FDs and FHDs in the presence of an NFS.

Proof The R-soundness of W follows by a simple induction on the length of an inference
and the R-soundness of the individual rules proven in Lemma 1. It remains to show the
R-completeness of W. Let R be an arbitrary relation schema, let Σ be an arbitrary set
of FDs and FHDs, and let Rs be an arbitrary NFS over R.

Suppose first there is some FHD φ, say X : S, such that φ /∈ Σ+
W. We will now

construct a two-tuple relation rφ that violates X : S but satisfies Σ and the NFS Rs.
Let DepBΣ,Rs(X) be the disjoint union of {{A} | A ∈ X+

Σ,Rs
} and {W1, . . . ,Wk}. In

particular, it follows that {X,X+
Σ,Rs

,W1, . . . ,Wk} forms a partition of R. Since φ /∈ Σ+
W

we conclude by Theorem 2 that there is some attribute set Y ∈ S such that Y is not the
union of some elements of DepBΣ,Rs(X). Consequently, there is some i ∈ {1, . . . , k} such
that Y ∩Wi ̸= ∅ and Y −Wi ̸= ∅ hold. Let rφ := {t1, t2} be the relation in Table 2. That
is, for all A ∈ R, i) t1(A) = t2(A) if and only if A /∈ Wi, and ii) t1(A) and t2(A) are A-total
if and only if A ∈ XRsWi. Note that rφ satisfies the following property: if Z =

∪
B∈B

B

for some B ⊆ DepBΣ,Rs(X), then t1[Z] = t2[Z], if Wi /∈ B, or t1[R − Z] = t2[R − Z], if
Wi ∈ B. Also note that t1[XΣ,Rs ] = t2[XΣ,Rs ].

It follows from the construction that rφ violates φ and rφ satisfies the NFS Rs. In
order to show that φ /∈ Σ∗

R,Rs
it remains to prove that rφ satisfies Σ.

Let U : {V1, . . . , Vl} ∈ Σ. Suppose that U ⊆ ags(t1, t2). Let

W :=
∪

{Wj ∈ DepBΣ,Rs(X) | Wj ∩ U ̸= ∅}.
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From U ⊆ ag(t1, t2) and the construction of rφ we conclude that W ⊆ ag(t1, t2). Since
W is the union of elements from DepBΣ,Rs(X) we conclude by Theorem 2 that X :
{W} ∈ Σ+

W. Note that X+
Σ,Rs

is also the union of elements from DepBΣ,Rs(X), i.e., X :

{X+
Σ,Rs

} ∈ Σ+
W, and by an application of the FHD union rule UH, X : {X+

Σ,Rs
W} ∈ Σ+

W,
too. An application of the FHD augmentation rule AH to U : {V1, . . . , Vl} ∈ Σ results in
UX : {V1 −X, . . . , Vl −X} ∈ Σ+

W.
Since U ⊆ ags(t1, t2), the construction of rφ implies that

U ⊆ X((X+
ΣW ) ∩Rs).

We now apply the transitivity rule TH to X : {X+
Σ,Rs

W} ∈ Σ+
W, XU : {V1 −X, . . . , Vl −

X} ∈ Σ+
W and U − X ⊆ (X+

Σ,Rs
W ) ∩ Rs to infer X : {V1 − XX+

Σ,Rs
W, . . . , Vl −

XX+
Σ,Rs

W,X+
Σ,Rs

W} ∈ Σ+
W. Consequently, for all j = 1, . . . , l, X : {Vj−XX+

Σ,Rs
W} ∈ Σ+

W

by means of the omission rule OH. From the definition of X+
Σ,Rs

it follows that

X → X+
Σ,Rs

∈ Σ+
W by applications of the FD union rule UF. From X → X+

Σ,Rs
∈ Σ+

W we

conclude X → (Vj −W ) ∩X+
Σ,Rs

∈ Σ+
W by means of the decomposition rule DF, and X :

{(Vj−W )∩X+
Σ,Rs

} ∈ Σ+
W by an application of the implication rule IFM, for all j = 1, . . . , l.

Moreover, an application of the FHD union rule UH to X � Vj −XX+
Σ,Rs

W ∈ Σ+
W and

X : {((Vj −W ) ∩ X+
Σ,Rs

)} ∈ Σ+
W results in X : {Vj − XW} ∈ Σ+

W for all j = 1, . . . , l.
Therefore, Vj − XW is the union of elements from DepBΣ,Rs(X) for all j = 1, . . . , l.
Consequently, Vj −XW ⊆ ag(t1, t2) or XW (R− Vj) ⊆ ag(t1, t2) for all j = 1, . . . , l.

In summary, we have XX+
Σ,Rs

WVj ⊆ ag(t1, t2) or XX
+
Σ,Rs

W (R − Vj) ⊆ ag(t1, t2) for
all j = 1, . . . , l. The first case implies UVj ⊆ ag(t1, t2) and the second case implies
U(R − Vj) ⊆ ag(t1, t2) for every j ∈ {1, . . . , l}. This shows that for all j = 1, . . . , l, rφ
satisfies U : {Vj}. Due to the soundness of the empty-set-introduction rule I∅ and the
FHD union rule UH we conclude that rφ satisfies U : {V1, . . . , Vl}.

Let U → V ∈ Σ. Suppose that U ⊆ ags(t1, t2). As before let

W :=
∪

{Wj ∈ DepBΣ,Rs(X) | Wj ∩ U ̸= ∅}.

From U ⊆ ag(t1, t2) and the construction of rφ we conclude that W ⊆ ag(t1, t2). An
application of the FD augmentation rule AF to U → V ∈ Σ results inXU → V−X ∈ Σ+

W.
As before we conclude thatX : {X+

Σ,Rs
W} ∈ Σ+

W and that it follows from the construction
of rφ that

U ⊆ X((X+
Σ,Rs

W ) ∩Rs).

We now apply the mixed transitivity rule TFH to X : {X+
Σ,Rs

W} ∈ Σ+
W, XU → V −X ∈

Σ+
W and U − X ⊆ (X+

Σ,Rs
W ) ∩ Rs to infer X → V − XX+

Σ,Rs
W ∈ Σ+

W. As before, we

conclude thatX → (V−W )∩X+
Σ,Rs

∈ Σ+
W, and thereforeX → V−XW ∈ Σ+

W by means of

the FD union rule UF. Therefore, V −XW ⊆ X+
Σ,Rs

. Consequently, V −XW ⊆ ag(t1, t2)
and since XW ⊆ ag(t1, t2) holds as well, we conclude V ⊆ ag(t1, t2). Therefore, rφ
satisfies U → V .

Finally, suppose there is some FD φ, say X → Y , such that φ /∈ Σ+
W. Due to the FD

union rule UF there is some A ∈ Y such that X → A /∈ Σ+
W. It follows that A /∈ X+

Σ,Rs
.

Without loss of generality let A ∈ Wi. Let rφ be the two-tuple relation from before. It
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follows that rφ violates X → Y since X ⊆ ags(t1, t2), and A /∈ ag(t1, t2). We know that
rφ satisfies Σ and the NFS Rs. Consequently, φ /∈ Σ∗

R,Rs
.

We have shown the completeness of W for the implication of FDs and FHDs in the
presence of an NFS.

The two-tuple counterexample relation that we utilize in the proof of Theorem 3
allows us to derive the following corollary.

Corollary 1 Let Σ ∪ {φ} denote a set of FDs and FHDs, and let Rs denote an NFS
over the relation schema R. Then Σ R-implies φ in the presence of Rs if and only if Σ
R-implies φ in the presence of Rs in the world of all two-tuple relations.

Proof If Σ |=R
2−Rs

φ does not hold, then Σ |=R
Rs
φ does not hold. If Σ |=R

Rs
φ does not

hold, then Σ ⊢W φ does not hold by the R-soundness of W. Consequently, we can utilize
the same two-tuple relation rφ as in the proof of Theorem 3 to derive that Σ |=R

2−Rs
φ

does not hold.

4.3 A Weaker Version of R-complementation

Let
∅ : {R}

be the R-axiom for FHDs. This inference rule is R-sound for the R-

implication of FHDs for all relation schemata R. As it turns out, we can simply replace
the R-complementation rule CR

H in W by the R-axiom and still maintain R-completeness
for all R.

Theorem 4 The set

W0 = {RF,AF,DF,UF,AH,OH, TH, R− axiom, IFH, TFH},

of inference rules forms a finite axiomatization for the R-implication of FDs and FHDs
in the presence of an NFS.

Proof The proof follows immediately from Theorem 3 and the following inference

X : {Y1, . . . , Yk} R− axiom : ∅ : {R}
X : {Y1, . . . , Yk} MH : X : {Y1 · · ·Yk} AH : X : {R−X}

OH : X : {Y1, . . . , Yk−1} TH : X : {R−XY1 · · ·Yk, Y1 · · ·Yk}
I∅ : X : {Y1, . . . , Yk−1, ∅} OH : X : {R−XY1 · · ·Yk}
UH : X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk}

of the R-complementation rule CR
H from the R-axiom and W− {CR

H}.
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5 From Inappropriate to Appropriate Inference Sys-

tems

We have seen before that the inference system

W = {RF,AF,DF,UF,AH,OH, TH, CR
H , IFH, TFH},

forms an axiomatization for the R-implication of the combined class of FDs and FHDs in
the presence of an NFS. In this section, we will analyze the role of the R-complementation
rule CR

H in the combined setting of FDs, FHDs and NFSs.

5.1 The notion of an appropriate inference system

A quick inspection shows that the R-complementation rule CR
H is the only rule in W that

depends on the underlying relation schema R. This raises the question to which degree
applications of the R-complementation rule CR

H are necessary to infer FDs and FHDs. In
particular, if there are inferences of FDs and FHDs in which the R-complementation rule
CR
H does not need to be applied, then the inferred dependencies are already implied by Σ

in the presence of the NFS without having to fix the underlying relation schema R.

Example 10 Consider again the relation schema R = MDAFL and the set Σ = {M :
{DF},MD : {FL},MA→ D} of FDs and FHDs over R from Example 1. Let Rs = AD
denote a null-free subschema over R. The inference of Example 1 shows that the FHD
M : {A} and FD M → D can be inferred from Σ in the presence of Rs by W. Since
the R-complementation rule CR

H is applied in both inferences, it is unclear whether either
of these dependencies is already implied by Σ in the presence of Rs without fixing the
relation schema R.

The goal of this section is to establish an axiomatization for the R-implication of
FDs and FHDs in the presence of an NFS that appropriately reflects the role of the R-
complementation rule CR

H . For this purpose, we assume now that sets R of inference rules
we consider do not contain rules that are dependent on the underlying relation schema
R with the exception of the R-complementation rule CR

H . For example, W is such an
axiomatization. First we extend the notion of an appropriate inference system [17] to
the presence of an arbitrary NFS.

Definition 6 Let R denote a set of inference rules that is R-sound for the R-implication
of FDs and FHDs in the presence of an NFS. R is said to be complementary for the R-
implication of FDs and FHDs in the presence of an NFS if for every relation schema R,
for every NFS Rs over R, for every set Σ of FDs and FHDs over R, and for every FHD
φ over R such that φ is R-implied by Σ in the presence of Rs there is an inference of φ
from Σ by R in which the R-complementation rule CR

H is applied at most once and if it
is applied, then it is applied only in the very last step of the inference. R is said to be
adequate for the R-implication of FDs and FHDs in the presence of an NFS if for every
relation schema R, for every NFS Rs over R, for every set Σ of FDs and FHDs over R,
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and for every FD φ over R such that φ is R-implied by Σ in the presence of Rs there is
an inference of φ from Σ by R in which the R-complementation rule CR

H is not applied at
all. R is said to be appropriate for the R-implication of FDs and FHDs in the presence
of an NFS if R is both complementary and adequate.

5.2 W is an inappropriate axiomatization

An appropriate set of inference rules is always R-complete. However, an R-complete
set of inference rules does not need to be neither complementary nor adequate. In this
subsection we will show that this is indeed the case for our axiomatization W. The next
lemma shows that W is not complementary.

Lemma 3 There is a relation schema R, an NFS Rs, and a set Σ ∪ {φ} of FHDs over
R such that φ ∈ Σ+

W−Σ+
W−{CR

H}, but there is no inference of φ from Σ by W in which the

R-complementation rule CR
H is only applied in the last step.

Proof Let Σ consist of the two FHDs

Movie : {{Actor}, {Feature}} and Movie : {{Actor}, {Language}}.

An inspection of the inference rules in W − {CR
H} shows that Movie :

{{Actor}, {Feature,Language}} /∈ Σ+
W−{CR

H}. Moreover, Lemma 9 shows that Movie :

{{Actor}, Y } /∈ Σ+
W−{CR

H} for any Y such that

Y − {Actor, Feature, Language} ̸= ∅ .

For DVD={Movie, Director, Actor, Feature, Language} we have

Movie : {{Actor}, {Feature,Language}} ∈ Σ+
W.

Hence, in any such inference the DVD-complementation rule CDVD
H must be applied at

least once. However, since

DVD− {Movie,Actor,Feature,Language} = {Director}

CDVD
H is not just applied in the last step of the inference.

The next lemma shows that the system W is not adequate.

Lemma 4 There is a relation schema R, an NFS Rs, a set Σ of FDs and FHDs, and
an FD φ over R such that φ ∈ Σ+

W but φ /∈ Σ+
W−{CR

H}.

Proof Let R = AB, Rs = AB, and Σ = {∅ : {A}, B → A} and φ = ∅ → A. We show
first that φ /∈ Σ+

W−{CR
H}. We represent the closure Σ+

W−{CR
H} of Σ with respect to W−{CR

H}
as two tables. The FHD X : {Y } (FD X → Y ) belongs to Σ+

W−{CR
H} if and only if in the

:-table (→-table) the entry in row labeled X and column labeled Y is the symbol ◦. Due
to the definition of FDs and FHDs some entries do not correspond to any dependencies,
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these are marked by ×. The →-table can be obtained as follows. First, we enter the
premise B → A from Σ. Then, we enter the FD ∅ → ∅ which results from an application
of the empty-set-axiom RF. Finally, we enter the FDs A → ∅, B → ∅ and AB → ∅
which results from an application of the augmentation rule AF to ∅ → ∅, respectively.
Applications of other rules do not result in new FDs. The :-table can be obtained as
follows. First, we apply IFH to copy all ◦ from the →-table into the corresponding
entries in the :-table. Finally, we enter the premise ∅ : {A} from Σ. This set is closed
under inference using W − {CR

H}. In particular, φ cannot be inferred from Σ by using
W − {CR

H}. In fact, one can observe that both premises in Σ are necessary to infer φ.
The only inference rule capable of inferring φ from Σ is TFH, but in order to apply this
rule the R-complementation rule CR

H must first be applied to ∅ : {A}. However, CR
H is not

available in W− {CR
H}.

→ ∅ A B AB

∅ ◦
A ◦ × ×
B ◦ ◦ × ×
AB ◦ × × ×

: ∅ A B AB

∅ ◦ ◦
A ◦ × ×
B ◦ ◦ × ×
AB ◦ × × ×

It remains to verify that φ ∈ Σ+
W. First, we apply CR

H to ∅ : {A} to infer ∅ : {B}.
Subsequently, we apply TFH to ∅ : {B} and B → A and infer ∅ → A.

Corollary 2 The system W is neither complementary nor adequate for the R-implication
of FDs and FHDs in the presence of an NFS.

Corollary 2 raises the question whether there is any complementary or adequate (or
even appropriate) set of inference rules for the R-implication of FDs and FHDs in the
presence of an NFS.

5.3 Appropriate Reasoning about FDs and FHDs in the pres-
ence of NFSs

In this section we will establish an appropriate inference system for the R-implication of
FDs and FHDs in the presence of an NFS.

Lemma 5 The following inference rules

X : {W} XY : {Y1, . . . , Yk}
X : {Y1 ∩W, . . . , Yk ∩W,W − Y1 · · ·Yk}

Y ∩W = ∅, Y ⊆ Rs

(subset rule, SH)
X : {W} XY → Z

X →W ∩ Z
Y ∩W = ∅, Y ⊆ Rs

(mixed subset rule, SFH)

are R-sound for the R-implication of FDs and FHDs in the presence of an NFS.
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Proof We show that both rules can be derived from W, and are therefore R-sound.
First, we show that

S1
H :

X : {W} XY : {Y1, . . . , Yk}
X : {Y1 ∩W, . . . , Yk ∩W}

Y ∩W = ∅, Y ⊆ Rs

is derivable from W:

X : {W}
CR
H : X : {R−XW} XY : {Y1, . . . , Yk}

TH : X : {Y1 − (R−XW ), . . . , Yk − (R−XW ), R−XW}
OH : X : {Y1 − (R−XW )︸ ︷︷ ︸

=Y1∩W

, . . . , Yk − (R−XW )︸ ︷︷ ︸
=Yk∩W

}
.

Next, we show that

S2
H :

X : {W} XY : {Y1, . . . , Yk}
X : {W − Y1 · · ·Yk}

Y ∩W = ∅, Y ⊆ Rs

is derivable from W:

XY : {Y1, . . . , Yk}
X : {W} MH : XY : {Y1 · · ·Yk}

X : {W} S1
H : X : {Y1 · · ·Yk ∩W}

DH : X : {W − (Y1 · · ·Yk ∩W )︸ ︷︷ ︸
=W−Y1···Yk

}
.

Next we show that the subset rule SH is derivable from W:

X : {W} XY : {Y1, . . . , Yk}
S1
H : X : {Y1 ∩W, . . . , Yk ∩W} X : {W} XY : {Y1, . . . , Yk}

I∅ : X : {Y1 ∩W, . . . , Yk ∩W, ∅} S2
H : X : {W − Y1 · · ·Yk}

UH : X : {Y1 ∩W, . . . , Yk ∩W,W − Y1 · · ·Yk}

.

Finally, we show that the mixed subset rule SFH is derivable from W:

X : {W}
CR
H : X : {R−XW} XY → Z

TFH : X → Z − (R−XW )︸ ︷︷ ︸
=W∩Z

.

The completes the proof of the lemma.

We will first show that SFH is independent of many other rules.

Lemma 6 The mixed subset rule SFH is independent of W− {CR
H}.
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Proof Let R = {A,B}, Rs = AB, Σ = {∅ : {A}, B → A} and φ = ∅ → A. The proof of
Lemma 4 shows that φ /∈ Σ+

W−{CR
H} but a single application of the mixed subset rule SFH

to the premises in Σ shows that φ ∈ Σ+
(W−{CR

H})∪{SFH}.

Lemma 7 The mixed transitivity rule TFH is derivable from {TH,OH, IFH,SFH}.

Proof
XY → Z

X : {W} IFH : XY : {Z}
TH : X : {Z −W,W}
OH : X : {Z −W} XY → Z
SFH : X → Z −W

Note that Y ∩ (Z −W ) = ∅ holds, in particular. This completes the proof.

Using Theorem 3, Lemma 7 enables us to obtain another axiomatization for the R-
implication of FDs and FHDs in the presence of an NFS: just replace TFH in W by
SFH.

Corollary 3 The set {RF,AF,DF,UF,AH, TH,OH, CR
H , IFH,SFH} of inference rules

forms a finite axiomatization for the R-implication of FDs and FHDs in the presence
of an NFS.

We will now formally establish an appropriate axiomatization for the combined class
of functional and full hierarchical dependencies in the presence of an NFS.

Theorem 5 Let R be a relation schema, Σ a set of FDs and FHDs, and Rs an NFS
over R. For every inference γ from Σ by the system

W = {RF,AF,DF,UF,AH,OH, TH, CR
H , IFH, TFH},

there is an inference ξ from Σ by the system

WC = (W−{TFH})∪{MH,SH,SFH} = {RF,AF,DF,UF,AH,OH, TH,SH,MH, CR
H , IFH,SFH},

with the following properties:

1. if γ infers an FHD, then

• γ and ξ infer the same FHD,

• in ξ the R-complementation rule CR
H is applied at most once, and

• if CR
H is applied in ξ, then CR

H is applied as the last rule.

2. if γ infers an FD, then

• γ and ξ infer the same FD, and

• in ξ the R-complementation rule CR
H is not applied at all.
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Proof We proceed by induction on the length l of γ. If l = 1, then ξ := γ has the desired
properties. Let l > 1, and γ = [σ1, . . . , σl] be an inference from Σ by W which has length
l. We consider ten cases according to which inference rule in W was applied to infer σl
from [σ1, . . . , σl−1].
Case 1. In this case, σl is either an element of Σ or the FD ∅ → ∅ obtained by an
application of the empty-set-axiom RF. It follows immediately that ξ = [σl] has the
desired properties.
Cases 2-4. In these cases σl has been inferred by an application of one of the inference
rules that deal with FDs only, i.e., the augmentation rule AF, the decomposition rule
DF or the FD union rule UF to one or two premises σi and σj where i, j < l. Let
ξi respectively ξj be obtained by applying the induction hypothesis to γi = [σ1, . . . , σi]
respectively γj = [σ1, . . . , σj]. It follows that ξ = [γi, γj, σl] has the desired properties.
Cases 5-10. Whenever the R-complementation rule CR

H is applied to an FHD X : S where
the union over X and the elements of S covers R, the newly introduced complement set
R −XY1...Yk is empty and thus, following our global conditions, immediately removed.
Accordingly, we can always apply the omission rule OH to infer the same conclusion.
Consequently, we will assume for the remainder of the proof that for every FHD X : S
to which the R-complementation rule CR

H is applied the union over X and the elements
of S does not cover R.
Case 5. We infer σl by applying the augmentation rule AH to the premise σi with i < l.
Let ξi be obtained by using the induction hypothesis for γi := [σ1, . . . , σi].

Consider the inference ξ := [ξi, σl]. If CR
H is not applied in ξi, then ξ has the desired

properties. If CR
H is applied in ξi (as the last rule), then the last two steps of ξ are of the

following form:

X : {Y1, . . . , Yk}
CR
H : X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk}

AH : XZ : {Y1 − Z, . . . , Yk−1 − Z,R−XZY1 · · ·Yk}
.

However, these steps can be replaced as follows:

X : {Y1, . . . , Yk}
AH : XZ : {Y1 − Z, . . . , Yk − Z}

CR
H : XZ : {Y1 − Z, . . . , Yk−1 − Z,R−XZ(Y1 − Z) · · · (Yk − Z)︸ ︷︷ ︸

=R−XZY1···Yk

} .

The result of this replacement is an inference with the desired properties.
Case 6. We infer σl by applying the omission rule OH to the premise σi with i < l. Let
ξi be obtained by using the induction hypothesis for γi := [σ1, . . . , σi].

Case 6.1. Consider the inference ξ := [ξi, σl]. If CR
H is not applied in ξi, then ξ has

the desired properties.
Case 6.2. If CR

H is applied in ξi as the last rule, then the last two steps of ξ have either
the form

X : {Y1, . . . , Yk, Y }
CR
H : X : {Y1, . . . , Yk, R−XY Y1 · · ·Yk}
OH : X : {Y1, . . . , Yk}
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or the form

X : {Y1, . . . , Yk, Y }
CR
H : X : {Y1, . . . , Yk, R−XY Y1 · · ·Yk}

OH : XZ : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, R−XY Y1 · · ·Yk}
.

In the first case these steps may be simply replaced by

X : {Y1, . . . , Yk, Y }
OH : X : {Y1, . . . , Yk}

.

In the second case, these steps can be replaced as follows:

X : {Y1, . . . , Yk, Y }
MH : X : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, YiY }

CR
H : X : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, R−XY Y1 · · ·Yk}

.

In both cases the result of these replacements is an inference with the desired prop-
erties.
Case 7. We infer σl by applying the transitivity rule TH to the premises σi and σj with
i, j < l. Let ξi (ξj) be obtained by using the induction hypothesis for γi := [σ1, . . . , σi]
(γj := [σ1, . . . , σj]).

Consider the inference ξ := [ξi, ξj, σl]. Then we distinguish between four cases ac-
cording to the occurrence of the R-complementation rule CR

H in ξi and ξj.
Case 7.1. If CR

H is applied neither in ξi nor in ξj, then ξ has the desired properties.
Case 7.2. If CR

H is not applied in ξi but is applied in ξj (as the last rule), then the last
step of ξj and the last step of ξ are of the following form:

XY : {Y1, . . . , Yk}
X : {W} CR

H : XY : {Y1, . . . , Yk−1, R−XY Y1 · · ·Yk}
TH : X : {Y1 −W, . . . , Yk−1 −W,R−XWY1 · · ·Yk,W}

where Y ⊆W ∩Rs holds. However, these steps can be replaced as follows:

X : {W} XY : {Y1, . . . , Yk}
TH : X : {Y1 −W, . . . , Yk −W,W}
CR
H : X : {Y1 −W, . . . , Yk−1 −W,R−XWY1 · · ·Yk,W}

.

The result of this replacement is an inference with the desired properties.
Case 7.3. If CR

H is applied in ξi (as the last rule) but not in ξj, then the last step of
ξi and the last step of ξ are of the following form:

X : {W}
CR
H : X : {R−XW} XY : {Y1, . . . , Yk}

TH : X : {Y1 − (R−XW )︸ ︷︷ ︸
=Y1∩W

, . . . , Yk − (R−XW )︸ ︷︷ ︸
=Yk∩W

, R−XW}
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where Y ⊆ (R−XW )∩Rs. In particular, it follows that Y ∩W = ∅ holds. Consequently,
these steps can be replaced as follows:

X : {W} XY : {Y1, . . . , Yk}
SH : X : {Y1 ∩W, . . . , Yk ∩W,W − Y1 · · ·Yk}
CR
H : X : {Y1 ∩W, . . . , Yk ∩W,R−X(Y1 ∩W ) · · · (Yk ∩W )(W − Y1 · · ·Yk)︸ ︷︷ ︸

=R−XW

} .

Note that X and W are disjoint. The result of this replacement is an inference with
the desired properties.

Case 7.4. If CR
H is applied in both ξi and ξj (as the last rule), then the last steps of

ξi, ξj and ξ are of the following form:

X : {W} XY : {Y1, . . . , Yk}
CR
H : X : {R−XW} CR

H : XY : {Y1, . . . , Yk−1, R−XY Y1 · · ·Yk}
TH : X : {Y1 − (R−XW )︸ ︷︷ ︸

=Y1∩W

, . . . , Yk−1 − (R−XW )︸ ︷︷ ︸
=Yk−1∩W

, (R−XY Y1 · · ·Yk)− (R−XW )︸ ︷︷ ︸
=W−Y1···Yk

, R−XW} .

Note that X ∩W = ∅ and Y ⊆ (R−XW )∩Rs, i.e. Y ∩W = ∅. Hence, these steps can
be replaced as follows:

X : {W} XY : {Y1, . . . , Yk}
SH : X : {Y1 ∩W, . . . , Yk ∩W,W − Y1 . . . Yk}
CR
H : X : {Y1 ∩W, . . . , Yk−1 ∩W,W − Y1 . . . Yk, R−X(Y1 ∩W ) · · · (Yk ∩W )(W − Y1 · · ·Yk)︸ ︷︷ ︸

=R−XW

} .

The result of this replacement is an inference with the desired properties.
Case 8. We infer σl by applying the R-complementation rule CR

H to the premise σi with
i < l. Let ξi be obtained by using the induction hypothesis for γi := [σ1, . . . , σi]. Consider
the inference ξ := [ξi, σl].

Case 8.1. If CR
H is not applied in ξi, then ξ has the desired properties.

Case 8.2. If CR
H is applied in ξi as the last rule, then the last two steps of ξ are either

of the following form:

X : {Y1, . . . , Yk}
CR
H : X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk}

CR
H : X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk−1(R−XY1 · · ·Yk)︸ ︷︷ ︸

=Yk

}

or of the form:

X : {Y1, . . . , Yk}
CR
H : X : {Y1, . . . , Yk−1, R−XY1 · · ·Yk}

CR
H : X : {Y1, . . . , Yk−2, R−XY1 · · ·Yk−1(R−XY1 · · ·Yk)︸ ︷︷ ︸

=Yk

, R−XY1 · · ·Yk}
.
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In the first case, the inference obtained by deleting these two steps from ξ has the desired
properties. In the second case, the inference can be replaced by the following step:

X : {Y1, . . . , Yk−2, Yk, Yk−1}
CR
H : X : {Y1, . . . , Yk−2, Yk, R−XY1 · · ·Yk}

.

The result of this replacement is an inference with the desired properties.
Case 9. In this case σl has been inferred by an application of the implication rule IFH

to the premise σi where i < l. This case follows the same structure of Cases 2-5. Let ξi
be obtained by applying the induction hypothesis to γi = [σ1, . . . , σi]. It follows that the
inference ξ = [γi, σl] meets the desired properties.
Case 10. In this case σl has been inferred by an application of the mixed transitivity
rule TFH to the premises σi and σj where i, j < l. Let ξi respectively ξj be obtained
by applying the induction hypothesis for γi = [σ1, . . . , σi] respectively γj = [σ1, . . . , σj].
Consider the inference ξ := [ξi, ξj, σl]. Then we distinguish between two cases according
to the occurrence of the R-complementation rule CR

H in ξi (assuming that ξj infers the
FD in the premise).

Case 10.1. If CR
H is not applied in ξi, then ξ has the desired properties.

Case 10.2. If CR
H is applied in ξi as the last rule, then the last step of ξi and the last

step of ξ are of the following form:

X : {W}
CR
H : X : {R−XW} XY → Z

TFH : X → Z − (R−XW )︸ ︷︷ ︸
=Z∩W

where Y ⊆ (R−XW )∩Rs and Z ∩X = ∅ hold. In particular, Y ∩W = ∅. Applying the
mixed subset rule SFH instead one may infer the same FHD by the following inference
steps:

X : {W} XY → Z
SFH : X →W ∩ Z .

The result of this replacement is an inference with the desired properties.

Corollary 4 The set WC of inference rules forms a finite appropriate axiomatization for
the R-implication of FDs and FHDs in the presence of an NFS.

Example 11 Consider again Example 10 where R = MDAFL, Rs = AD, and Σ =
{M : {DF},MD : {FL},MA → D}. The following is an inference of M : {A} where
CR
H is applied in the last step only:

M : {DF} MD : {FL}
TH : M : {L,DF}
MH : M : {DFL}
CR
H : M : {A}

.
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Moreover, the following is an inference of MA→ D without an application of CR
H :

M : {DF} MD : {FL}
TH : M : {L,DF}
MH : M : {DFL} MA→ D
SFH : M → D

.

Note that DA ⊆ Rs and A ∩ LDS = ∅. The examples highlight how the new rules can
be applied to guarantee appropriate inferences. In particular, the inference confirms our
intuition that the FD M → D is already implied by Σ in the presence of Rs without fixing
the relation schema R. However, the question remains whether this is also the case for
the FHD M : {A}.

Figure 2 illustrates the connection between the different inference systems and their
semantic properties. In summary, one gains complementarity by including the subset
rule SH and merging rule MH, and adequacy by replacing the mixed transitivity rule
TFH by the mixed subset rule SFH.

WC = (W′ − {TFH}) ∪ {SFH}
appropriate: adequate and complementary

W′ = W ∪ {SH,MH}
complementary

W = {RF,AF,DF,UF,AH, TH,UH, CR
H , IFH, TFH}

Figure 2: Axiomatizations for FDs and FHDs in the presence of an NFS and their
properties

5.4 Nearly complete reasoning in fixed universes

Among others Theorem 5 shows that

U = WC − {CR
H} = {RF,AF,DF,UF,AH,OH, TH,SH,MH, IFH,SFH}

is nearly R-complete for the R-implication of FDs and FHDs in the presence of an
NFS over any relation schema R. Indeed, U enables us to infer every R-implied FD.
Moreover, for every R-implied FHD X : {Y1, . . . , Yk} the system U enables us to infer
X : {Y1, . . . , Yk} itself or X : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, R − XY1 · · ·Yk} for some i ∈
{1, . . . , k}.

Corollary 5 Let Σ ∪ {φ} be a set of FDs and FHDs over relation schema R. Then

• If φ denotes an FD, then φ ∈ Σ+
WC

if and only if φ ∈ Σ+
U .
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• If φ denotes the FHD X : {Y1, . . . , Yk}, then X : {Y1, . . . , Yk} ∈ Σ+
WC

if and
only if X : {Y1, . . . , Yk} ∈ Σ+

U or there is some i such that 1 ≤ i ≤ k and
X : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, R−XY1 · · ·Yk} ∈ Σ+

U .

Another interpretation of Corollary 5 is the following: if U is utilized to infer FDs,
then the underlying universe does not need to be fixed at all; and if U is utilized to
infer FHDs, then the fixing of a universe can be deferred until the very last step of the
inference.

Example 12 Consider again Example 11 where Rs = AD and Σ = {M : {DF},MD :
{FL},MA → D}. The inference of MA → D from Σ and Rs does not require us to fix
any underlying relation schema, and for the inference of the FHD M : {A} from Σ and
Rs we fix the underlying relation schema to be R =MDAFL in the very last step.

6 Reasoning about FDs and FHDs in undetermined

universes

We have just seen that the system U is almost complete for the R-implication of FDs
and FHDs in the presence of an NFS. The notion of R-implication takes into account the
underlying relation schema R over which the FDs, FHDs and NFSs are defined. We will
show in this section that the system U is actually complete for a notion of implication in
which the underlying set of attributes remains undetermined. Consequently, the system
U allows inferences of exactly those data dependencies that are implied by a given set of
FDs and FHDs in the presence of an NFS only.

FDs, FHDs and NFSs are syntactical expressions as before, but their attribute sets are
finite subsets of our countably infinite set A. Let Dom(r) denote the domain of a relation
r, i.e., the set of attributes over which the relation is defined. A relation r is said to satisfy
the FD X → Y if XY ⊆ Dom(r) and for all tuples t1, t2 ∈ r the following holds: if X ⊆
ags(t1, t2), then Y ⊆ ag(t1, t2). A relation r is said to satisfy the FHD X : {Y1, . . . , Yk} if
XY1 · · ·Yk ⊆ Dom(r) and r = rX [XY1] ◃▹ · · · ◃▹ rX [XYk] ◃▹ rX [X(R−XY1 · · ·Yk)] holds.
Finally, a relation r is said to satisfy the NFS Rs if Rs ⊆ Dom(r) and r is Rs-total.

Definition 7 Let Σ∪{φ} be a finite set of FDs and FHDs and Rs an NFS. We say that
Σ implies φ in the presence of Rs, denoted by Σ |=Rs φ, if and only if every relation r
satisfies the following condition: if ∪σ∈ΣAttr(σ)∪Attr(φ)∪Rs ⊆ Dom(r) and r satisfies
Σ and the NFS Rs, then r satisfies φ.

The notions of soundness and completeness are simply adapted to the context of
undetermined universes by dropping the reference to the underlying relation schema R
from the corresponding notions in the context of fixed universes. While RF, AF, TF,
DF, UF, AH, TH, OH, SH, MH, DH, IH, IFH, SFH, TFH are all sound inference rules
(since they are R-sound for all R), the R-complementation rule CR

H and R-axiom are
both R-sound but neither of them is sound. The following example illustrates this for
the R-complementation rule CR

H .
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Example 13 Let Σ consist of the single FHD Title : {{Actor},{Feature}}, and let R
be the relation schema with the four attributes Title, Actor, Feature, Language and let
Rs = R. Then Title : {{Actor}, {Language}} is R-implied by Σ in the presence of Rs by
the soundness of CR

H . However, Title : {{Actor}, {Language}} is not implied by Σ in the
presence of Rs as the following counterexample relation r shows.

Title Actor Feature Language Crew
Miyamoto Musashi T. Mifune Trailer English H. Hinagaki
Miyamoto Musashi T. Mifune Trailer Japanese H. Hojo

While r = r[Title Actor] ◃▹ r[Title Feature] ◃▹ r[Title Language Crew] we have r ̸=
r[Title Actor] ◃▹ r[Title Language] ◃▹ r[Title Feature Crew].

Let Σ∪{φ} be a set of FDs and FHDs, Rs an NFS, and let R be some relation schema
such that ∪σ∈ΣAttr(σ)∪Attr(φ)∪Rs ⊆ R holds. Based on Definitions 5 and 7 it follows
that the implication of φ by Σ in the presence of Rs entails the R-implication of φ by Σ
in the presence of Rs.

Lemma 8 Let Σ ∪ {φ} be a finite set of FDs and FHDs, and Rs an NFS such that
∪σ∈ΣAttr(σ) ∪ Attr(φ) ∪Rs ⊆ R holds. Then Σ |=R

Rs
φ whenever Σ |=Rs φ.

The reverse direction of Lemma 8 also holds when φ is an FD, but Example 13
illustrates that the reverse direction does not hold when φ is an FHD.

Before we show that U is a finite axiomatization for the implication of FDs and FHDs
in the presence of an NFS, we prove two lemmata. The correctness of the first lemma
can easily be observed by inspecting the inference rules in U. For each of the rules, the
right-hand side of the conclusion does not contain any attribute that did not already
occur in the right-hand side of at least one of the premises. Accordingly, by induction,
this property is preserved by an inference of any length.

Lemma 9 Let Σ ∪ {φ} be a finite set of FDs and FHDs, and Rs an NFS. If φ ∈ Σ+
U ,

then rhs(φ) ⊆ ∪σ∈Σrhs(σ).

For the next lemma one may notice that attributes outside of T := ∪σ∈ΣAttr(σ) can
always be introduced only in the last step of the inference by utilizing the augmentation
rules AF and AH, respectively.

Lemma 10 Let Σ ∪ {φ} be a finite set of FDs and FHDs, and Rs an NFS. If φ ∈ Σ+
U ,

then there is some inference γ = [ψ1, . . . , ψl] of φ from Σ and Rs by U such that

Attr(ψi) ⊆ ∪σ∈ΣAttr(σ)

holds for all i = 1, . . . , l − 1.
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Proof For convenience let us define T := ∪σ∈ΣAttr(σ). Moreover, ψ ∩ T denotes the
FHD X ∩ T : {Y1 ∩ T, . . . , Yk ∩ T} if ψ denotes the FHD X : {Y1, . . . , Yk}, and ψ ∩ T
denotes the FD X ∩ T → Y ∩ T if ψ denotes the FD X → Y .

Let ξ̄ = [ψ1, . . . , ψl] be any inference of φ from Σ by U. Consider the sequence

ξ = [ψ1 ∩ T, . . . , ψl ∩ T ].

We claim that ξ is an inference of φ ∩ T from Σ by U. For if ψi is an element of Σ, then
ψi ∩ T = ψi. Furthermore, one can easily verify that if ψi is the result of applying one of
the rules in

U = {RF,AF, TF,DF,UF,AH, TH,OH,SH,MH, IFH,SFH},

then ψi ∩ T is the result of applying the same rule to the corresponding premises in ξ.
According to Lemma 9 we have rhs(φ) ⊆ ∪σ∈Σrhs(σ) ⊆ T . We now distinguish

between two cases. First, let φ denote the FHD X : {Y1, . . . , Yk}. It follows that
Y1 · · ·Yk ⊆ T holds, in particular Yi ⊆ T for all i = 1, . . . , k. Consequently, Yi ∩ T = Yi
for i = 1, . . . , k and this implies that we can infer φ from X ∩ T : {Y1 ∩ T, . . . , Yk ∩ T}
by a single application of the augmentation rule AH:

X ∩ T : {Y1 ∩ T, . . . , Yk ∩ T}
(X ∩ T ) ∪ (X − T )︸ ︷︷ ︸

=X

: {Y1 − (X − T ), . . . , Yi − (X − T )︸ ︷︷ ︸
=Yi

, . . . , Yk − (X − T )}
.

Note that Yi − (X − T ) = Yi since Yi and X are disjoint. Hence, the inference [ξ,X :
{Y1, . . . , Yk}] has the desired properties. It remains to consider the case where φ denotes
the FD X → Y . Given that Y ⊆ T we can infer φ from X ∩ T → Y ∩ T by a single
application of the augmentation rule AF:

X ∩ T → Y ∩ T
(X ∩ T ) ∪ (X − T )︸ ︷︷ ︸

=X

→ Y − (X − T )︸ ︷︷ ︸
=Y

.

Note that Y − (X−T ) = Y since X and Y are disjoint. Hence, the inference [ξ,X → Y ]
has the desired properties.

Theorem 6 The set U of inference rules is a finite axiomatization for the implication of
FDs and FHDs in the presence of an NFS.

Proof For the soundness of U we need to show that every φ ∈ Σ+
U is implied by Σ in the

presence of Rs. That is, every relation r that satisfies T := ∪σ∈ΣAttr(σ)∪Attr(φ)∪Rs ⊆
Dom(r), |=r σ for all σ ∈ Σ and r is Rs-total also satisfies |=r φ. According to Lemma
10 there is an inference γ of φ from Σ by U such that Attr(ψ) ⊆ T ⊆ Dom(r) holds
for every ψ occurring in γ. Since each rule of U is sound we can therefore conclude by
induction that each ψ occurring in γ is satisfied by r. In particular, r also satisfies φ.

For the completeness of U we assume that φ /∈ Σ+
U . Let R ⊆ A be a finite set of

attributes such that T is a proper subset of R, i.e., T ⊂ R.
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If φ denotes an FD, then Corollary 5 shows that φ /∈ Σ+
WC

. However, WC is R-
complete for the R-implication of FDs and FHDs in the presence of Rs. Hence, it follows
that Σ does not R-imply φ in the presence of Rs. Consequently, Σ does not imply φ in
the presence of Rs by Lemma 8.

If φ denotes the FHD X : {Y1, . . . , Yk}, then Lemma 9 shows that X :
{Y1, . . . , Yi−1, Yi+1, . . . , Yk, R−XY1 · · ·Yk} /∈ Σ+

U for all i = 1, . . . , k since R−XY1 · · ·Yk
is not a subset of T . From X : {Y1, . . . , Yk} /∈ Σ+

U and X : {Y1, . . . , Yi−1, Yi+1, . . . , Yk, R−
XY1 · · ·Yk} /∈ Σ+

U for all i = 1, . . . , k we conclude that X : {Y1, . . . , Yk} /∈ Σ+
WC

by
Corollary 5. However, WC is R-complete for the R-implication of FDs and FHDs in
the presence of Rs. Hence, it follows that Σ does not R-imply φ in the presence of Rs.
Consequently, Σ does not imply φ in the presence of Rs by Lemma 8.

Example 14 Consider again Example 11 where R = MDAFL, Rs = AD, and Σ =
{M : {DF},MD : {FL},MA → D}. Since A /∈ DFL it follows from Lemma 9 that
M : {A} /∈ Σ+

U . According to Theorem 6 we conclude that Σ ̸|=Rs M : {A}. Recall that
Σ |=R

Rs
M : {A}, cf. Example 11.

7 Value unknown at present

Codd’s original proposal [24] to handle incomplete information suggested the addition to
the database domains of an unmarked null value unk, whose meaning is “value unknown
at present”. Following Codd’s proposal, incomplete information is represented in SQL
by using unk as a distinguished null value [27]. We will discuss in this section how the
results from the previous sections carry over to this approach towards handling incomplete
information.

Levene and Loizou introduced and axiomatized strong and weak FDs (WFDs) with
respect to a possible world semantics [68]. We will start by summarizing their approach
towards defining WFDs. For this purpose, we assume that the domains of all attributes
contain the distinguished value unk (and no longer the distinguished value ni). With this
change in mind, we re-apply the definitions of an X-total tuple and relation as before.
The set of all possible worlds relative to a relation r over R, denoted by Poss(r), is defined
by

Poss(r) := {s | s is a relation over R and there is a total and onto mapping
f : r → s such that ∀t ∈ r, t is subsumed by f(t) and f(t) is R-total}.

This definition of possible worlds embodies the closed world assumption (CWA) [60, 81],
since Poss(r) allows only R-total tuples from the relation r to be present in Poss(r).

A weak functional dependency (WFD) over a relation schema R is a statement of the
form ♢(X → Y ), where XY ⊆ R and X ∩ Y = ∅. A relation r over R is said to satisfy
the WFD ♢(X → Y ) over R, if there is some p ∈ Poss(r) such that for all t1, t2 ∈ p,
if t1[X] = t2[X], then t1[Y ] = t2[Y ]. We note that the definition of satisfaction of a
WFD in a relation reduces to the standard definition of the satisfaction of an FD when
the relation is R-total (in this case there is exactly one p ∈ Poss(r) and ∀p ∈ Poss(r)
is equivalent to ∃p ∈ Poss(r)). We observe that ♢ can be viewed as representing the
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modal operator possibly of a normal system of propositional modal logic [25]. Finally we
remark that the weak approach to satisfaction of an FD by a partial relation allows a
higher degree of uncertainty to be represented in the database than the strong approach
(where an FD must be satisfied in all possible worlds) [68]. The disadvantage of the
weak over the strong approach is that strongly satisfied FDs are easier to maintain [68].
Hence, both approaches complement one another.

It is known that WFDs in the absence of an NFS enjoy the same axiomatization as
“no information” FDs (NFDs) [6, 70]. However, WFDs are different from NFDs. First of
all, WFDs are defined with respect to Codd’s null value unk. Under this interpretation we
know that a value exists, whereas under the “no information” interpretation it may also
be the case that no value exists at all. Moreover, WFDs and NFDs also behave differently.
For example, the relation r over R = MDA with the two tuples (The Seven Samurai,
A. Kurosawa, T. Mifune) and (The Seven Samurai, unk, T. Shimura) satisfies the WFD
♢(M → D). However, the NFD M → D is violated by the relation consisting of (The
Seven Samurai, A. Kurosawa, T. Mifune) and (The Seven Samurai, ni, T. Shimura).
That is, we have two distinct tuples which have an information on the attribute M and
the information is the same, but the first tuple has some information for D while the
second tuple has “no information” for D.

In the context of NFDs we defined the weak agree set of two tuples as agw(t1, t2) =
{A ∈ R | t1(A) = ni = t2(A)}. For WFDs we re-define this to be agw(t1, t2) :=
{A ∈ R | t1(A) = unk or t2(A) = unk}. Intuitively, this makes perfect sense in this
context: two tuples weakly agree on an attribute if there is a possible world on which
they agree on A. The definition of a strong agree set ags(t1, t2) := {A ∈ R | t1(A) =
t2(A) and t1(A) ̸= unk ̸= t2(A)} requires no adjustment apart from the notation of the
null value, and ag(t1, t2) := ags(t1, t2)∪agw(t1, t2) as before. The next proposition, which
gives a syntactic characterization of satisfaction of a WFD, follows from the definition of
satisfaction.

Proposition 1 Let r be a relation over relation schema R. Then r satisfies the WFD
♢(X → Y ) over R if and only if for all t1, t2 ∈ r, if X ⊆ ags(t1, t2), then Y ⊆ ag(t1, t2).

A weak full hierarchical dependency (WFHD) over R is a statement ♢(X : S), where
X ⊆ R and S is a set of mutually disjoint non-empty subsets of R that are also disjoint
from X, i.e., for all Y ∈ S we have ∅ ̸= Y ⊆ R and for all Y, Z ∈ S ∪ {X} we have
Y ∩ Z = ∅. A relation r over R is said to satisfy the WFHD ♢(X : {Y1, . . . , Yk}) over
R, if there is some p ∈ Poss(r) such that for all t1, . . . , tk+1 ∈ p the following condition
is satisfied: if ti[X] = tj[X] for all 1 ≤ i, j ≤ k + 1, then there is some t ∈ p such that
t[XYi] = ti[XYi] for all i = 1, . . . , k and t[X(R−XY1 · · ·Yk)] = tk+1[X(R−XY1 · · ·Yk)].

Similar to the case of functional dependencies, WFHDs behave quite differently from
FHDs in the “no information” context. For example, the following relation r over R =
ASLC:
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Movie Director Actor Feature
The Seven Samurai A. Kurosawa T. Mifune Deleted Scene

Rashomon A. Kurosawa T. Shimura Subtitle
Rashomon unk T. Mifune Subtitle

The Seven Samurai unk T. Shimura Deleted Scene

satisfies the WFHD ♢(D : {{A}}). However, under the “no information” interpretation
the FHD D : {{A}} is violated by the following relation.

Movie Director Actor Feature
The Seven Samurai A. Kurosawa T. Mifune Deleted Scene

Rashomon A. Kurosawa T. Shimura Subtitle
Rashomon ni T. Mifune Subtitle

The Seven Samurai ni T. Shimura Deleted Scene

For WFHDs we obtain the following syntactic characterization for their satisfaction
by a partial relation.

Proposition 2 Let r be a relation over relation schema R. Then r satisfies the WFHD
♢(X : {Y1, . . . , Yk}) over R if and only if for all t1, . . . , tk+1 ∈ r the following condition
is satisfied: if X ⊆ ags(ti, tj) for all 1 ≤ i, j ≤ k + 1, then there is some t ∈ r such that
X ⊆ ags(t, ti) for i = 1, . . . , k+1, Yi ⊆ ag(t, ti) for all i = 1, . . . , k, and R−XY1 · · ·Yk ⊆
ag(t, tk+1).

For an inference system S for FDs and FHDs, let S′ denote the set of inference rules
obtained from replacing the FDs and FHDs in S by WFDs and WFHDs, respectively.
Using Propositions 1 and 2 it is not difficult to show that the inference rules of W′ are R-
sound for the R-implication of WFDs and WFHDs in the presence of an NFS. Following
the same line of arguments as in Section 4 it can be shown that the system W′ forms a
finite axiomatization for the R-implication of the combined class of WFDs and WFHDs
in the presence of an NFS. In particular, the two-tuple relation rφ

X(X+
Σ ∩Rs) (X+

Σ −X)−Rs W1 ∩Rs W1 −Rs . Wi . Wk ∩Rs Wk −Rs

t1 0 · · · 0 unk · · · unk 0 · · · 0 unk · · · unk 0 · · · 0 0 · · · 0 unk · · · unk
t2 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0

shows that a WFD or WFHD φ is not R-implied by a set Σ of WFDs and WFHDs in
the presence of the NFS Rs whenever φ cannot be inferred from Σ by W′ in the context
of WFDs and WFHDs, cf. the proof of Theorem 3. The major results of our article, i.e.
Theorems 5 and 6, carry over to WFDs and WFHDs. We summarize these results in the
following theorem.

Theorem 7 The following hold:

1. For all relation schemata R, the sets W′ and W′
0 form finite axiomatizations for

the R-implication of WFDs and WFHDs in the presence of an NFS.
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2. For all relation schemata R, the set W′
C forms a finite appropriate axiomatization

for the R-implication of WFDs and WFHDs in the presence of an NFS.

3. The set U′ forms a finite axiomatization for the implication of WFDs and WFHDs
in the presence of an NFS.

8 Conclusion and Future Work

We have investigated implication problems for expressive classes of data dependencies
over partial relations. For a database administrator to have full control over the de-
gree of partiality in relations we studied the implication problems in the presence of a
null-free subschema. The null-free subschema amounts to the set of attributes that are
declared NOT NULL in SQL table definitions [27]. We have established the first axioma-
tization for the R-implication of FDs and FHDs in the presence of an NFS. Moreover,
we have extended previous research on the appropriateness of inference systems for the
R-implication of FDs and MVDs over total relations. That is, we have established an
appropriate axiomatization for the R-implication of FDs and FHDs in the presence of
an NFS. Our axiomatization is appropriate in the following sense: to infer an FHD at
most one application of the complementation rule is necessary in the very last step of the
inference; and to infer an FD the complementation rule does not need to be applied at
all. This result demonstrates that the complementation rule is a mere means for achiev-
ing database normalization. Furthermore, we have established an axiomatization for the
implication of FDs and FHDs in the presence of an NFS where the underlying relation
schema is left undetermined. This unburdens the theory of the strong assumption that
the complete set of attributes is already known to the database designers before they can
start to think about the data dependencies that are meaningful to the relation schema.

We conclude this article by listing some related problems that may be of interest for
future research. The (mixed) subset rule plays a key role in achieving complementarity
and adequacy of inference systems. It would be interesting to see whether there are any
axiomatizations that do not feature either or both of the subset rules.

Levene and Loizou [68] have established an axiomatization for the combined class of
strong and weak functional dependencies. It would be interesting to study whether this
axiomatization can be extended to cover subclasses of strong and weak full hierarchical
dependencies as well, both in the absence or presence of a null-free subschema.

Embedded multivalued dependencies are multivalued dependencies that hold in the
projection of a relation. It has been shown that the implication problem for embedded
multivalued dependencies is not finitely axiomatizable by a Hilbert-style axiomatiza-
tion [86, 82]. Moreover, the implication and finite implication problems for the class
of embedded multivalued dependencies are both undecidable [57, 58]. Full hierarchical
dependencies are equivalent to multivalued dependencies, and hierarchical dependencies,
called first-order hierarchical decomposition in [31], are equivalent to embedded multi-
valued dependencies. Note that in the case of implication over undetermined universes,
multivalued dependencies are defined over any full set of attributes that includes those
occurring in the dependencies. This is in contrast to embedded multivalued dependen-
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cies which are defined over projections of the full set of attributes. This difference is the
deciding factor for the (non-)axiomatizability of (embedded) multivalued dependencies.
It is an interesting problem for future work to investigate the properties of embedded
multivalued dependencies over partial relations, with respect to different approaches to
partiality. The class of so-called conflict-free embedded multivalued dependencies is of
particular interest as it enjoys a finite axiomatization [79].

There are equivalences between the logical R-implication of classes of relational de-
pendencies and classes of conditional independencies in Bayesian networks [62, 98]. It
would be interesting to investigate whether these equivalences are also valid for the no-
tion of implication in undetermined universes. Perhaps more interestingly, this notion of
implication has not been studied previously for conditional independencies.

A very interesting treatment of MVDs and FHDs in the context of Entity-Relationship
modeling can be found in [90]. There, the R-complete inference rules do not directly
apply an R-complementation rule but make use of R’s partitions into components and
attributes where R denotes some relationship type. This is another way of indicating
the dependence of implication on the underlying universe R. In this context it would
therefore be very interesting to investigate the notion of implication in undetermined
universes.

It would be a rewarding exercise to provide the foundations for extending design aids
available for total relations [29, 30, 76, 84]. It seems intuitive that design teams find it
more difficult to understand the interaction of FDs and FHDs in the presence of an NFS.
Hence, Armstrong databases [35] might be of even bigger value than reported for the
case of total relations [67]. Computational and structural properties of Armstrong tables
for FDs in the presence of an NFS have recently been investigated [50].

Finally, we mention that the class of full hierarchical dependencies has largely been
unexplored for XML, except for [83, 94]. This is somewhat surprising since the body
of research on functional dependencies over XML data is rather substantial, and full
hierarchical dependencies aim to explore the lossless decompositions of documents in
which they are exhibited.
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